1
|
Malcomson FC, Mathers JC. Translation of nutrigenomic research for personalised and precision nutrition for cancer prevention and for cancer survivors. Redox Biol 2023; 62:102710. [PMID: 37105011 PMCID: PMC10165138 DOI: 10.1016/j.redox.2023.102710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Personalised and precision nutrition uses information on individual characteristics and responses to nutrients, foods and dietary patterns to develop targeted nutritional advice that is more effective in improving the diet and health of each individual. Moving away from the conventional 'one size fits all', such targeted intervention approaches may pave the way to better population health, including lower burden of non-communicable diseases. To date, most personalised and precision nutrition approaches have been focussed on tackling obesity and cardiometabolic diseases with limited efforts directed to cancer prevention and for cancer survivors. Advances in understanding the biological basis of cancer and of the role played by diet in cancer prevention and in survival after cancer diagnosis, mean that it is timely to test and to apply such personalised and precision nutrition approaches in the cancer area. This endeavour can take advantage of the enhanced understanding of interactions between dietary factors, individual genotype and the gut microbiome that impact on risk of, and survival after, cancer diagnosis. Translation of these basic research into public health action should include real-time acquisition of nutrigenomic and related data and use of AI-based data integration methods in systems approaches that can be scaled up using mobile devices.
Collapse
Affiliation(s)
- F C Malcomson
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - J C Mathers
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
2
|
Mišík M, Staudinger M, Kundi M, Worel N, Nersesyan A, Ferk F, Dusinska M, Azqueta A, Møller P, Knasmueller S. Use of the Single Cell Gel Electrophoresis Assay for the Detection of DNA-protective Dietary Factors: Results of Human Intervention Studies. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 791:108458. [PMID: 37031732 DOI: 10.1016/j.mrrev.2023.108458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
The single cell gel electrophoresis technique is based on the measurement of DNA migration in an electric field and enables to investigate via determination of DNA-damage the impact of foods and their constituents on the genetic stability. DNA-damage leads to adverse effects including cancer, neurodegenerative disorders and infertility. In the last 25 years approximately 90 human intervention trials have been published in which DNA-damage, formation of oxidized bases, alterations of the sensitivity towards reactive oxygen species and chemicals and of repair functions were investigated with this technique. In approximately 50% of the studies protective effects were observed. Pronounced protection was found with certain plant foods (spinach, kiwi fruits, onions), coffee, green tea, honey and olive oil. Also diets with increased contents of vegetables caused positive effects. Small amounts of certain phenolics (gallic acid, xanthohumol) prevented oxidative damage of DNA; with antioxidant vitamins and cholecalciferol protective effects were only detected after intake of doses that exceed the recommended daily uptake values. The evaluation of the quality of the studies showed that many have methodological shortcomings (lack of controls, no calibration of repair enzymes, inadequate control of the compliance and statistical analyses) which should be avoided in future investigations.
Collapse
Affiliation(s)
- Miroslav Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Marlen Staudinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Nadine Worel
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Armen Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Franziska Ferk
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Denmark
| | - Siegfried Knasmueller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria.
| |
Collapse
|
3
|
Feiveson AH, Krieger SS, von Scheven G, Crucian BE, Bürkle A, Stahn AC, Wu H, Moreno-Villanueva M. DNA Damage and Radiosensitivity in Blood Cells from Subjects Undergoing 45 Days of Isolation and Confinement: An Explorative Study. Curr Issues Mol Biol 2022; 44:654-669. [PMID: 35723331 PMCID: PMC8929106 DOI: 10.3390/cimb44020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/02/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of confined and isolated experience on astronauts’ health is an important factor to consider for future space exploration missions. The more confined and isolated humans are, the more likely they are to develop negative behavioral or cognitive conditions such as a mood decline, sleep disorder, depression, fatigue and/or physiological problems associated with chronic stress. Molecular mediators of chronic stress, such as cytokines, stress hormones or reactive oxygen species (ROS) are known to induce cellular damage including damage to the DNA. In view of the growing evidence of chronic stress-induced DNA damage, we conducted an explorative study and measured DNA strand breaks in 20 healthy adults. The participants were grouped into five teams (missions). Each team was composed of four participants, who spent 45 days in isolation and confinement in NASA’s Human Exploration Research Analog (HERA). Endogenous DNA integrity, ex-vivo radiation-induced DNA damage and the rates of DNA repair were assessed every week. Our results show a high inter-individual variability as well as differences between the missions, which cannot be explained by inter-individual variability alone. The ages and sex of the participants did not appear to influence the results.
Collapse
Affiliation(s)
- Alan H. Feiveson
- NASA Johnson Space Center, Houston, TX 77058, USA; (A.H.F.); (B.E.C.); (H.W.)
| | | | - Gudrun von Scheven
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (G.v.S.); (A.B.)
| | - Brian E. Crucian
- NASA Johnson Space Center, Houston, TX 77058, USA; (A.H.F.); (B.E.C.); (H.W.)
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (G.v.S.); (A.B.)
| | - Alexander C. Stahn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 1019 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA;
- Center for Space Medicine and Extreme Environments, Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Honglu Wu
- NASA Johnson Space Center, Houston, TX 77058, USA; (A.H.F.); (B.E.C.); (H.W.)
| | - María Moreno-Villanueva
- NASA Johnson Space Center, Houston, TX 77058, USA; (A.H.F.); (B.E.C.); (H.W.)
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457 Konstanz, Germany
- Correspondence: ; Tel.: +49-753-188-3599
| |
Collapse
|
4
|
An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity. Nat Protoc 2020; 15:3844-3878. [PMID: 33199871 DOI: 10.1038/s41596-020-0401-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022]
Abstract
This optimized protocol (including links to instruction videos) describes a comet-based in vitro DNA repair assay that is relatively simple, versatile, and inexpensive, enabling the detection of base and nucleotide excision repair activity. Protein extracts from samples are incubated with agarose-embedded substrate nucleoids ('naked' supercoiled DNA) containing specifically induced DNA lesions (e.g., resulting from oxidation, UVC radiation or benzo[a]pyrene-diol epoxide treatment). DNA incisions produced during the incubation reaction are quantified as strand breaks after electrophoresis, reflecting the extract's incision activity. The method has been applied in cell culture model systems, human biomonitoring and clinical investigations, and animal studies, using isolated blood cells and various solid tissues. Once extracts and substrates are prepared, the assay can be completed within 2 d.
Collapse
|
5
|
Superoxide Dismutase 2 Val16Ala Polymorphism is Associated with Amiodarone-Associated Liver Injury. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2019-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Association of SOD2 V16A single-nucleotide polymorphism (rs4880) with drug hepatotoxicity were reported but relationships with amiodarone prescriptions remained unexplored. Research was an exploratory, controlled prospective clinical trial. Patients hospitalized and treated in Clinical Center in Kragujevac, Serbia (in year 2017) were divided into experimental (using amiodarone, having liver injury, n=29, 19 males, the mean age 66.8±10.4 years), control A (neither amiodarone use nor hepatotoxicity, n=29, 19, 66.1±10.3) and control B group (using amiodarone, not having hepatotoxicity, n=29, 19, 66.8±9.8). From blood samples, among other routine biochemistry, genotyping for SOD2 polymorphism Val16Ala was conducted using real-time PCR method with TaqMan® Genotyping Master Mix and TaqMan® DME Genotyping Assay for rs4880. Patients taking amiodarone and having liver injury were mostly carriers of Val/Val (TT) genotype (13 of 24 patients, 54.2%) while Val/Ala (TC) and Ala/Ala (CC) genotypes prevailed in control group A (19 of 40, 47.5%) and control group B (9 of 23, 39.1%), respectively (2=10.409, p=0.034). Frequency of Val (T) and Ala (C) alleles were 0.51 and 0.49, respectively in the whole study sample (Hardy Weinberg equilibrium, 2=0.56, p=0.454). Carriers of TT genotype had significantly higher ALT (437.0±1158.0 vs 81.9131.5 U/L), total bilirubin (28.320.5 vs 15.313.0 mol/L) and total bile acid concentrations (10.910.2 vs 6.45.3 mol/L) compared to carriers of TC genotype (U=2.331, p=0.020, U=3.204, p=0.001 and U=2.172, p=0.030, respectively). Higher incidence of 47T allele of SOD2 was inpatients with amiodarone-associated liver injury as compared to patients on amiodarone not experiencing hepatotoxic effects.
Collapse
|
6
|
Zehiroglu C, Ozturk Sarikaya SB. The importance of antioxidants and place in today's scientific and technological studies. Journal of Food Science and Technology 2019; 56:4757-4774. [PMID: 31741500 DOI: 10.1007/s13197-019-03952-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 11/26/2022]
Abstract
Antioxidants have become scientifically interesting compounds due to their many benefits such as anti-aging and anti-inflammatory. Today, it is still used in many areas. In food technology, antioxidants are added to many foodstuffs in order to enrich the foods and eliminate the problems. Therefore, studies to determine the antioxidant activities of natural foods and their components are also continuing rapidly. Antioxidants have also been replaced in the encapsulation studies used for the preservation and stabilization of food components. Of course, preservation of foods is as important as their production. The latest packaging techniques for food preservation are edible films and coatings. The protective function of edible films and coatings can be improved by the addition of antioxidants. Unlike these, studies on plants and animals have been investigated in vivo in terms of how the antioxidant activity changes as a result of metabolic activities. The role of antioxidant enzymes in these studies is quite large. Many results have been found for the elimination of diseases by either in vivo or in vitro studies regarding antioxidants. Thus, the importance of antioxidants increased with the use in pharmacology, cosmetics and medicine. In this study, we tried to bring a current perspective to antioxidants played an active role in many fields by combining the technological applications and scientific studies of antioxidants. In order to further customize the issue, we have done this especially for the food and health field and we have tried to emphasize the importance of antioxidants in this way.
Collapse
Affiliation(s)
- Cuma Zehiroglu
- 1Center Research Laboratory Application and Research Center, Gumushane University, Gumushane, Turkey
| | - Sevim Beyza Ozturk Sarikaya
- 2Department of Food Engineering, Faculty of Engineering and Natural Sciences, Gumushane University, Gumushane, Turkey
| |
Collapse
|
7
|
Azqueta A, Langie SAS, Boutet-Robinet E, Duthie S, Ladeira C, Møller P, Collins AR, Godschalk RWL. DNA repair as a human biomonitoring tool: Comet assay approaches. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:71-87. [PMID: 31416580 DOI: 10.1016/j.mrrev.2019.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
The comet assay offers the opportunity to measure both DNA damage and repair. Various comet assay based methods are available to measure DNA repair activity, but some requirements should be met for their effective use in human biomonitoring studies. These conditions include i) robustness of the assay, ii) sources of inter- and intra-individual variability must be known, iii) DNA repair kinetics should be assessed to optimize sampling timing; and iv) DNA repair in accessible surrogate tissues should reflect repair activity in target tissues prone to carcinogenic effects. DNA repair phenotyping can be performed on frozen and fresh samples, and is a more direct measurement than genomic or transcriptomic approaches. There are mixed reports concerning the regulation of DNA repair by environmental and dietary factors. In general, exposure to genotoxic agents did not change base excision repair (BER) activity, whereas some studies reported that dietary interventions affected BER activity. On the other hand, in vitro and in vivo studies indicated that nucleotide excision repair (NER) can be altered by exposure to genotoxic agents, but studies on other life style related factors, such as diet, are rare. Thus, crucial questions concerning the factors regulating DNA repair and inter-individual variation remain unanswered. Intra-individual variation over a period of days to weeks seems limited, which is favourable for DNA repair phenotyping in biomonitoring studies. Despite this reported low intra-individual variation, timing of sampling remains an issue that needs further investigation. A correlation was reported between the repair activity in easily accessible peripheral blood mononuclear cells (PBMCs) and internal organs for both NER and BER. However, no correlation was found between tumour tissue and blood cells. In conclusion, although comet assay based approaches to measure BER/NER phenotypes are feasible and promising, more work is needed to further optimize their application in human biomonitoring and intervention studies.
Collapse
Affiliation(s)
- Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009 Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| | - Sabine A S Langie
- VITO - Sustainable Health, Mol, Belgium; Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Susan Duthie
- School of Pharmacy and Life Sciences, The Robert Gordon University, Riverside East, Garthdee Road, Aberdeen, AB10 7GJ, United Kingdom
| | - Carina Ladeira
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Av. D. João II, lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal; Centro de Investigação e Estudos em Saúde Pública, Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Portugal
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Andrew R Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Roger W L Godschalk
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, The Netherlands
| |
Collapse
|
8
|
Abstract
The ageing trajectory is plastic and can be slowed down by lifestyle factors, including good nutrition, adequate physical activity and avoidance of smoking. In humans, plant-based diets such as the Mediterranean dietary pattern are associated with healthier ageing and lower risk of age-related disease, whereas obesity accelerates ageing and increases the likelihood of most common complex diseases including CVD, T2D, dementia, musculoskeletal diseases and several cancers. As yet, there is only weak evidence in humans about the molecular mechanisms through which dietary factors modulate ageing but evidence from cell systems and animal models suggest that it is probable that better dietary choices influence all 9 hallmarks of ageing. It seems likely that better eating patterns retard ageing in at least two ways including (i) by reducing pervasive damaging processes such as inflammation, oxidative stress/redox changes and metabolic stress and (ii) by enhancing cellular capacities for damage management and repair. From a societal perspective, there is an urgent imperative to discover, and to implement, cost-effective lifestyle (especially dietary) interventions which enable each of us to age well, i.e. to remain physically and socially active and independent and to minimise the period towards the end of life when individuals suffer from frailty and multi-morbidity.
Collapse
Affiliation(s)
- Fiona C Malcomson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
9
|
Heiss C, Spyridopoulos I, Haendeler J. Interventions to slow cardiovascular aging: Dietary restriction, drugs and novel molecules. Exp Gerontol 2017; 109:108-118. [PMID: 28658611 DOI: 10.1016/j.exger.2017.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 02/05/2023]
Abstract
Cardiovascular aging is a highly dynamic process. Despite the fact that cardiovascular function and structure change with age, they can still be modulated even in aged humans. The most prominent approaches to improve age-dependent vascular changes include dietary restriction and pharmacologic agents interacting with signaling pathways implicated in this context. These include inhibition of TOR, glycolysis, and GH/IGF-1, activation of sirtuins, and AMPK, as well as modulators of inflammation, epigenetic pathways, and telomeres. Promising nutritional approaches include Mediterranean diet and novel dietary bioactives including flavanols, anthocyanins, and lignins. Many plant bioactives improve cardiovascular parameters implied in vascular healthy aging including endothelial function, arterial stiffness, blood pressure, cholesterol, and glycemic control. However, the mechanism of action of most bioactives is not established and it remains to be elucidated whether they act as dietary restriction mimetics or via other modes of action. Even more importantly, whether these interventions can slow or even reverses components of cardiovascular aging itself and can increase healthspan or longevity in humans needs to be determined.
Collapse
Affiliation(s)
- Christian Heiss
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Ioakim Spyridopoulos
- Institute of Genetic Medicine, Medical Faculty, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.
| | - Judith Haendeler
- Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University of Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany.
| |
Collapse
|
10
|
Nersesyan A, Hoelzl C, Ferk F, Mišík M, Al-Serori H, Setayesh T, Knasmueller S. Use of Single-cell Gel Electrophoresis Assays in Dietary Intervention Trials. THE COMET ASSAY IN TOXICOLOGY 2016. [DOI: 10.1039/9781782622895-00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The single-cell gel electrophoresis (SCGE) technique has been frequently used to investigate the impact of consumption of complex foods and individual constituents on DNA stability in humans. Since no division or cultivation of the indicator cells (in most studies lymphocytes) is required, this approach is less costly and time consuming than cytogenetic methods. Apart from single- and double-stand breaks and apurinic sites, which can be detected under standard conditions, it is also possible to assess the formation of oxidized DNA bases and alterations of DNA repair as well as protection of the DNA against chemical carcinogens. In total, 93 studies have been published since the first use of the Comet assay in this field in 1997. The results which emerged from these studies show that human foods contain specific highly protective components (e.g. gallic acid, xanthohumol, isoflavones); promising results were also obtained with beverages (coffee and other drinks), while mixed diets with vegetables and fruits conferred no or moderate protection; however, individual plant foods (e.g. kiwis and specific cruciferous vegetables) were highly protective. It is notable that prevention of DNA damage was rarely detected under standard conditions while evidence for reduced formation of oxidized DNA bases was found in approximately 30% of the trials. In some investigations it was possible to identify the modes of action by which specific compounds prevented damage of the genetic material in additional mechanistic experiments. The currently available data show that SCGE assays are a valuable tool for identifying dietary factors which improve the stability of the genetic material and prevent adverse health effects which are causally related to DNA damage.
Collapse
Affiliation(s)
- Armen Nersesyan
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Christine Hoelzl
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Franziska Ferk
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Miroslav Mišík
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Halh Al-Serori
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Tahereh Setayesh
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Siegfried Knasmueller
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| |
Collapse
|
11
|
Jablonska E, Raimondi S, Gromadzinska J, Reszka E, Wieczorek E, Krol MB, Smok-Pieniazek A, Nocun M, Stepnik M, Socha K, Borawska MH, Wasowicz W. DNA damage and oxidative stress response to selenium yeast in the non-smoking individuals: a short-term supplementation trial with respect to GPX1 and SEPP1 polymorphism. Eur J Nutr 2015; 55:2469-2484. [PMID: 26658762 PMCID: PMC5122617 DOI: 10.1007/s00394-015-1118-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/17/2015] [Indexed: 01/28/2023]
Abstract
Purpose Selenium, both essential and toxic element, is considered to protect against cancer, though human supplementation trials have generated many inconsistent data. Genetic background may partially explain a great variability of the studies related to selenium and human health. The aim of this study was to assess whether functional polymorphisms within two selenoprotein-encoding genes modify the response to selenium at the level of oxidative stress, DNA damage, and mRNA expression, especially in the individuals with a relatively low selenium status. Methods The trial involved 95 non-smoking individuals, stratified according to GPX1 rs1050450 and SEPP1 rs3877899 genotypes, and supplemented with selenium yeast (200 µg) for 6 weeks. Blood was collected at four time points, including 4 weeks of washout. Results After genotype stratification, the effect of GPX1 rs1050450 on lower GPx1 activity responsiveness was confirmed; however, in terms of DNA damage, we failed to indicate that individuals homozygous for variant allele may especially benefit from the increased selenium intake. Surprisingly, considering gene and time interaction, GPX1 polymorphism was observed to modify the level of DNA strand breaks during washout, showing a significant increase in GPX1 wild-type homozygotes. Regardless of the genotype, selenium supplementation was associated with a selectively suppressed selenoprotein mRNA expression and inconsistent changes in oxidative stress response, indicating for overlapped, antioxidant, and prooxidant effects. Intriguingly, DNA damage was not influenced by supplementation, but it was significantly increased during washout. Conclusions These results point to an unclear relationship between selenium, genotype, and DNA damage. Electronic supplementary material The online version of this article (doi:10.1007/s00394-015-1118-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Jablonska
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, St. Teresy 8 Street, 91-348, Lodz, Poland.
| | - S Raimondi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Via Ripamonti 435, Milan, Italy
| | - J Gromadzinska
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, St. Teresy 8 Street, 91-348, Lodz, Poland
| | - E Reszka
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, St. Teresy 8 Street, 91-348, Lodz, Poland
| | - E Wieczorek
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, St. Teresy 8 Street, 91-348, Lodz, Poland
| | - M B Krol
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, St. Teresy 8 Street, 91-348, Lodz, Poland
| | - A Smok-Pieniazek
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, St. Teresy 8 Street, 91-348, Lodz, Poland
| | - M Nocun
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, St. Teresy 8 Street, 91-348, Lodz, Poland
| | - M Stepnik
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, St. Teresy 8 Street, 91-348, Lodz, Poland
| | - K Socha
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D Street, 15-222, Białystok, Poland
| | - M H Borawska
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D Street, 15-222, Białystok, Poland
| | - W Wasowicz
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, St. Teresy 8 Street, 91-348, Lodz, Poland
| |
Collapse
|
12
|
Løhr M, Jensen A, Eriksen L, Grønbæk M, Loft S, Møller P. Association between age and repair of oxidatively damaged DNA in human peripheral blood mononuclear cells. Mutagenesis 2015; 30:695-700. [DOI: 10.1093/mutage/gev031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
13
|
Abstract
Oxidative stress is characterized by imbalanced reactive oxygen species (ROS) production and antioxidant defenses. Two main antioxidant systems exist. The nonenzymatic system relies on molecules to directly quench ROS and the enzymatic system is composed of specific enzymes that detoxify ROS. Among the latter, the superoxide dismutase (SOD) family is important in oxidative stress modulation. Of these, manganese-dependent SOD (MnSOD) plays a major role due to its mitochondrial location, i.e., the main site of superoxide (O(2)(·-)) production. As such, extensive research has focused on its capacity to modulate oxidative stress. Early data demonstrated the relevance of MnSOD as an O(2)(·-) scavenger. More recent research has, however, identified a prominent role for MnSOD in carcinogenesis. In addition, SOD downregulation appears associated with health risk in heart and brain. A single nucleotide polymorphism which alters the mitochondria signaling sequence for the cytosolic MnSOD form has been identified. Transport into the mitochondria was differentially affected by allelic presence and a new chapter in MnSOD research thus begun. As a result, an ever-increasing number of diseases appear associated with this allelic variation including metabolic and cardiovascular disease. Although diet and exercise upregulate MnSOD, the relationship between environmental and genetic factors remains unclear.
Collapse
|
14
|
Abstract
Human life expectancy has been increasing steadily for almost two centuries and is now approximately double what it was at the beginning of the Victorian era. This remarkable demographic change has been accompanied by a shift in disease prevalence so that age is now the major determinant of most common diseases. The challenge is to enhance healthy ageing and to reduce the financial and social burdens associated with chronic ill health in later life. Studies in model organisms have demonstrated that the ageing phenotype arises because of the accumulation of macromolecular damage within the cell and that the ageing process is plastic. Nutritional interventions that reduce such damage, or which enhance the organism's capacity to repair damage, lead to greater longevity and to reduced risk of age-related diseases. Dietary (energy) restriction increases lifespan in several model organisms, but it is uncertain whether it is effective in primates, including humans. However, excess energy storage leading to increased adiposity is a risk factor for premature mortality and for age-related diseases so that obesity prevention is likely to be a major public health route to healthy ageing. In addition, adherence to healthy eating patterns, such as the Mediterranean dietary pattern, is associated with longevity and reduced risk of age-related diseases.
Collapse
|
15
|
Azqueta A, Slyskova J, Langie SAS, O'Neill Gaivão I, Collins A. Comet assay to measure DNA repair: approach and applications. Front Genet 2014; 5:288. [PMID: 25202323 PMCID: PMC4142706 DOI: 10.3389/fgene.2014.00288] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/04/2014] [Indexed: 01/23/2023] Open
Abstract
Cellular repair enzymes remove virtually all DNA damage before it is fixed; repair therefore plays a crucial role in preventing cancer. Repair studied at the level of transcription correlates poorly with enzyme activity, and so assays of phenotype are needed. In a biochemical approach, substrate nucleoids containing specific DNA lesions are incubated with cell extract; repair enzymes in the extract induce breaks at damage sites; and the breaks are measured with the comet assay. The nature of the substrate lesions defines the repair pathway to be studied. This in vitro DNA repair assay has been modified for use in animal tissues, specifically to study the effects of aging and nutritional intervention on repair. Recently, the assay was applied to different strains of Drosophila melanogaster proficient and deficient in DNA repair. Most applications of the repair assay have been in human biomonitoring. Individual DNA repair activity may be a marker of cancer susceptibility; alternatively, high repair activity may result from induction of repair enzymes by exposure to DNA-damaging agents. Studies to date have examined effects of environment, nutrition, lifestyle, and occupation, in addition to clinical investigations.
Collapse
Affiliation(s)
- Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra Pamplona, Spain
| | - Jana Slyskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Science of the Czech Republic Prague, Czech Republic
| | - Sabine A S Langie
- Environmental Risk and Health Unit, Flemish Institute of Technological Research Mol, Belgium
| | - Isabel O'Neill Gaivão
- Department of Genetics and Biotechnology, Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro Vila Real, Portugal
| | - Andrew Collins
- Department of Nutrition, University of Oslo Oslo, Norway
| |
Collapse
|
16
|
Ahmetov II, Naumov VA, Donnikov AE, Maciejewska-Karłowska A, Kostryukova ES, Larin AK, Maykova EV, Alexeev DG, Fedotovskaya ON, Generozov EV, Jastrzębski Z, Zmijewski P, Kravtsova OA, Kulemin NA, Leonska-Duniec A, Martykanova DS, Ospanova EA, Pavlenko AV, Podol'skaya AA, Sawczuk M, Alimova FK, Trofimov DY, Govorun VM, Cieszczyk P. SOD2 gene polymorphism and muscle damage markers in elite athletes. Free Radic Res 2014; 48:948-55. [PMID: 24865797 DOI: 10.3109/10715762.2014.928410] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Exercise-induced oxidative stress is a state that primarily occurs in athletes involved in high-intensity sports when pro-oxidants overwhelm the antioxidant defense system to oxidize proteins, lipids, and nucleic acids. During exercise, oxidative stress is linked to muscle metabolism and muscle damage, because exercise increases free radical production. The T allele of the Ala16Val (rs4880 C/T) polymorphism in the mitochondrial superoxide dismutase 2 (SOD2) gene has been reported to reduce SOD2 efficiency against oxidative stress. In the present study we tested the hypothesis that the SOD2 TT genotype would be underrepresented in elite athletes involved in high-intensity sports and associated with increased values of muscle and liver damage biomarkers. The study involved 2664 Caucasian (2262 Russian and 402 Polish) athletes. SOD2 genotype and allele frequencies were compared to 917 controls. Muscle and liver damage markers [creatine kinase (CK), creatinine, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP)] were examined in serum from 1444 Russian athletes. The frequency of the SOD2 TT genotype (18.6%) was significantly lower in power/strength athletes (n = 524) compared to controls (25.0%, p = 0.0076) or athletes involved in low-intensity sports (n = 180; 33.9%, p < 0.0001). Furthermore, the SOD2 T allele was significantly associated with increased activity of CK (females: p = 0.0144) and creatinine level (females: p = 0.0276; males: p = 0.0135) in athletes. Our data show that the SOD2 TT genotype might be unfavorable for high-intensity athletic events.
Collapse
Affiliation(s)
- I I Ahmetov
- Sport Technology Research Centre, Volga Region State Academy of Physical Culture, Sport and Tourism , Kazan , Russian Federation
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bresciani G, Cruz IBM, de Paz JA, Cuevas MJ, González-Gallego J. The MnSOD Ala16Val SNP: relevance to human diseases and interaction with environmental factors. Free Radic Res 2014; 47:781-92. [PMID: 23952573 DOI: 10.3109/10715762.2013.836275] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The relevance of reactive oxygen species (ROS) production relies on the dual role shown by these molecules in aerobes. ROS are known to modulate several physiological phenomena, such as immune response and cell growth and differentiation; on the other hand, uncontrolled ROS production may cause important tissue and cell damage, such as deoxyribonucleic acid oxidation, lipid peroxidation, and protein carbonylation. The manganese superoxide dismutase (MnSOD) antioxidant enzyme affords the major defense against ROS within the mitochondria, which is considered the main ROS production locus in aerobes. Structural and/or functional single nucleotide polymorphisms (SNP) within the MnSOD encoding gene may be relevant for ROS detoxification. Specifically, the MnSOD Ala16Val SNP has been shown to alter the enzyme localization and mitochondrial transportation, affecting the redox status balance. Oxidative stress may contribute to the development of type 2 diabetes, cardiovascular diseases, various inflammatory conditions, or cancer. The Ala16Val MnSOD SNP has been associated with these and other chronic diseases; however, inconsistent findings between studies have made difficult drawing definitive conclusions. Environmental factors, such as dietary antioxidant intake and exercise have been shown to affect ROS metabolism through antioxidant enzyme regulation and may contribute to explain inconsistencies in the literature. Nevertheless, whether environmental factors may be associated to the Ala16Val genotypes in human diseases still needs to be clarified.
Collapse
Affiliation(s)
- G Bresciani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM) , Brazil
| | | | | | | | | |
Collapse
|
18
|
Galas A, Cebulska-Wasilewska A. Can consumption of raw vegetables decrease the count of sister chromatid exchange? Results from a cross-sectional study in Krakow, Poland. Eur J Nutr 2014; 54:161-71. [PMID: 24740589 PMCID: PMC4323515 DOI: 10.1007/s00394-014-0697-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 04/01/2014] [Indexed: 11/30/2022]
Abstract
Background
Sister chromatid exchange (SCE) is a widely used sensitive cytogenetic biomarker of exposure to genotoxic and cancerogenic agents. Results of human monitoring studies and cytogenetic damage have revealed that biological effects of genotoxic exposures are influenced by confounding factors related to life-style. Vegetable and fruit consumption may play a role, but available results are not consistent. The purpose of the study was to investigate the effect of consumption of raw and cooked vegetables and fruits on SCE frequency. Methods A total of 62 participants included colorectal cancer (CRC) patients, hospital-based controls and healthy laboratory workers. SCE frequency was assessed in blood lymphocytes. Frequency of vegetable and fruit consumption was gathered by structured semi-quantitative food frequency questionnaire. Results SCE frequency was lowest among hospital-based controls (4.4 ± 1.1), a bit higher in CRC patients (4.5 ± 1.0) and highest among laboratory workers (7.4 ± 1.2) (p < 0.05). Multivariable linear regression showed a significant inverse effect (b = −0.20) of raw vegetable consumption, but not so for intake of cooked vegetables and fruits. Conclusions The results of the study have shown the beneficial effect of consumption of raw vegetables on disrupted replication of DNA measured by SCE frequency, implying protection against genotoxic agents. Further effort is required to verify the role of cooked vegetables and fruits.
Collapse
Affiliation(s)
- Aleksander Galas
- Department of Epidemiology, Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, 7 Kopernika St, Kraków, Poland,
| | | |
Collapse
|
19
|
Rupérez AI, Gil A, Aguilera CM. Genetics of oxidative stress in obesity. Int J Mol Sci 2014; 15:3118-44. [PMID: 24562334 PMCID: PMC3958901 DOI: 10.3390/ijms15023118] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 12/18/2022] Open
Abstract
Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.
Collapse
Affiliation(s)
- Azahara I Rupérez
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, 18100 Armilla, Granada, Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, 18100 Armilla, Granada, Spain
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, 18100 Armilla, Granada, Spain.
| |
Collapse
|
20
|
Polymorphisms in the superoxidase dismutase genes reveal no association with human longevity in Germans: a case-control association study. Biogerontology 2013; 14:719-27. [PMID: 24146173 DOI: 10.1007/s10522-013-9470-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/20/2013] [Indexed: 01/10/2023]
Abstract
The role of superoxide dismutases (SODs) in aging and oxidative stress regulation has been widely studied and there is growing evidence that imbalances in these processes influence lifespan in several species. In humans, genetic polymorphisms in SOD genes may play an important role in the development of age-related diseases and genetic variation in SOD2 is thought to be associated with longevity. These observations prompted us to perform a case-control association study using a comprehensive haplotype tagging approach for the three SOD genes (SOD1, SOD2, SOD3) by testing a total of 19 SNPs in our extensive collection of 1,612 long-lived individuals (centenarians and nonagenarians) and 1,104 younger controls. Furthermore, we intended to replicate the previous association of the SOD2 SNP rs4880 with longevity observed in a Danish cohort. In our study, no association was detected between the tested SNPs and the longevity phenotype, neither in the entire long-lived sample set nor in the centenarian subgroup analysis. Our results suggest that there is no considerable influence of sequence variation in the SOD genes on human longevity in Germans.
Collapse
|
21
|
Godschalk RWL, Ersson C, Riso P, Porrini M, Langie SAS, van Schooten FJ, Azqueta A, Collins AR, Jones GDD, Kwok RWL, Phillips DH, Sozeri O, Allione A, Matullo G, Möller L, Forchhammer L, Loft S, Møller P. DNA-repair measurements by use of the modified comet assay: an inter-laboratory comparison within the European Comet Assay Validation Group (ECVAG). Mutat Res 2013; 757:60-7. [PMID: 23830929 DOI: 10.1016/j.mrgentox.2013.06.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 04/12/2013] [Accepted: 04/20/2013] [Indexed: 11/25/2022]
Abstract
The measurement of DNA-repair activity by extracts from cells or tissues by means of the single-cell gel electrophoresis (comet) assay has a high potential to become widely used in biomonitoring studies. We assessed the inter-laboratory variation in reported values of DNA-repair activity on substrate cells that had been incubated with Ro19-8022 plus light to generate oxidatively damaged DNA. Eight laboratories assessed the DNA-repair activity of three cell lines (i.e. one epithelial and two fibroblast cell lines), starting with cell pellets or with cell extracts provided by the coordinating laboratory. There was a large inter-laboratory variation, as evidenced by the range in the mean level of repair incisions between the laboratory with the lowest (0.002incisions/10(6)bp) and highest (0.988incisions/10(6)bp) incision activity. Nevertheless, six out of eight laboratories reported the same cell line as having the highest level of DNA-repair activity. The two laboratories that reported discordant results (with another cell line having the highest level of DNA-repair activity) were those that reported to have little experience with the modified comet assay to assess DNA repair. The laboratories were also less consistent in ordering the repair activity of the other two cell lines, probably because the DNA-repair activity by extracts from these cell lines were very similar (on average approximately 60-65% of the cell line with the highest repair capacity). A significant correlation was observed between the repair activity found in the provided and the self-made cell extracts (r=0.71, P<0.001), which indicates that the predominant source for inter-laboratory variation is derived from the incubation of the extract with substrate cells embedded in the gel. Overall, we conclude that the incubation step of cell extracts with the substrate cells can be identified as a major source of inter-laboratory variation in the modified comet assay for base-excision repair.
Collapse
Affiliation(s)
- Roger W L Godschalk
- Department of Toxicology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Karunasinghe N, Han DY, Zhu S, Duan H, Ko YJ, Yu JF, Triggs CM, Ferguson LR. Effects of supplementation with selenium, as selenized yeast, in a healthy male population from New Zealand. Nutr Cancer 2013; 65:355-66. [PMID: 23530634 DOI: 10.1080/01635581.2013.760743] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selenium (Se) supplementation was tested in a group of healthy men from Auckland, New Zealnd with selenized yeast (Selplex, 200 μg/day) as the supplementation mode. A set of biomarkers, including DNA damage levels and seleno-antioxidant enzyme levels, were evaluated at pre- and postsupplementation time points. Supplementation produced significant increases in serum Se levels, red blood cell (RBC) thioredoxin reductase (TR) activity and peroxide-induced DNA damage, when the mean baseline serum Se level was 110 ng/ml. Those with higher baseline serum Se levels gained less serum Se and showed a significant reduction of RBC glutathione peroxidase (GPx) activity by supplementation. The optimum benefits of supplementation on DNA stability are observed when the serum Se level reaches between >120 and <160 ng/ml. However, the most significant observation was that those with highest baseline DNA damage benefit the most from Se supplementation, whereas those having lower baseline DNA damage are disadvantaged. A dose of 200 μg/day selenized yeast was also shown to be a safer supplementation option compared to a similar dose of selenomethionine (SeMet). This study highlights the requirement for prestratification of a population by standing serum Se level and baseline DNA damage level, before any Se supplementation is carried out.
Collapse
Affiliation(s)
- Nishi Karunasinghe
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Archer CR, Sakaluk SK, Selman C, Royle NJ, Hunt J. Oxidative stress and the evolution of sex differences in life span and ageing in the decorated cricket, Gryllodes sigillatus. Evolution 2012; 67:620-34. [PMID: 23461314 DOI: 10.1111/j.1558-5646.2012.01805.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Free Radical Theory of Ageing (FRTA) predicts that oxidative stress, induced when levels of reactive oxygen species exceed the capacity of antioxidant defenses, causes ageing. Recently, it has also been argued that oxidative damage may mediate important life-history trade-offs. Here, we use inbred lines of the decorated cricket, Gryllodes sigillatus, to estimate the genetic (co)variance between age-dependent reproductive effort, life span, ageing, oxidative damage, and total antioxidant capacity within and between the sexes. The FRTA predicts that oxidative damage should accumulate with age and negatively correlate with life span. We find that protein oxidation is greater in the shorter lived sex (females) and negatively genetically correlated with life span in both sexes. However, oxidative damage did not accumulate with age in either sex. Previously we have shown antagonistic pleiotropy between the genes for early-life reproductive effort and ageing rate in both sexes, although this was stronger in females. In females, we find that elevated fecundity early in life is associated with greater protein oxidation later in life, which is in turn positively correlated with the rate of ageing. Our results provide mixed support for the FRTA but suggest that oxidative stress may mediate sex-specific life-history strategies in G. sigillatus.
Collapse
Affiliation(s)
- Catharine R Archer
- Centre for Ecology and Conservation, The University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9EZ, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Collins AR, Azqueta A. DNA repair as a biomarker in human biomonitoring studies; further applications of the comet assay. Mutat Res 2012; 736:122-129. [PMID: 21459100 DOI: 10.1016/j.mrfmmm.2011.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 05/30/2023]
Abstract
DNA repair plays a major role in maintaining genetic stability, and so measurement of individual DNA repair capacity should be a valued tool in molecular epidemiology studies. The comet assay (single cell gel electrophoresis), in different versions, is commonly used to measure the repair pathways represented by strand break rejoining, removal of 8-oxoguanine, and repair of bulky adducts or UV-induced damage. Repair enzyme activity generally does not reflect the level of gene expression; but there is evidence - albeit piecemeal - that it is affected by polymorphisms in repair genes. There are mixed reports concerning the regulation of repair by environmental factors; several nutritional supplementation trials with phytochemical-rich foods have demonstrated increases in base excision repair of oxidation damage, while others have shown no effect. Exposure to genotoxic agents has in general not been found to stimulate repair. Crucial questions concerning the factors regulating repair and the causes of individual variation are as yet unanswered.
Collapse
|
25
|
Savina NV, Smal MP, Kuzhir TD, Ershova-Pavlova AA, Goncharova RI. DNA-damage response associated with occupational exposure, age and chronic inflammation in workers in the automotive industry. Mutat Res 2012; 748:21-8. [PMID: 22772077 DOI: 10.1016/j.mrgentox.2012.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/08/2012] [Accepted: 06/20/2012] [Indexed: 12/15/2022]
Abstract
The evaluation of genome integrity in populations occupationally exposed to combine industrial factors is of medical importance. In the present study, the DNA-damage response was estimated by means of the alkaline comet assay in a sizeable cohort of volunteers recruited among workers in the automotive industry. For this purpose, freshly collected lymphocytes were treated with hydrogen peroxide (100μM, 1min, 4°C) in vitro, and the levels of basal and H(2)O(2)-induced DNA damage, and the kinetics and efficiency of DNA repair were measured during a 180-min interval after exposure. The parameters studied in the total cohort of workers were in a range of values prescribed for healthy adult residents of Belarus. Based on the 95th percentiles, individuals possessing enhanced cellular sensitivity to DNA damage were present in different groups, but the frequency was significantly higher among elderly persons and among individuals with chronic inflammatory diseases. The results indicate that the inter-individual variations in DNA-damage response should be taken into account to estimate adequately the environmental genotoxic effects and to identify individuals with an enhanced DNA-damage response due to the influence of some external factors or intrinsic properties of the organism. Underling mechanisms need to be further explored.
Collapse
Affiliation(s)
- Natalya V Savina
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | | | | | | | | |
Collapse
|
26
|
Collins AR, Azqueta A, Langie SAS. Effects of micronutrients on DNA repair. Eur J Nutr 2012; 51:261-79. [PMID: 22362552 DOI: 10.1007/s00394-012-0318-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/24/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND DNA repair is an essential cellular function, which, by removing DNA damage before it can cause mutations, contributes crucially to the prevention of cancer. Interest in the influence of micronutrients on DNA repair activity is prompted by the possibility that the protective effects of fruits and vegetables might thus be explained. Two approaches to measuring repair-monitoring cellular removal of DNA damage and incubating cell extract with specifically damaged DNA in an in vitro assay-have been applied in cell culture, whole animal studies, and human trials. In addition, there are numerous investigations at the level of expression of DNA repair-related genes. RESULTS Depending on the pathway studied and the phytochemical or food tested, there are varied reports of stimulation, inhibition or no effect on DNA repair. The clearest findings are from human supplementation trials in which lymphocytes are assessed for their repair capacity ex vivo. Studying cellular repair of strand breaks is complicated by the fact that lymphocytes appear to repair them very slowly. Applying the in vitro repair assay to human lymphocytes has revealed stimulatory effects on repair of oxidised bases by various micronutrients or a fruit- and vegetable-rich diet, while other studies have failed to demonstrate effects. CONCLUSIONS Despite varied results from different studies, it seems clear that micronutrients can influence DNA repair, usually but not always enhancing activity. Different modes of DNA repair are likely to be subject to different regulatory mechanisms. Measures of gene expression tend to be a poor guide to repair activity, and there is no substitute for phenotypic assays.
Collapse
Affiliation(s)
- Andrew R Collins
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, PB 1046, 0316, Oslo, Norway.
| | | | | |
Collapse
|
27
|
Li D, Wang W, Shan Y, Barrera LN, Howie AF, Beckett GJ, Wu K, Bao Y. Synergy between sulforaphane and selenium in the up-regulation of thioredoxin reductase and protection against hydrogen peroxide-induced cell death in human hepatocytes. Food Chem 2012; 133:300-7. [PMID: 25683399 DOI: 10.1016/j.foodchem.2012.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/26/2011] [Accepted: 01/14/2012] [Indexed: 02/07/2023]
Abstract
Dietary isothiocyanates and selenium are chemopreventive agents and potent inducers of antioxidant enzymes. It has been previously shown that sulforaphane and selenium have a synergistic effect on the upregulation of thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells. In this paper, further evidence is presented to show that sulforaphane and selenium synergistically induce TrxR-1 expression in immortalised human hepatocytes. Sulforaphane was found to be more toxic toward hepatocytes than HepG2 cells with IC50=25.1 and 56.4 μM, respectively. Sulforaphane can protect against hydrogen peroxide-induced cell death and this protection was enhanced by co-treatment with selenium. Using siRNA to knock down TrxR-1 or Nrf2, sulforaphane (5 μM)-protected cell viability was reduced from 73% to 46% and 34%, respectively, suggesting that TrxR-1 is an important enzyme in protection against hydrogen peroxide-induced cell death. Sulforaphane-induced TrxR-1 expression was positively associated with significant levels of Nrf2 translocation into the nucleus, but co-treatment with selenium showed no significant increase in Nrf2 translocation. Moreover, MAPK (ERK, JNK and p38) and PI3K/Akt signalling pathways were found to play no significant role in sulforaphane-induced Nrf2 translocation into the nucleus. However, blocking ERK and JNK signalling pathways decreased sulforaphane-induced TrxR-1 mRNA by about 20%; whereas blocking p38 and PI3K/AKT increased TrxR-1 transcription. In summary, a combination of sulforaphane and selenium resulted in a synergistic upregulation of TrxR-1 that contributed to the enhanced protection against free radical-mediated oxidative damage in human hepatocytes.
Collapse
Affiliation(s)
- Dan Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Wei Wang
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Yujuan Shan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Lawrence N Barrera
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Alexander F Howie
- University of Edinburgh, Division of Reproduction and Development Sciences, Edinburgh EH16 4SB, UK
| | - Geoffrey J Beckett
- University of Edinburgh, Division of Reproduction and Development Sciences, Edinburgh EH16 4SB, UK
| | - Kun Wu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Yongping Bao
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
28
|
Selenium and its' role in the maintenance of genomic stability. Mutat Res 2012; 733:100-10. [PMID: 22234051 DOI: 10.1016/j.mrfmmm.2011.12.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/11/2011] [Accepted: 12/22/2011] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans, acting as a component of the unusual amino acids, selenocysteine (Se-Cys) and selenomethionine (Se-Met). Where Se levels are low, the cell cannot synthesise selenoproteins, although some selenoproteins and some tissues are prioritised over others. Characterised functions of known selenoproteins, include selenium transport (selenoprotein P), antioxidant/redox properties (glutathione peroxidases (GPxs), thioredoxin reductases and selenoprotein P) and anti-inflammatory properties (selenoprotein S and GPx4). Various forms of Se are consumed as part of a normal diet, or as a dietary supplement. Supplementation of tissue culture media, animal or human diets with moderate levels of certain Se compounds may protect against the formation of DNA adducts, DNA or chromosome breakage, and chromosome gain or loss. Protective effects have also been shown on mitochondrial DNA, and on telomere length and function. Some of the effects of Se compounds on gene expression may relate to modulation of DNA methylation or inhibition of histone deacetylation. Despite a large number of positive effects of selenium and selenoproteins in various model systems, there have now been some human clinical trials that have shown adverse effects of Se supplementation, according to various endpoints. Too much Se is as harmful as too little, with animal models showing a "U"-shaped efficacy curve. Current recommended daily allowances differ among countries, but are generally based on the amount of Se necessary to saturate GPx enzymes. However, increasing evidence suggests that other enzymes may be more important than GPx for Se action, that optimal levels may depend upon the form of Se being ingested, and vary according to genotype. New paradigms, possibly involving nutrigenomic tools, will be necessary to optimise the forms and levels of Se desirable for maximum protection of genomic stability in all humans.
Collapse
|
29
|
Wilson DM, Kim D, Berquist BR, Sigurdson AJ. Variation in base excision repair capacity. Mutat Res 2010; 711:100-12. [PMID: 21167187 DOI: 10.1016/j.mrfmmm.2010.12.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/29/2010] [Accepted: 12/07/2010] [Indexed: 01/20/2023]
Abstract
The major DNA repair pathway for coping with spontaneous forms of DNA damage, such as natural hydrolytic products or oxidative lesions, is base excision repair (BER). In particular, BER processes mutagenic and cytotoxic DNA lesions such as non-bulky base modifications, abasic sites, and a range of chemically distinct single-strand breaks. Defects in BER have been linked to cancer predisposition, neurodegenerative disorders, and immunodeficiency. Recent data indicate a large degree of sequence variability in DNA repair genes and several studies have associated BER gene polymorphisms with disease risk, including cancer of several sites. The intent of this review is to describe the range of BER capacity among individuals and the functional consequences of BER genetic variants. We also discuss studies that associate BER deficiency with disease risk and the current state of BER capacity measurement assays.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States.
| | | | | | | |
Collapse
|
30
|
Arsenic in cancer treatment: challenges for application of realgar nanoparticles (a minireview). Toxins (Basel) 2010; 2:1568-81. [PMID: 22069650 PMCID: PMC3153258 DOI: 10.3390/toxins2061568] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 12/31/2022] Open
Abstract
While intensive efforts have been made for the treatment of cancer, this disease is still the second leading cause of death in many countries. Metastatic breast cancer, late-stage colon cancer, malignant melanoma, multiple myeloma, and other forms of cancer are still essentially incurable in most cases. Recent advances in genomic technologies have permitted the simultaneous evaluation of DNA sequence-based alterations together with copy number gains and losses. The requirement for a multi-targeting approach is the common theme that emerges from these studies. Therefore, the combination of new targeted biological and cytotoxic agents is currently under investigation in multimodal treatment regimens. Similarly, a combinational principle is applied in traditional Chinese medicine, as formulas consist of several types of medicinal herbs or minerals, in which one represents the principal component, and the others serve as adjuvant ones that assist the effects, or facilitate the delivery, of the principal component. In Western medicine, approximately 60 different arsenic preparations have been developed and used in pharmacological history. In traditional Chinese medicines, different forms of mineral arsenicals (orpiment—As2S3, realgar—As4S4, and arsenolite—arsenic trioxide, As2O3) are used, and realgar alone is included in 22 oral remedies that are recognized by the Chinese Pharmacopeia Committee (2005). It is known that a significant portion of some forms of mineral arsenicals is poorly absorbed into the body, and would be unavailable to cause systemic damage. This review primary focuses on the application of arsenic sulfide (realgar) for treatment of various forms of cancer in vitro and in vivo.
Collapse
|