1
|
Vitamin E protective effects on genomic and cellular damage caused by paediatric preventive supplementation for anaemia: an experimental model. Br J Nutr 2023; 129:468-477. [PMID: 35591764 DOI: 10.1017/s0007114522001556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Iron deficiency is the leading cause of anaemia. In Argentina, the prevalence of anaemia and iron deficiency is very high; for that reason, the Argentine Society of Pediatrics recommends daily ferrous sulphate supplementation as a preventive treatment strategy. Alternatively, weekly ferrous sulphate supplementation has also been shown to be effective for anaemia prevention. Excess iron could be related to oxidative stress, which may in turn cause cytomolecular damage. Both can be prevented with vitamin E supplementation. We evaluated the effect of both daily and weekly ferrous sulphate supplementation combined with two doses of vitamin E on cell viability, oxidative stress and cytomolecular damage in peripheral blood cultured in vitro. The experimental design included the following groups: untreated negative control, two vitamin E controls (8·3 and 16·6 µg/ml), weekly ferrous sulphate supplementation (0·55 mg/ml) with each vitamin E dose, daily ferrous sulphate supplementation (0·14 mg/ml) with each vitamin E dose and a positive control. Daily ferrous sulphate supplementation decreased cell viability and increased the levels of reactive oxygen species, lipid peroxidation and cytomolecular damage (P < 0·5) compared with the weekly supplementation, probably due to the excess iron observed in the former. Vitamin E seemed to reduce ferrous sulphate-induced oxidative stress and genomic damage.
Collapse
|
2
|
How Robust is the Evidence for a Role of Oxidative Stress in Autism Spectrum Disorders and Intellectual Disabilities? J Autism Dev Disord 2021; 51:1428-1445. [PMID: 32929662 PMCID: PMC8084796 DOI: 10.1007/s10803-020-04611-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growing interest in the pathogenesis of autism spectrum disorders (ASDs) and other intellectual and developmental disabilities (IDD) has led to emerging evidence implicating a role for oxidative stress. However, understanding the strength of this association is made challenging by the use of a variety of purported biomarkers of oxidative stress, many of which have either uncertain specificity or flawed methods of analysis. This review aims to address this issue, which is widespread in the ASD and IDD literature, by providing readers with information concerning the strengths and limitations of the choice and analysis of biomarkers of oxidative stress. We highlight that biomarkers and assays should be specific, sensitive, reproducible, precise, robust, and chosen with careful consideration. Future studies should be sufficiently powered and address sample collection, processing, and storage which are, additionally, poorly considered, sources of bad practice, and potential errors. Only with these issues considered, will the data lead to conclusions as to the precise role of oxidative stress in ASDs and IDD.
Collapse
|
3
|
|
4
|
Baker BC, Hayes DJ, Jones RL. Effects of micronutrients on placental function: evidence from clinical studies to animal models. Reproduction 2018; 156:R69-R82. [PMID: 29844225 DOI: 10.1530/rep-18-0130] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022]
Abstract
Micronutrient deficiencies are common in pregnant women due to low dietary intake and increased requirements for fetal development. Low maternal micronutrient status is associated with a range of pregnancy pathologies involving placental dysfunction, including fetal growth restriction (FGR), small-for-gestational age (SGA), pre-eclampsia and preterm birth. However, clinical trials commonly fail to convincingly demonstrate beneficial effects of supplementation of individual micronutrients, attributed to heterogeneity and insufficient power, potential interactions and lack of mechanistic knowledge of effects on the placenta. We aimed to provide current evidence of relationships between selected micronutrients (vitamin D, vitamin A, iron, folate, vitamin B12) and adverse pregnancy outcomes, combined with understanding of actions on the placenta. Following a systematic literature search, we reviewed data from clinical, in vitro and in vivo studies of micronutrient deficiency and supplementation. Key findings are potential effects of micronutrient deficiencies on placental development and function, leading to impaired fetal growth. Studies in human trophoblast cells and rodent models provide insights into underpinning mechanisms. Interestingly, there is emerging evidence that deficiencies in all micronutrients examined induce a pro-inflammatory state in the placenta, drawing parallels with the inflammation detected in FGR, pre-eclampsia, stillbirth and preterm birth. Beneficial effects of supplementation are apparent in vitro and in animal models and for combined micronutrients in clinical studies. However, greater understanding of the roles of these micronutrients, and insight into their involvement in placental dysfunction, combined with more robust clinical studies, is needed to fully ascertain the potential benefits of supplementation in pregnancy.
Collapse
Affiliation(s)
- Bernadette C Baker
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Dexter Jl Hayes
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
5
|
The Effect of High-Fat Diet-Induced Pathophysiological Changes in the Gut on Obesity: What Should be the Ideal Treatment? Clin Transl Gastroenterol 2013; 4:e39. [PMID: 23842483 PMCID: PMC3724044 DOI: 10.1038/ctg.2013.11] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/02/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022] Open
Abstract
Obesity is a metabolic disorder and fundamental cause of other fatal diseases including atherosclerosis and cancer. One of the main factor that contributes to the development of obesity is high-fat (HF) consumption. Lipid ingestion will initiate from the gut feedback mechanisms to regulate glucose and lipid metabolisms. But these lipid-sensing pathways are impaired in HF-induced insulin resistance, resulting in hyperglycemia. Besides that, duodenal lipid activates mucosal mast cells, leading to the disruption of the intestinal tight junction. Lipopolysaccharide that is co-transited with dietary fat postprandially, promotes the release of cytokines and the development of metabolic syndrome. HF-diet also alters microbiota composition and enhances fat storage. Although gut is protected by immune system and contains high level of antioxidants, obesity developed presumably when this protective mechanism is compromised by the presence of excessive fat. Several therapeutic approaches targeting different pathways have been proposed. There may be no one single most effective treatment, but all aimed to prevent obesity. This review will elaborate on the physiological and molecular changes in the gut that lead to obesity, and will provide a summary of potential treatments to manage these pathophysiological changes.
Collapse
|
6
|
Advantages and disadvantages of the animal models v. in vitro studies in iron metabolism: a review. Animal 2013; 7:1651-8. [PMID: 23790319 DOI: 10.1017/s1751731113001134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Iron deficiency is the most common nutritional deficiency in the world. Special molecules have evolved for iron acquisition, transport and storage in soluble, nontoxic forms. Studies about the effects of iron on health are focused on iron metabolism or nutrition to prevent or treat iron deficiency and anemia. These studies are focused in two main aspects: (1) basic studies to elucidate iron metabolism and (2) nutritional studies to evaluate the efficacy of iron supplementation to prevent or treat iron deficiency and anemia. This paper reviews the advantages and disadvantages of the experimental models commonly used as well as the methods that are more used in studies related to iron. In vitro studies have used different parts of the gut. In vivo studies are done in humans and animals such as mice, rats, pigs and monkeys. Iron metabolism is a complex process that includes interactions at the systemic level. In vitro studies, despite physiological differences to humans, are useful to increase knowledge related to this essential micronutrient. Isotopic techniques are the most recommended in studies related to iron, but their high cost and required logistic, making them difficult to use. The depletion-repletion of hemoglobin is a method commonly used in animal studies. Three depletion-repletion techniques are mostly used: hemoglobin regeneration efficiency, relative biological values (RBV) and metabolic balance, which are official methods of the association of official analytical chemists. These techniques are well-validated to be used as studies related to iron and their results can be extrapolated to humans. Knowledge about the main advantages and disadvantages of the in vitro and animal models, and methods used in these studies, could increase confidence of researchers in the experimental results with less costs.
Collapse
|
7
|
Vir P, Kaur J, Mahmood A. Effect of chronic iron ingestion on the development of brush border enzymes in rat intestine. Toxicol Mech Methods 2012; 17:393-9. [PMID: 20020942 DOI: 10.1080/15376510601102793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ABSTRACT Iron is an essential element for biological systems. There is increasing evidence that excess iron supplementation results in the deposition of iron in the duodenum and enhances mucosal injury and cell proliferation in the colon and cecum. In the present study we examined whether chronic exposure to high levels of iron fortification affects the functional integrity of the small intestine, especially the activities of various brush border enzymes. Wistar rats were fed iron 29 mg/kg body weight (or 6.58 mg/kg Fe) daily in the form of FeSO(4).7H(2)O for 39 days. The activities of brush border alkaline phosphatase (AP) (p < 0.001), sucrase (p < 0.01), maltase (p < 0.05), lactase (p < 0.05), and trehalase (p < 0.001) were reduced in purified membranes in iron-fed animals compared to controls. However, the activities of leucine amino peptidase (LAP) and gamma-glutamyl transpeptidase (gamma-GTP) were unaffected under these conditions. Analysis of alkaline phosphatase activity across the crypt-villus unit revealed a significant decrease (p < 0.05) all across the crypt-villus length, while sucrase activity was reduced (p < 0.01) only in the midvillus axis in iron-exposed animals. Kinetic studies showed a decrease in V(max) of AP from 1.11 to 0.83 units/mg protein and for sucrase from 0.77 to 0.43 units/mg protein in iron-fed rats, with no change in the apparent K(m) of the enzymes (AP, 8 mM; sucrase, 10 mM). Western blot analysis corroborated these findings. These results indicate that chronic iron exposure alters the activities of brush border enzymes, resulting in intestinal dysfunctions.
Collapse
Affiliation(s)
- Pooja Vir
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | | | | |
Collapse
|
8
|
Chen Y, Hagerman AE. Reaction pH and protein affect the oxidation products of β-pentagalloyl glucose. Free Radic Res 2009; 39:117-24. [PMID: 15763959 DOI: 10.1080/10715760400013789] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To better understand the biochemical consequences when polymeric polyphenols serve as biological antioxidants, we studied how reaction pH (pH 2.1-7.4) and protein affected the oxidation of pentagalloyl glucose (PGG) by NaIO4 in aqueous solution. PGG oxidation produced an o-semiquinone radical intermediate, which tended to form polymeric products at pH values below 5, and o-quinones at higher pH. The model protein bovine serum albumin promoted the formation of quinone even at low pH. Two other polyphenols, procyanidin (epicatechin16-(4-->8)-catechin) and epigallocatechin gallate, had similar pH-dependent oxidation patterns.
Collapse
Affiliation(s)
- Yumin Chen
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
9
|
Zunquin G, Rouleau V, Bouhallab S, Bureau F, Theunynck D, Rousselot P, Arhan P, Bougle D. Iron and exercise induced alterations in antioxidant status. Protection by dietary milk proteins. Free Radic Res 2009; 40:535-42. [PMID: 17390518 DOI: 10.1080/10715760500451202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lipid peroxidation stress induced by iron supplementation can contribute to the induction of gut lesions. Intensive sports lead to ischemia reperfusion, which increases free radical production. Athletes frequently use heavy iron supplementation, whose effects are unknown. On the other hand, milk proteins have in vitro antioxidant properties, which could counteract these potential side effects. The main aims of the study were: (1) to demonstrate the effects of combined exercise training (ET) and iron overload on antioxidant status; (2) to assess the protective properties of casein in vivo; (3) to study the mechanisms involved in an in vitro model. Antioxidant status was assessed by measuring the activity of antioxidant enzymes (superoxide dismutase (SOD); glutathione peroxidase (GSH-Px)), and on the onset of aberrant crypts (AC) in colon, which can be induced by lipid peroxidation. At day 30, all ET animals showed an increase in the activity of antioxidant enzymes, in iron concentration in colon mucosa and liver and in the number of AC compared to untrained rats. It was found that Casein's milk protein supplementation significantly reduced these parameters. Additional information on protective effect of casein was provided by measuring the extent of TBARS formation during iron/ascorbate-induced oxidation of liposomes. Free casein and casein bound to iron were found to significantly reduce iron-induced lipid peroxidation. The results of the overall study suggest that Iron supplementation during intensive sport training would decrease anti-oxidant status. Dietary milk protein supplementation could at least partly prevent occurrence of deleterious effects to tissue induced by iron overload.
Collapse
Affiliation(s)
- Gautier Zunquin
- Laboratoire de Physiologie digestive et nutritionnelle, CHU Caen, Caen, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kumar N, Chandhiok N, Dhillon BS, Kumar P. Role of oxidative stress while controlling iron deficiency anemia during pregnancy - Indian scenario. Indian J Clin Biochem 2009; 24:5-14. [PMID: 23105800 DOI: 10.1007/s12291-009-0002-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Iron Deficiency anemia ranks 9(th) among 26 diseases with highest burden. Asia bears 71% of this global burden. Adverse maternal and birth outcome associated with hemoglobin status renders the issue worth attention. Indian scenario has worsened over the period despite continuous international and national efforts. This indicates some lacunae in the approach and strategies applied. Various reports state that even with maximum effort to increase outreach and monitoring for adherence to Iron schedule, consumer's compliance remains abysmally low. Recent studies has pointed out biological basis of side effects (gastrointestinal complains and systemic events) as raised oxidative stress for which iron is the key catalyst. Up till now the only target of research has been to raise hemoglobin of pregnant women above 11gm/dl. With the reports of pregnancy specific morbidities i.e. hemorrhage and septicemia with low hemoglobin, eclampsia, small for gestation age, gestational diabetes with higher ranges of hemoglobin, alarm is raised to define optimum range. Use of oxidative stress as biochemical marker with different doses and schedules has been defined because India lack information for its own population upon oxidative stress status when iron is supplemented as per current guidelines. Studies done in India and abroad have defined that too much and too less, both may raise oxidative stress and studies of this sort may provide biochemical scale for optimization. This review therefore has evaluated currently available Indian research and reports to understand the need of future research area. Important findings from other countries have been incorporated for comparison.
Collapse
Affiliation(s)
- Neeta Kumar
- Division of Reproductive Health and Nutrition, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029 India ; Div. of RHN, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029 India
| | | | | | | |
Collapse
|
11
|
|
12
|
Nair KM. Alternate strategies for improving iron nutrition: lessons from recent research. Br J Nutr 2007. [DOI: 10.1079/bjn2000313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Abstract
OBJECTIVE To review the current evidence on the role of micronutrient supplementation in HIV transmission and progression. METHOD Literature review. RESULTS The importance of micronutrients in the prevention and treatment of childhood infections is well known, and evidence is emerging that micronutrient interventions may also affect HIV transmission and progression. CONCLUSION Interventions to improve micronutrient intake and status could contribute to a reduction in the magnitude and impact of the global HIV epidemic. However, more research is needed before specific recommendations can be made.
Collapse
Affiliation(s)
- Henrik Friis
- Department of Epidemiology, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Martínez-Sánchez G, Giuliani A, Pérez-Davison G, León-Fernández OS. Oxidized proteins and their contribution to redox homeostasis. Redox Rep 2006; 10:175-85. [PMID: 16259785 DOI: 10.1179/135100005x57382] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Proteins are major target for radicals and other oxidants when these are formed in both intra- and extracellular environments in vivo. Formation of lesions on proteins may be highly sensitive protein-based biomarkers for oxidative damage in mammalian systems. Oxidized proteins are often functionally inactive and their unfolding is associated with enhanced susceptibility to proteinases. ROS scavenging activities of intact proteins are weaker than those of misfolded proteins or equivalent concentrations of their constituent amino acids. Protein oxidation and enhanced proteolytic degradation, therefore, have been suggested to cause a net increase in ROS scavenging capacity. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins, may contribute to the observed accumulation and damaging actions of oxidized proteins during ageing and in pathologies such as diabetes, arteriosclerosis and neurodegenerative diseases. Protein oxidation may play a controlling role in cellular remodelling and cell growth. There is some evidence that antioxidant supplementation may protect against protein oxidation, but additional controlled studies of antioxidant intake to evaluate the significance of dietary/pharmacological antioxidants in preventing physiological/pathological oxidative changes are needed.
Collapse
Affiliation(s)
- Gregorio Martínez-Sánchez
- Centre for Research and Biological Evaluations, Institute of Pharmacy and Food Sciences, Havana University, Cuba.
| | | | | | | |
Collapse
|
15
|
Sreedhar B, Nair KM. Modulation of aconitase, metallothionein, and oxidative stress in zinc-deficient rat intestine during zinc and iron repletion. Free Radic Biol Med 2005; 39:999-1008. [PMID: 16198227 DOI: 10.1016/j.freeradbiomed.2005.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 04/29/2005] [Accepted: 05/16/2005] [Indexed: 10/25/2022]
Abstract
Potential interactions between zinc and iron during absorption and its functional consequences on intestinal oxidative damage and antioxidant status were studied using the zinc-deficient rat as a model. Zinc depletion produced mild-moderate iron deficiency in addition to zinc deficiency, which could be corrected by repletion with iron and zinc. The localization and intensity of both iron and zinc in the intestinal mucosa showed a pronounced decrease in the presence of the other metal, indicating negative interactions. Zinc-deficient intestine exposed to iron alone exhibited elevated peroxidative damage and compromised functional integrity, despite increased expression of ferritin. Inclusion of zinc significantly reduced the damage and improved the functional integrity, accompanied by decreased expression of ferritin. Decreased expression of ferritin in the presence of zinc was consistent with reduced aconitase activity, suggesting its modulation by zinc. Further, inclusion of iron along with zinc was associated with induction of ferritin and metallothionein in tune with the amount of iron and zinc localized in the intestinal mucosa, respectively. These results suggest that zinc and iron interact negatively with cytosolic aconitase, but prove beneficial in reducing the oxidative stress, apart from improving functional integrity and iron/zinc status.
Collapse
Affiliation(s)
- Bodiga Sreedhar
- Department of Biophysics, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania (P.O.), Hyderabad 500 007, India
| | | |
Collapse
|
16
|
McLean JA, Karadas F, Surai PF, McDevitt RM, Speake BK. Lipid-soluble and water-soluble antioxidant activities of the avian intestinal mucosa at different sites along the intestinal tract. Comp Biochem Physiol B Biochem Mol Biol 2005; 141:366-72. [PMID: 15927496 DOI: 10.1016/j.cbpc.2005.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 04/21/2005] [Accepted: 04/22/2005] [Indexed: 01/29/2023]
Abstract
The antioxidant capacity of the avian intestinal mucosa is potentially important in protecting the gut wall from the harmful actions of reactive oxygen species originating from the diet, mucosal metabolism and the inflammatory response to enteric microbes. To assess this capacity, we determined the total lipid-soluble and water-soluble antioxidant activities of mucosal extracts, using tissue from different parts of the intestinal tract of the chicken. The lipid-soluble antioxidants, vitamin E and carotenoids, were also measured in the same samples. Total lipid-soluble antioxidant activity was highest in mucosa from the duodenum followed by the jejunum, with much lower activities in the ileum, ceca and colon. Total water-soluble antioxidant activity of the mucosa was at least an order of magnitude greater than the lipid-soluble activity under the assay conditions and did not differ significantly among the different parts of the intestinal tract. High concentrations of vitamin E were present in the mucosa of the duodenum and jejunum, with a trend to lower levels in the ileum and ceca, and significantly less in the colon. Similarly, the mucosa of the duodenum and jejunum contained the highest concentrations of carotenoids, with much lower levels in the ileum and colon. The different isoforms of vitamin E were absorbed from the digesta by the mucosa without any major selectivity. However, the liver was greatly enriched with alpha-tocopherol over the other isoforms, indicating a high degree of discrimination by this tissue. The results indicate major differences in the relative contributions of lipid- and water-soluble antioxidants in the mucosa along the different parts of the intestinal tract, most likely reflecting the sites of vitamin E and carotenoid absorption.
Collapse
|
17
|
Sreedhar B, Subramaniyan R, Nair KM. A protective role for zinc on intestinal peroxidative damage during oral iron repletion. Biochem Biophys Res Commun 2004; 318:992-7. [PMID: 15147971 DOI: 10.1016/j.bbrc.2004.04.132] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Indexed: 11/28/2022]
Abstract
Oral iron-supplementation is a general practice to correct iron deficiency anemia. Exposure of iron-deficient intestine to large doses of iron is known to induce oxidative damage, leading to loss of functional integrity, and reduced mucosal cell turnover. Conditioning of intestine with anti-oxidants during iron administration was shown to suppress iron-induced oxidative damage. Zinc is known to protect cells from peroxidative damage by inducing metallothionein and maintaining the sulfhydryl group stability. Nevertheless, co-administration of iron and zinc may antagonize each other with respect to absorption. In the present study, we show that combined supplementation of iron and zinc though marginally inhibits iron uptake significantly attenuates the oxidative stress by induction of metallothionein and elevating the levels of GSH. Further, presence of zinc in situ reduced the iron-induced hydroxyl radical production in the intestinal mucosa, as assessed by EPR spectroscopy. These results strongly suggest a protective role for zinc on iron-induced oxidative stress, which might have implications in anemia control programs.
Collapse
Affiliation(s)
- B Sreedhar
- Department of Biophysics, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania (P.O.), Hyderabad-500 007, India
| | | | | |
Collapse
|
18
|
Abstract
Pregnancy, mostly because of the mitochondria-rich placenta, is a condition that favors oxidative stress. Transitional metals, especially iron, which is particularly abundant in the placenta, are important in the production of free radicals. Protective mechanisms against free radical generation and damage increase throughout pregnancy and protect the fetus, which, however, is subjected to a degree of oxidative stress. Oxidative stress peaks by the second trimester of pregnancy, ending what appears to be a vulnerable period for fetal health and gestational progress. Conditions restricted to pregnancy, such as gestational hypertension, insulin resistance and diabetes, exhibit exaggerated indications of free radical damage. Antioxidants as well as avoidance of iron excess ameliorate maternal and early fetal damage. In rats both iron deficiency and excess result in free radical mitochondrial damage. Estimates of gestational iron requirements and of the proportion of iron absorbed from different iron supplemental doses suggest that with present supplementation schemes the intestinal mucosal cells are constantly exposed to unabsorbed iron excess and oxidative stress. Unpublished work carried out in Mexico City with nonanemic women at midpregnancy indicates that 60 mg/d of iron increases the risk of hemoconcentration, low birth weight and premature birth and produces a progressive decline in plasma copper. These risks are not observed in women supplemented with 120 mg iron once or twice per week. Studies on the influence of iron supplementation schemes on oxidative stress are needed.
Collapse
|
19
|
Everett SM, Drake IM, White KLM, Mapstone NP, Chalmers DM, Schorah CJ, Axon ATR. Antioxidant vitamin supplements do not reduce reactive oxygen species activity in Helicobacter pylori gastritis in the short term. Br J Nutr 2002; 87:3-11. [PMID: 11898768 DOI: 10.1079/bjn2001477] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species have been implicated in Helicobacter pylori-mediated gastric carcinogenesis, whereas diets high in antioxidant vitamins C and E are protective. We have examined the effect of vitamin C and E supplements in combination with H. pylori eradication on reactive oxygen species activity in H. pylori gastritis. H. pylori-positive patients were randomized into four groups: triple therapy alone (Bismuth chelate, tetracycline, and metronidazole for 2 weeks), vitamins alone (200mg vitamin C and 50mg vitamin E, both twice per day for 4 weeks), both treatments or neither. Plasma and mucosal ascorbic acid, malondialdehyde and reactive oxygen species were determined before and after treatment. Compared with normal controls (n 61), H. pylori-positive patients (n 117) had higher mucosal reactive oxygen species and malondialdehyde levels and lower plasma ascorbic acid. Plasma ascorbic acid doubled in both groups of patients receiving vitamins and mucosal levels also increased. Malondialdehyde and reactive oxygen species fell in patients in whom H. pylori was eradicated but vitamin supplements were not effective either alone or in combination with H. pylori eradication. Supplements of vitamins C and E do not significantly reduce mucosal reactive oxygen species damage in H. pylori gastritis.
Collapse
Affiliation(s)
- Simon M Everett
- The Centre for Digestive Diseases, The General Infirmary at Leeds, UK.
| | | | | | | | | | | | | |
Collapse
|