1
|
Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. The potential effect of metformin on fibroblast growth factor 21 in type 2 diabetes mellitus (T2DM). Inflammopharmacology 2023:10.1007/s10787-023-01255-4. [PMID: 37337094 DOI: 10.1007/s10787-023-01255-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 06/21/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone mainly synthesized and released from the liver. FGF21 acts on FGF21 receptors (FGFRs) and β-Klotho, which is a transmembrane co-receptor. In type 2 diabetes mellitus (T2DM), inflammatory disorders stimulate the release of FGF21 to overcome insulin resistance (IR). FGF21 improves insulin sensitivity and glucose homeostasis. Metformin which is used in the management of T2DM may increase FGF21 expression. Accordingly, the objective of this review was to clarify the metformin effect on FGF21 in T2DM. FGF21 level and expression of FGF2Rs are dysregulated in T2DM due to the development of FGF21 resistance. Metformin stimulates the hepatic expression of FGF21/FGF2Rs by different signaling pathways. Besides, metformin improves the expression of β-Klotho which improves FGF21 sensitivity. In conclusion, metformin advances FGF21 signaling and decreases FGF21 resistance in T2DM, and this might be an innovative mechanism for metformin in the enhancement of glucose homeostasis and metabolic disorders in T2DM patients.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
2
|
Chen J, You R, Lv Y, Liu H, Yang G. Conjugated linoleic acid regulates adipocyte fatty acid binding protein expression via peroxisome proliferator-activated receptor α signaling pathway and increases intramuscular fat content. Front Nutr 2022; 9:1029864. [PMID: 36523338 PMCID: PMC9745092 DOI: 10.3389/fnut.2022.1029864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/19/2022] [Indexed: 06/22/2024] Open
Abstract
Intramuscular fat (IMF) is correlated positively with meat tenderness, juiciness and taste that affected sensory meat quality. Conjugated linoleic acid (CLA) has been extensively researched to increase IMF content in animals, however, the regulatory mechanism remains unclear. Adipocyte fatty acid binding protein (A-FABP) gene has been proposed as candidates for IMF accretion. The purpose of this study is to explore the molecular regulatory pathways of CLA on intramuscular fat deposition. Here, our results by cell lines indicated that CLA treatment promoted the expression of A-FABP through activated the transcription factor of peroxisome proliferator-activated receptor α (PPARα). Moreover, in an animal model, we discovered that dietary supplemental with CLA significantly enhanced IMF deposition by up-regulating the mRNA and protein expression of PPARα and A-FABP in the muscle tissues of mice. In addition, our current study also demonstrated that dietary CLA increased mRNA expression of genes and enzymes involved in fatty acid synthesis and lipid metabolism the muscle tissues of mice. These findings suggest that CLA mainly increases the expression of A-FABP through PPARα signaling pathway and regulates the expression of genes and enzymes related to IMF deposition, thus increasing IMF content. These results contribute to better understanding the molecular mechanism of IMF accretion in animals for the improvement of meat quality.
Collapse
Affiliation(s)
| | | | | | | | - Guoqing Yang
- Laboratory of Animal Gene Engineering, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Su H, Zhao W, Zhang F, Song M, Liu F, Zheng J, Ling M, Yang X, Yang Q, He H, Chen L, Lai X, Zhu X, Wang L, Gao P, Shu G, Jiang Q, Wang S. cis 9, trans 11, but not trans 10, cis 12 CLA isomer, impairs intestinal epithelial barrier function in IPEC-J2 cells and mice through activation of GPR120-[Ca 2+] i and the MLCK signaling pathway. Food Funct 2021; 11:3657-3667. [PMID: 32296804 DOI: 10.1039/d0fo00376j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aimed to investigate the effects of conjugated linoleic acid (CLA) on intestinal epithelial barrier function and explore the underlying mechanisms. IPEC-J2 cells and mice were treated with different CLA isomers. The intestinal epithelial barrier function determined by transepithelial electrical resistance (TEER), the expression of tight junction proteins, and the involvement of G-protein coupled receptor 120 (GPR120), intracellular calcium ([Ca2+]i) and myosin light chain kinase (MLCK) were assessed. In vitro, c9, t11-CLA, but not t10, c12-CLA isomer, impaired epithelial barrier function in IPEC-J2 by downregulating the expression of tight junction proteins. Meanwhile, c9, t11-CLA isomer enhanced GPR120 expression, while knockdown of GPR120 eliminated the impaired epithelial barrier function induced by c9, t11-CLA isomer. In addition, c9, t11-CLA isomer increased [Ca2+]i and activated the MLCK signaling pathway in a GPR120-dependent manner. However, chelation of [Ca2+]i reversed c9, t11-CLA isomer-induced MLCK activation and the epithelial barrier function impairment of IPEC-J2. Furthermore, inhibition of MLCK totally abolished the impairment of epithelial barrier function induced by c9, t11-CLA. In vivo, dietary supplementation of c9, t11-CLA rather than t10, c12-CLA isomer decreased the expression of intestinal tight junction proteins and GPR120, increased intestinal permeability, and activated the MLCK signaling pathway in mice. Taken together, our findings showed that c9, t11-CLA, but not t10, c12-CLA isomer, impaired intestinal epithelial barrier function in IPEC-J2 cells and mice through activation of GPR120-[Ca2+]i and the MLCK signaling pathway. These data provided new insight into the regulation of the intestinal epithelial barrier by different CLA isomers and more references for CLA application in humans and animals.
Collapse
Affiliation(s)
- Han Su
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Weijie Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Min Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fangfang Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jisong Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qiang Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Haiwen He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xumin Lai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. and National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
4
|
Farokh Nezhad R, Nourbakhsh M, Razzaghy-Azar M, Sharifi R, Yaghmaei P. The effect of trans-palmitoleic acid on cell viability and sirtuin 1 gene expression in hepatocytes and the activity of peroxisome-proliferator-activated receptor-alpha. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:105. [PMID: 33824670 PMCID: PMC8019128 DOI: 10.4103/jrms.jrms_16_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/05/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022]
Abstract
Background: Accumulation of fatty acids in liver causes lipotoxicity which is followed by nonalcoholic fatty liver disease. The association between intakes of trans-fatty acids with metabolic diseases is still controversial. Accordingly, the objective of this study was to investigate the in vitro effects of trans-palmitoleic acid (tPA) and palmitic acid (PA) on lipid accumulation in hepatocytes, focusing on the gene expression of sirtuin 1 (SIRT1) as well as the transcriptional activity of peroxisome proliferator-activated receptor alpha (PPARα). Materials and Methods: In this experimental study, hepatocellular carcinoma (HepG2) cells were cultured and treated with various concentrations of tPA and PA (C16:0). The accumulation of triglyceride in the cells was measured by enzymatic method. Gene expression was evaluated by real-time polymerase chain reaction. The activity of PPARα was assessed by luciferase reporter assay after transfection of human embryonic kidney 293T cells by a vector containing the PPAR response element. Results: While concentration >1 mM for PA and cis-PA (cPA) reduced the viability of hepatocytes, tPA revealed an opposite effect and increased cell survival. Lipid accumulation in HepG2 cells after treatment with tPA was significantly lower than that in cells treated with PA. In addition, tPA at physiological concentration had no effect on the expression of SIRT1 while at high concentration significantly augmented its expression. There was a modest increase in PPARα activity at low concentration of tPA. Conclusion: tPA causes less lipid accumulation in hepatocytes with no detrimental effect on cell viability and might be beneficial for liver cells by the activation of SIRT1 and induction of PPARα activity.
Collapse
Affiliation(s)
- Ramesh Farokh Nezhad
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Razzaghy-Azar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,H. Aliasghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Sharifi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Fu C, Zhang Y, Yao Q, Wei X, Shi T, Yan P, Liu X. Maternal conjugated linoleic acid alters hepatic lipid metabolism via the AMPK signaling pathway in chick embryos. Poult Sci 2020; 99:224-234. [PMID: 32416806 PMCID: PMC7587807 DOI: 10.3382/ps/pez462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/31/2019] [Indexed: 01/13/2023] Open
Abstract
The effects of maternal conjugated linoleic acid (CLA) on embryonic development and hepatic lipid metabolism were investigated in chick embryos. A total of 180 Arbor Acres female broiler breeders (36 wk old) were randomly divided into the following 3 dietary treatment groups: a basic diet (control), a basic diet containing 0.5% CLA (CLA1), and a basic diet containing 1.0% CLA (CLA2). The females were fed for 8 wk, and the eggs from each group were collected and hatched during the last 2 wk. The results showed that the addition of dietary CLA increased the broken egg rate and reduced the fertilization rate and the egg hatchability (P < 0.05). CLA enrichment decreased the polyunsaturated and monounsaturated fatty acids and increased the saturated fatty acids in the yolk sac (P < 0.05). The yolk sac weight, body weight, and body length had a linear decrease with CLA supplementation (P < 0.05). In the developing chick embryo (at E14) and newly hatched chick (D0), the serum triglyceride concentration decreased with maternal CLA supplementation and was accompanied by a reduction in subcutaneous adipose tissue deposition. In addition, maternal CLA supplementation mediated the hepatic lipid metabolism by decreasing the mRNA expression of sterol regulatory element-binding proteins-1c (SREBP-1c), fatty acid synthase and acetyl-CoA carboxylase, and increasing the mRNA expression of adenosine 5'-monophosphate-activated protein kinase α (AMPKα), peroxisome proliferator-activated receptors α (PPARα), liver fatty acid-binding protein, adipose triglyceride lipase and carnitine palmitoyltransferase in embryonic chick livers (P < 0.05). A drop in SREBP-1c protein expression and an increase in the protein expression of p-AMPKα and PPARα were also observed in the liver of chick embryo (P < 0.05). In conclusion, maternal CLA supplementation regulated the fatty acid composition in the yolk sac, and mediated embryonic chick development and hepatic lipometabolism, and these effects may be related to the AMPK pathway. These findings suggest the potential ability of maternal CLA supplementation to reduce fat deposition in chick embryos.
Collapse
Affiliation(s)
- Chunyan Fu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, China; Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; Poultry Breeding Engineering Technology Center of Shandong Province, Jinan 250023, China
| | - Yan Zhang
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, China; Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; Poultry Breeding Engineering Technology Center of Shandong Province, Jinan 250023, China
| | - Qimeng Yao
- Haiyang Animal Husbandry & Veterinary Station, Yantai 265100, China
| | - Xiangfa Wei
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, China; Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; Poultry Breeding Engineering Technology Center of Shandong Province, Jinan 250023, China
| | - Tianhong Shi
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, China; Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; Poultry Breeding Engineering Technology Center of Shandong Province, Jinan 250023, China
| | - Peipei Yan
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, China; Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; Poultry Breeding Engineering Technology Center of Shandong Province, Jinan 250023, China
| | - Xuelan Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, China; Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; Poultry Breeding Engineering Technology Center of Shandong Province, Jinan 250023, China.
| |
Collapse
|
6
|
Fibroblast Growth Factor 21 and the Adaptive Response to Nutritional Challenges. Int J Mol Sci 2019; 20:ijms20194692. [PMID: 31546675 PMCID: PMC6801670 DOI: 10.3390/ijms20194692] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
The Fibroblast Growth Factor 21 (FGF21) is considered an attractive therapeutic target for obesity and obesity-related disorders due to its beneficial effects in lipid and carbohydrate metabolism. FGF21 response is essential under stressful conditions and its metabolic effects depend on the inducer factor or stress condition. FGF21 seems to be the key signal which communicates and coordinates the metabolic response to reverse different nutritional stresses and restores the metabolic homeostasis. This review is focused on describing individually the FGF21-dependent metabolic response activated by some of the most common nutritional challenges, the signal pathways triggering this response, and the impact of this response on global homeostasis. We consider that this is essential knowledge to identify the potential role of FGF21 in the onset and progression of some of the most prevalent metabolic pathologies and to understand the potential of FGF21 as a target for these diseases. After this review, we conclude that more research is needed to understand the mechanisms underlying the role of FGF21 in macronutrient preference and food intake behavior, but also in β-klotho regulation and the activity of the fibroblast activation protein (FAP) to uncover its therapeutic potential as a way to increase the FGF21 signaling.
Collapse
|
7
|
Up-regulation of selenoprotein P and HIP/PAP mRNAs in hepatocytes by intermittent hypoxia via down-regulation of miR-203. Biochem Biophys Rep 2017; 11:130-137. [PMID: 28955777 PMCID: PMC5614699 DOI: 10.1016/j.bbrep.2017.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/01/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Sleep apnea syndrome is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]) and is a risk factor for insulin resistance/type 2 diabetes. However, the mechanisms linking IH stress and insulin resistance remain elusive. We exposed human hepatocytes (JHH5, JHH7, and HepG2) to experimental IH or normoxia for 24 h, measured mRNA levels by real-time reverse transcription polymerase chain reaction (RT-PCR), and found that IH significantly increased the mRNA levels of selenoprotein P (SELENOP) — a hepatokine — and hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP) — one of REG (Regenerating gene) family. We next investigated promoter activities of both genes and discovered that they were not increased by IH. On the other hand, a target mRNA search of micro RNA (miRNA) revealed that both mRNAs have a potential target sequence for miR-203. The miR-203 level of IH-treated cells was significantly lower than that of normoxia-treated cells. Thus, we introduced miR-203 inhibitor and a non-specific control RNA (miR-203 inhibitor NC) into HepG2 cells and measured the mRNA levels of SELENOP and HIP/PAP. The IH-induced expression of SELENOP and HIP/PAP was abolished by the introduction of miR-203 inhibitor but not by miR-203 inhibitor NC. These results demonstrate that IH stress up-regulates the levels of SELENOP in human hepatocytes to accelerate insulin resistance and up-regulates the levels of HIP/PAP mRNAs to proliferate such hepatocytes, via the miR-203 mediated mechanism.
Collapse
Key Words
- AHSG, α2 HS-glycoprotein
- ANGPTL6, angiopoietin-related growth factor
- DICER, endoribonuclease Dicer
- DROSHA, ribonuclease type III
- ELISA, enzyme-linked immunosorbent assay
- FCS, fetal calf serum
- FGF21, fibroblast growth factor 21
- HIP/PAP
- HIP/PAP, hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein
- Hepatokine
- IH, intermittent hypoxia
- Intermittent hypoxia
- LECT2, leukocyte cell-derived chemotaxin 2
- MCPIP1, monocyte chemotactic protein-induced protein 1
- REG family gene
- Reg, regenerating gene
- Rig, rat insulinoma gene
- RpS15, ribosomal protein S15
- SAS, sleep apnea syndrome
- SELENOP
- SELENOP, selenoprotein P
- SHBG, sex hormone-binding globulin
- TP63, transformation-related protein 63
- WST-8, 2-(2-methoxy-4-nitrophenyl)−3-(4-nitrophenyl)−5-(2,4-disulfophenyl)−2H-tetrazolium monosodium salt
- miR-203
- miRNA, micro RNA
- siRNA, small interfering RNA
Collapse
|
8
|
Suárez-Vega A, Toral PG, Gutiérrez-Gil B, Hervás G, Arranz JJ, Frutos P. Elucidating fish oil-induced milk fat depression in dairy sheep: Milk somatic cell transcriptome analysis. Sci Rep 2017; 7:45905. [PMID: 28378756 PMCID: PMC5381099 DOI: 10.1038/srep45905] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022] Open
Abstract
In this study, RNA sequencing was used to obtain a comprehensive profile of the transcriptomic changes occurring in the mammary gland of lactating sheep suffering from fish oil-induced milk fat depression (FO-MFD). The milk somatic cell transcriptome analysis of four control and four FO-MFD ewes generated an average of 42 million paired-end reads per sample. In both conditions, less than 220 genes constitute approximately 89% of the total counts. These genes, which are considered as core genes, were mainly involved in cytoplasmic ribosomal proteins and electron transport chain pathways. In total, 117 genes were upregulated, and 96 genes were downregulated in FO-MFD samples. Functional analysis of the latter indicated a downregulation of genes involved in the SREBP signaling pathway (e.g., ACACA, ACSL, and ACSS) and Gene Ontology terms related to lipid metabolism and lipid biosynthetic processes. Integrated interpretation of upregulated genes indicated enrichment in genes encoding plasma membrane proteins and proteins regulating protein kinase activity. Overall, our results indicate that FO-MFD is associated with the downregulation of key genes involved in the mammary lipogenesis process. In addition, the results also suggest that this syndrome may be related to upregulation of other genes implicated in signal transduction and codification of transcription factors.
Collapse
Affiliation(s)
- Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - Pablo G. Toral
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n, Grulleros 24346, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - Gonzalo Hervás
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n, Grulleros 24346, León, Spain
| | - Juan José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - Pilar Frutos
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n, Grulleros 24346, León, Spain
| |
Collapse
|
9
|
Mwinyi J, Boström AE, Pisanu C, Murphy SK, Erhart W, Schafmayer C, Hampe J, Moylan C, Schiöth HB. NAFLD is associated with methylation shifts with relevance for the expression of genes involved in lipoprotein particle composition. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:314-323. [DOI: 10.1016/j.bbalip.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/29/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022]
|
10
|
Mao S, Ren X, Zhang J. The emerging role of fibroblast growth factor 21 in diabetic nephropathy. J Recept Signal Transduct Res 2016; 36:586-592. [PMID: 26915669 DOI: 10.3109/10799893.2016.1147582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetic nephropathy (DN), an important cause of end-stage renal diseases, brings about great social and economic burden. Due to the variable pathological changes and clinical course, the prognosis of DN is very difficult to predict. DN is also usually associated with enhanced genomic damage and cellular injury. Fibroblast growth factor 21 (FGF21), a nutritionally regulated hormone secreted mainly by the liver, plays a critical role in metabolism. Administration of FGF21 decreases blood glucose, triglyceride, and cholesterol levels, and improves insulin sensitivity, which is closely associated with the development and progression of glomerular diseases. In addition, FGF21 level was associated with renal function. However, the precise role of FGF21 in DN remains unclear. This review will give a comprehensive understanding of the underlying role of FGF21 and its possible interaction with other molecules in DN.
Collapse
Affiliation(s)
- Song Mao
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China and
| | - Xianguo Ren
- b Department of Pediatrics , Nanjing Jinling Hospital , Nanjing , China
| | - Jianhua Zhang
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China and
| |
Collapse
|
11
|
Yu J, Yu B, He J, Zheng P, Mao X, Han G, Chen D. Chronic glucocorticoid exposure-induced epididymal adiposity is associated with mitochondrial dysfunction in white adipose tissue of male C57BL/6J mice. PLoS One 2014; 9:e112628. [PMID: 25389775 PMCID: PMC4229254 DOI: 10.1371/journal.pone.0112628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/20/2014] [Indexed: 01/16/2023] Open
Abstract
Prolonged and excessive glucocorticoids (GC) exposure resulted from Cushing's syndrome or GC therapy develops central obesity. Moreover, mitochondria are crucial in adipose energy homeostasis. Thus, we tested the hypothesis that mitochondrial dysfunction may contribute to chronic GC exposure-induced epididymal adiposity in the present study. A total of thirty-six 5-week-old male C57BL/6J mice (∼20 g) were administrated with 100 µg/ml corticosterone (CORT) or vehicle through drinking water for 4 weeks. Chronic CORT exposure mildly decreased body weight without altering food and water intake in mice. The epididymal fat accumulation was increased, but adipocyte size was decreased by CORT. CORT also increased plasma CORT, insulin, leptin, and fibroblast growth factor 21 concentrations as measured by RIA or ELISA. Interestingly, CORT increased plasma levels of triacylglycerols and nonesterified fatty acids, and up-regulated the expression of both lipolytic and lipogenic genes as determined by real-time RT-PCR. Furthermore, CORT impaired mitochondrial biogenesis and oxidative function in epididymal WAT. The reactive oxygen species production was increased and the activities of anti-oxidative enzymes were reduced by CORT treatment as well. Taken together, these findings reveal that chronic CORT administration-induced epididymal adiposity is, at least in part, associated with mitochondrial dysfunction in mouse epididymal white adipose tissue.
Collapse
Affiliation(s)
- Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Guoquan Han
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- * E-mail:
| |
Collapse
|
12
|
Singh SP, Häussler S, Heinz JFL, Saremi B, Mielenz B, Rehage J, Dänicke S, Mielenz M, Sauerwein H. Supplementation with conjugated linoleic acids extends the adiponectin deficit during early lactation in dairy cows. Gen Comp Endocrinol 2014; 198:13-21. [PMID: 24384531 DOI: 10.1016/j.ygcen.2013.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 01/21/2023]
Abstract
Decreasing insulin sensitivity (IS) in peripheral tissues allows for partitioning nutrients towards the mammary gland. In dairy cows, extensive lipid mobilization and continued insulin resistance (IR) are typical for early lactation. Adiponectin, an adipokine, promotes IS. Supplementation with conjugated linoleic acids (CLA) in rodents and humans reduces fat mass whereby IR and hyperinsulinemia may occur. In dairy cows, CLA reduce milk fat, whereas body fat, serum free fatty acids and leptin are not affected. We aimed to investigate the effects of CLA supplementation on serum and adipose tissue (AT) adiponectin concentrations in dairy cows during the lactation driven and parity modulated changes of metabolism. High yielding cows (n=33) were allocated on day 1 post partum to either 100 g/day of a CLA mixture or a control fat supplement (CON) until day 182 post partum. Blood and subcutaneous (sc) AT (AT) biopsy samples were collected until day 252 post partum to measure adiponectin. Serum adiponectin decreased from day 21 pre partum reaching a nadir at calving and thereafter increased gradually. The distribution of adiponectin molecular weight forms was neither affected by time, parity nor treatment. Cows receiving CLA had decreased serum adiponectin concentrations whereby primiparous cows responded about 4 weeks earlier than multiparous cows. The time course of adiponectin concentrations in sc AT (corrected for residual blood) was similar to serum concentrations, without differences between CLA and CON. CLA supplementation attenuated the post partum increase of circulating adiponectin thus acting towards prolongation of peripartal IR and drain of nutrients towards the mammary gland.
Collapse
Affiliation(s)
- Shiva P Singh
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Susanne Häussler
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany.
| | - Johanna F L Heinz
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Behnam Saremi
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Birgit Mielenz
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Jürgen Rehage
- Clinic for Cattle, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - Manfred Mielenz
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
13
|
Osorio J, Trevisi E, Ballou M, Bertoni G, Drackley J, Loor J. Effect of the level of maternal energy intake prepartum on immunometabolic markers, polymorphonuclear leukocyte function, and neutrophil gene network expression in neonatal Holstein heifer calves. J Dairy Sci 2013; 96:3573-87. [DOI: 10.3168/jds.2012-5759] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 02/22/2013] [Indexed: 11/19/2022]
|
14
|
Current issues surrounding the definition of trans-fatty acids: implications for health, industry and food labels. Br J Nutr 2013; 110:1369-83. [PMID: 23597388 DOI: 10.1017/s0007114513001086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The definition of trans-fatty acids (TFA) was established by the Codex Alimentarius to guide nutritional and legislative regulations to reduce TFA consumption. Currently, conjugated linoleic acid (CLA) is excluded from the TFA definition based on evidence (primarily preclinical studies) implying health benefits on weight management and cancer prevention. While the efficacy of CLA supplements remains inconsistent in randomised clinical trials, evidence has emerged to associate supplemental CLA with negative health outcomes, including increased subclinical inflammation and oxidative stress (particularly at high doses). This has resulted in concerns regarding the correctness of excluding CLA from the TFA definition. Here we review recent clinical and preclinical literature on health implications of CLA and ruminant TFA, and highlight several issues surrounding the current Codex definition of TFA and how it may influence interpretation for public health. We find that CLA derived from ruminant foods differ from commercial CLA supplements in their isomer composition/distribution, consumption level and bioactivity. We conclude that health concerns associated with the use of supplemental CLA do not repudiate the exclusion of all forms of CLA from the Codex TFA definition, particularly when using the definition for food-related purposes. Given the emerging differential bioactivity of TFA from industrial v. ruminant sources, we advocate that regional nutrition guidelines/policies should focus on eliminating industrial forms of trans-fat from processed foods as opposed to all TFA per se.
Collapse
|
15
|
Schlegel G, Ringseis R, Keller J, Schwarz FJ, Windisch W, Eder K. Expression of fibroblast growth factor 21 in the liver of dairy cows in the transition period and during lactation. J Anim Physiol Anim Nutr (Berl) 2012; 97:820-9. [PMID: 22805261 DOI: 10.1111/j.1439-0396.2012.01323.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 21 (FGF21) has been identified as a novel hormonal factor involved in the regulation of metabolic adaptations during energy deprivation. The present study aimed to investigate the expression of the FGF21 gene in the liver of dairy cows during the transition from pregnancy to lactation. Therefore, the relative mRNA abundance of FGF21 in liver biopsy samples of 20 dairy cows in late pregnancy (3 weeks pre-partum) and early lactation (1, 5, 14 weeks post-partum) was determined. It was observed that hepatic mRNA abundance of FGF21 at 1 week post-partum was dramatically increased (110-fold) compared to 3 weeks pre-partum (p < 0.001). With progress of lactation, mRNA concentration of FGF21 was declining; nevertheless, mRNA abundance at 5 and 14 weeks post-partum remained 25- and 10-fold increased compared to 3 weeks pre-partum (p < 0.001). Using a gene array technique, it was found that many genes involved in fatty acid oxidation, gluconeogenesis and ketogenesis were up-regulated during early lactation compared to late pregnancy. Moreover, there were positive linear correlations between hepatic mRNA concentration of FGF21 and mRNA concentrations of genes involved in ketogenesis as well as carnitine synthesis and carnitine uptake at various time-points during lactation, indicating that FGF21 could play a role in ketogenesis and carnitine metabolism in the liver of dairy cows (p < 0.05). In overall, the present study shows that expression of the FGF21 gene is strongly up-regulated during the transition period. It is assumed that the up-regulation of FGF21 might play an important role in the adaptation of liver metabolism during early lactation in dairy cows such as in other species.
Collapse
Affiliation(s)
- G Schlegel
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany Chair of Animal Nutrition, Department of Animal Sciences, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - R Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany Chair of Animal Nutrition, Department of Animal Sciences, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - J Keller
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany Chair of Animal Nutrition, Department of Animal Sciences, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - F J Schwarz
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany Chair of Animal Nutrition, Department of Animal Sciences, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - W Windisch
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany Chair of Animal Nutrition, Department of Animal Sciences, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany Chair of Animal Nutrition, Department of Animal Sciences, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
16
|
Varady J, Ringseis R, Eder K. Dietary moderately oxidized oil induces expression of fibroblast growth factor 21 in the liver of pigs. Lipids Health Dis 2012; 11:34. [PMID: 22394566 PMCID: PMC3807756 DOI: 10.1186/1476-511x-11-34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 03/06/2012] [Indexed: 12/03/2022] Open
Abstract
Background Fibroblast growth factor 21 (FGF21), whose expression is induced by peroxisome proliferator-activated receptor α (PPARα), has been recently identified as a novel metabolic regulator which plays a crucial role in glucose homeostasis, lipid metabolism, insulin sensitivity and obesity. Previous studies have shown that administration of oxidized fats leads to an activation of PPARα in the liver. Therefore, the present study investigated the hypothesis that feeding of oxidized fats causes an induction of FGF21 in the liver. Methods Twenty four crossbred pigs were allocated to two groups of 12 pigs each and fed nutritionally adequate diets with either fresh rapeseed oil or oxidized rapeseed oil prepared by heating at a temperature of 175°C for 72 h. Results In pigs fed the oxidized fat mRNA abundance and protein concentrations of FGF21 in liver were significantly increased (P < 0.05), and the protein concentrations of FGF21 in plasma tended to be increased (P < 0.1) in comparison to control pigs. Moreover, pigs fed the oxidized fat had increased transcript levels of the PPARα target genes acyl-CoA oxidase, carnitine palmitoyltransferase-1 and novel organic cation transporter 2 in the liver (P < 0.05), indicative of PPARα activation. Conclusion The present study shows for the first time that administration of an oxidized fat induces the expression of FGF21 in the liver, probably mediated by activation of PPARα. Induction of FGF21 could be involved in several effects observed in animals administered an oxidized fat.
Collapse
Affiliation(s)
- Juliane Varady
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | |
Collapse
|