1
|
Blanco-Doval A, Azkargorta M, Iloro I, Beaskoetxea J, Elortza F, Barron LJR, Aldai N. Comparative proteomic analysis of the changes in mare milk associated with different lactation stages and management systems. Food Chem 2024; 445:138766. [PMID: 38402663 DOI: 10.1016/j.foodchem.2024.138766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Mare milk has traditionally been attributed a number of health promoting properties. However, knowledge on its composition and functionality remains scarce, with particularly limited studies on mare milk proteomics. This study deeply characterized mare milk proteome accounting for both caseins and proteins in the whey fraction, also addressing the impact of lactation stage and different management systems. Milk samples from Basque Mountain Horse breed mares belonging to three different farms and three lactation stages were analysed after in-gel and in-solution digestion using nLC-MS/MS. Among the 469 proteins identified, the content of alpha-1 antitrypsin was significantly higher in pasture-based compared to other systems. Moreover, lactation stage significantly affected the content of beta-lactoglobulin II, immunoglobulin-like domain-containing protein, interferon alpha-inducible protein 27, lactotransferrin, polypeptide N-acetylgalactosaminyltransferase, and transforming acidic coiled-coil containing protein 2. This study contributes to the deep characterization of mare milk proteome and provides new insights into the effect of different production factors.
Collapse
Affiliation(s)
- Ana Blanco-Doval
- Lactiker Research Group, Department of Pharmacy and Food Sciences, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, 48160 Derio, Spain.
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, 48160 Derio, Spain.
| | - Jabier Beaskoetxea
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, 48160 Derio, Spain.
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Bizkaia Science and Technology Park, 48160 Derio, Spain.
| | - Luis Javier R Barron
- Lactiker Research Group, Department of Pharmacy and Food Sciences, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Noelia Aldai
- Lactiker Research Group, Department of Pharmacy and Food Sciences, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
2
|
Miralles-Pérez B, Méndez L, Nogués MR, Sánchez-Martos V, Fortuño-Mar À, Ramos-Romero S, Hereu M, Medina I, Romeu M. Effects of a Fish Oil Rich in Docosahexaenoic Acid on Cardiometabolic Risk Factors and Oxidative Stress in Healthy Rats. Mar Drugs 2021; 19:md19100555. [PMID: 34677454 PMCID: PMC8539050 DOI: 10.3390/md19100555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids are associated with a lower risk of cardiometabolic diseases. However, docosahexaenoic acid (DHA) is easily oxidized, leading to cellular damage. The present study examined the effects of an increased concentration of DHA in fish oil (80% of total fatty acids) on cardiometabolic risk factors and oxidative stress compared to coconut oil, soybean oil, and fish oil containing eicosapentaenoic acid (EPA) and DHA in a balanced ratio. Forty healthy male Sprague-Dawley rats were supplemented with corresponding oil for 10 weeks. Supplementation with the fish oil containing 80% DHA decreased plasma fat, plasma total cholesterol and muscle fat compared to the coconut oil and the soybean oil. Increasing concentrations of DHA induced incorporation of DHA and EPA in cell membranes and tissues along with a decrease in ω-6 arachidonic acid. The increase in DHA promoted lipid peroxidation, protein carbonylation and antioxidant response. Taken together, the increased concentration of DHA in fish oil reduced fat accumulation compared to the coconut oil and the soybean oil. This benefit was accompanied by high lipid peroxidation and subsequent protein carbonylation in plasma and in liver. In our healthy framework, the slightly higher carbonylation found after receiving fish oil containing 80% DHA might be a protecting mechanism, which fit with the general improvement of antioxidant defense observed in those rats.
Collapse
Affiliation(s)
- Bernat Miralles-Pérez
- Functional Nutrition, Oxidation and Cardiovascular Diseases Research Group (NFOC-SALUT), Pharmacology Unit, Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, E-43201 Reus, Spain; (B.M.-P.); (V.S.-M.); (M.R.)
| | - Lucía Méndez
- Chemistry of Marine Products, Department of Food Technology, Institute of Marine Research (IIM-CSIC), C/Eduardo Cabello 6, E-36208 Vigo, Spain; (L.M.); (I.M.)
| | - Maria Rosa Nogués
- Functional Nutrition, Oxidation and Cardiovascular Diseases Research Group (NFOC-SALUT), Pharmacology Unit, Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, E-43201 Reus, Spain; (B.M.-P.); (V.S.-M.); (M.R.)
- Correspondence: ; Tel.: +34-977-75-9355
| | - Vanessa Sánchez-Martos
- Functional Nutrition, Oxidation and Cardiovascular Diseases Research Group (NFOC-SALUT), Pharmacology Unit, Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, E-43201 Reus, Spain; (B.M.-P.); (V.S.-M.); (M.R.)
| | | | - Sara Ramos-Romero
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, E-08034 Barcelona, Spain; (S.R.-R.); (M.H.)
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Avd/Diagonal 643, E-08028 Barcelona, Spain
| | - Mercè Hereu
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, E-08034 Barcelona, Spain; (S.R.-R.); (M.H.)
| | - Isabel Medina
- Chemistry of Marine Products, Department of Food Technology, Institute of Marine Research (IIM-CSIC), C/Eduardo Cabello 6, E-36208 Vigo, Spain; (L.M.); (I.M.)
| | - Marta Romeu
- Functional Nutrition, Oxidation and Cardiovascular Diseases Research Group (NFOC-SALUT), Pharmacology Unit, Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, E-43201 Reus, Spain; (B.M.-P.); (V.S.-M.); (M.R.)
| |
Collapse
|
3
|
Xue X, Hall JR, Caballero-Solares A, Eslamloo K, Taylor RG, Parrish CC, Rise ML. Liver Transcriptome Profiling Reveals That Dietary DHA and EPA Levels Influence Suites of Genes Involved in Metabolism, Redox Homeostasis, and Immune Function in Atlantic Salmon (Salmo salar). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:263-284. [PMID: 32040779 DOI: 10.1007/s10126-020-09950-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/17/2020] [Indexed: 05/09/2023]
Abstract
The optimal dietary requirement of omega-3 long-chain polyunsaturated fatty acids (ω3 LC-PUFA), namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), for Atlantic salmon that promotes growth and health warrants careful investigation. We used 44K microarrays to study the influence of increasing levels of dietary DHA + EPA (0, 1.0, and 1.4% of the diet, as formulated) in the presence of high linoleic acid (LA) on Atlantic salmon growth and liver transcriptome. After a 14-week feeding trial, Atlantic salmon fed diet ω3LC0 (i.e. 0% of DHA + EPA) showed significantly lower final weight and weight gain, and higher feed conversion ratio compared with ω3LC1.0 and ω3LC1.4 diet groups. The microarray experiment identified 55 and 77 differentially expressed probes (Rank Products analyses; PFP < 10%) in salmon fed diets ω3LC1.4 and ω3LC1.0 compared with those fed diet ω3LC0, respectively. The comparison between ω3LC1.4 and ω3LC1.0 revealed 134 differentially expressed probes. The microarray results were confirmed by qPCR analyses of 22 microarray-identified transcripts. Several key genes involved in fatty acid metabolism including LC-PUFA synthesis were upregulated in fish fed ω3LC0 compared with both other groups. Hierarchical clustering and linear regression analyses of liver qPCR and fatty acid composition data demonstrated significant correlations. In the current study, 1.0% ω3 LC-PUFA seemed to be the minimum requirement for Atlantic salmon based on growth performance; however, multivariate statistical analyses (PERMANOVA and SIMPER) showed that fish fed ω3LC1.0 and ω3LC1.4 diets had similar hepatic fatty acid profiles but marked differences in the transcript expression of biomarker genes involved in redox homeostasis (mgst1), immune responses (mxb, igmb, irf3, lect2a, srk2, and lyz2), and LC-PUFA synthesis (srebp1, fadsd5, and elovl2). This research has provided new insights into dietary requirement of DHA and EPA and their impact on physiologically important pathways in addition to lipid metabolism in Atlantic salmon.
Collapse
Affiliation(s)
- Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Richard G Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN, 55330, USA
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
4
|
Zhang J, Xu X, Zhu H, Wang Y, Hou Y, Liu Y. Dietary fish oil supplementation alters liver gene expressions to protect against LPS-induced liver injury in weanling piglets. Innate Immun 2019; 25:60-72. [PMID: 30782046 PMCID: PMC6830890 DOI: 10.1177/1753425918821420] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Here, the potential mechanisms of the protective effects of fish oil against
LPS-induced liver injury in a piglet model were investigated by using RNA
sequencing. Twenty-four piglets were used in a 2 × 2 factorial design, and the
main factors included diet (5% corn oil or 5% fish oil) and immunological
challenge (LPS or saline, on d 19). All piglets were slaughtered at 4 h after
challenge, and liver samples were collected. Fish oil improved liver morphology
and reduced TNF-α, IL-1β and IL-6 productions after LPS challenge. RNA
sequencing analysis showed fish oil had significant effect on the expressions of
genes involved in immune response during LPS-induced inflammation. Selected gene
expression changes were validated using quantitative RT-PCR. Fish oil reduced
the expressions of pro-inflammatory genes IL1R1,
IL1RAP, CEBPB and CRP,
and increased that of anti-inflammatory genes IL-18BP,
NFKBIA, IFIT1, IFIT2 and
ATF3. Moreover, fish oil restored the expressions of some
lipid metabolism-related genes, such as ACAA1,
ACACA, ACADS and ACADM,
which were only decreased in pigs fed a corn oil diet after LPS challenge. Our
RNA sequencing reveals novel gene-nutrient interactions following fish oil
supplementation and evoked inflammation, which add to the current understanding
of the benefits of n-3 polyunsaturated fatty acids against liver injury.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Xin Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
5
|
Tamtaji OR, Borzabadi S, Ghayour‐Mobarhan M, Ferns G, Asemi Z. The effects of fatty acids consumption on OPG/RANKL/RANK system in cardiovascular diseases: Current status and future perspectives for the impact of diet‐gene interaction. J Cell Biochem 2018; 120:2774-2781. [DOI: 10.1002/jcb.27672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Omid Reza Tamtaji
- Halal Research Center of IRI, FDA Tehran Iran
- Physiology Research Center, Kashan University of Medical Sciences Kashan Iran
| | - Shokoofeh Borzabadi
- Department of Biology Science and Research Branch, Islamic Azad University Tehran Iran
| | - Majid Ghayour‐Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Gordon Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton Sussex UK
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences Kashan Iran
| |
Collapse
|
6
|
Rodríguez M, García-García RM, Arias-Álvarez M, Formoso-Rafferty N, Millán P, López-Tello J, Lorenzo PL, González-Bulnes A, Rebollar PG. A diet supplemented with n-3 polyunsaturated fatty acids influences the metabomscic and endocrine response of rabbit does and their offspring. J Anim Sci 2018; 95:2690-2700. [PMID: 28727047 DOI: 10.2527/jas.2017.1429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of the present study was to evaluate the productive, endocrine, and metabomscic responses as well as oxidative stress of rabbit does and their offspring when fed a diet supplemented with -3 PUFA during their first productive cycle. To this aim, a total of 105 rabbit does were fed ad mscibitum from d 60 to 172 of age 2 isoenergetic and isoproteic diets differing in fatty acid composition. The control diet ( = 52 does) contained 45.9 g/kg of -3 of the total fatty acids and the enriched diet ( = 53 does) contained 149.2 g/kg of -3 of the total fatty acids. Both experimental groups had similar feed intake during rearing, pregnancy, and lactation. The enrichment of diet had no effect on ultrasonographic assessment of does on d 9 and 16 of pregnancy, with an embryonic vesicle number and fetus and placenta size similar between groups ( > 0.05). Even though there were no major effects ( > 0.05) on fertimscity, duration of gestation, and number born amscive and stillborn kits at parturition, mscive kits from enriched does were longer (71.6 ± 2.42 vs. 79.5 ± 2.13 mm; < 0.05) and tended to be heavier (42.5 ± 3.94 vs. 50.8 ± 3.47 g; = 0.07) than those from control does ( < 0.05). The 2 groups had similar milk production and mortamscity values during lactation; consequently, there were no differences between diets in ADG, mscitter weight, and number of weaned kits ( > 0.05). In enriched does, higher plasma leptin and estradiol concentrations than in control does ( < 0.05) were observed. In addition, enriched females also had lower total and high-density mscipoprotein cholesterol (HDL-c) than control females during lactation ( < 0.05). Regarding offspring, the enrichment of diet with PUFA caused a hypermscipidemic status (greater values of plasma triglycerides, total cholesterol, and HDL-c; < 0.05) at 1 d postpartum (dpp), compared with the control group, that disappeared at 32 dpp. Supplemented does before parturition and their offspring at 1 dpp had greater oxidative stress than those in the control group. In conclusion, an increase of -3 PUFA concentration in the diet of rabbit does and, consequently, of their offspring during a productive cycle alters their mscipid profile and the indicators of oxidative stress, without major endocrine modifications or improvements in the productive variables.
Collapse
|
7
|
Delosière M, Santé-Lhoutellier V, Chantelauze C, Durand D, Thomas A, Joly C, Pujos-Guillot E, Rémond D, Comte B, Gladine C, Guy A, Durand T, Laurentie M, Dufour C. Quantification of 4-hydroxy-2-nonenal-protein adducts in the in vivo gastric digesta of mini-pigs using a GC-MS/MS method with accuracy profile validation. Food Funct 2016; 7:3497-504. [PMID: 27418316 DOI: 10.1039/c6fo00413j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyalkenals are lipid oxidation end-products resulting from the oxidation of polyunsaturated fatty acids (PUFA). This study aimed at quantifying the production of 4-hydroxy-2-nonenal-protein adducts (HNE-P) via Michael addition from n-6 PUFA oxidation in the gastric digesta of mini-pigs after the consumption of meat-based meals with different plant antioxidant contents. Using the accuracy profile procedure, we validated an extraction protocol for the quantification of HNE-P by GC-MS/MS in gastric contents. The formation of HNE-P in the gastric compartment was observed for the first time, with concentrations ranging from less than 0.52 to 1.33 nmol HNE-P per 500 mg digesta. Nevertheless, most gastric HNE-P levels were below the limit of quantification of 0.52 nmol HNE-P per 500 mg digesta. In this animal study, the protective effect of plant antioxidant sources on HNE-P formation was not evidenced contrasting with the results using TBARS as markers.
Collapse
Affiliation(s)
- Mylène Delosière
- INRA, UR370 Animal Products Quality Unit, Clermont-Ferrand/Theix, F-63122 Saint-Genès-Champanelle, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Effect ofα-linolenic acid and DHA intake on lipogenesis and gene expression involved in fatty acid metabolism in growing-finishing pigs. Br J Nutr 2016; 116:7-18. [DOI: 10.1017/s0007114516001392] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractThe regulation of lipogenesis mechanisms related to consumption ofn-3 PUFA is poorly understood. The aim of the present study was to find out whetherα-linolenic acid (ALA) or DHA uptake can have an effect on activities and gene expressions of enzymes involved in lipid metabolism in the liver, subcutaneous adipose tissue andlongissimus dorsi(LD) muscle of growing–finishing pigs. Six groups of ten pigs received one of six experimental diets supplemented with rapeseed oil in the control diet, extruded linseed, microalgae or a mixture of both to implement different levels of ALA and DHA with the same content in totaln-3. Results were analysed for linear and quadratic effects of DHA intake. The results showed that activities of malic enzyme (ME) and fatty acid synthase (FAS) decreased linearly in the liver with dietary DHA. Although the expression of the genes of these enzymes and their activities were poorly correlated,MEandFASexpressions also decreased linearly with DHA intake. The intake of DHA down-regulates the expressions of other genes involved in fatty acid (FA) metabolism in some tissues of pigs, such asfatty acid desaturase 2andsterol-regulatory element binding transcription factor 1in the liver and2,4-dienoyl CoA reductase 2in the LD muscle. FA oxidation in the LD muscle and FA synthesis decreased in the liver with increasing amount of dietary DHA, whereas a retroconversion of DHA into EPA seems to be set up in this last tissue.
Collapse
|
9
|
Surya R, Héliès-Toussaint C, Martin OC, Gauthier T, Guéraud F, Taché S, Naud N, Jouanin I, Chantelauze C, Durand D, Joly C, Pujos-Guillot E, Pierre FH, Huc L. Red meat and colorectal cancer: Nrf2-dependent antioxidant response contributes to the resistance of preneoplastic colon cells to fecal water of hemoglobin- and beef-fed rats. Carcinogenesis 2016; 37:635-645. [PMID: 26992899 DOI: 10.1093/carcin/bgw035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/27/2016] [Indexed: 12/23/2022] Open
Abstract
Epidemiological studies have associated red meat intake with risk of colorectal cancer. Experimental studies explain this positive association by the oxidative properties of heme iron released in the colon. This latter is a potent catalyst for lipid peroxidation, resulting in the neoformation of deleterious aldehydes in the fecal water of heme-fed rats. The toxicity of fecal water of heme-fed rats was associated to such lipid peroxidation. This study demonstrated that fecal water of hemoglobin- and beef-fed rats preferentially induced apoptosis in mouse normal colon epithelial cells than in those carrying mutation on Apc (Adenomatous polyposis coli) gene, considered as preneoplastic. Highlighting the importance of lipid peroxidation and neoformation of secondary aldehydes like 4-hydroxy-2-nonenal (HNE), we optimized the depletion of carbonyl compounds in the fecal water which turned out to abolish the differential apoptosis in both cell lines. To explain the resistance of preneoplastic cells towards fecal water toxicity, we focused on Nrf2, known to be activated by aldehydes, including HNE. Fecal water activated Nrf2 in both cell lines, associated with the induction of Nrf2-target genes related to aldehydes detoxification. However, the antioxidant defense appeared to be higher in preneoplastic cells, favoring their survival, as evidenced by Nrf2 inactivation. Taken together, our results suggest that Nrf2-dependent antioxidant response was involved in the resistance of preneoplastic cells upon exposure to fecal water of hemoglobin- and beef-fed rats. This difference could explain the promoting effect of red meat and heme-enriched diet on colorectal cancer, by initiating positive selection of preneoplastic cells.
Collapse
Affiliation(s)
- Reggie Surya
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 chemin de Tournefeuille, F-31027 Toulouse, France.,Université de Toulouse III, INP, ENVT, UPS, TOXALIM, F-31027 Toulouse, France
| | - Cécile Héliès-Toussaint
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 chemin de Tournefeuille, F-31027 Toulouse, France.,Université de Toulouse III, INP, ENVT, UPS, TOXALIM, F-31027 Toulouse, France
| | - Océane C Martin
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 chemin de Tournefeuille, F-31027 Toulouse, France.,Université de Toulouse III, INP, ENVT, UPS, TOXALIM, F-31027 Toulouse, France
| | - Thierry Gauthier
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 chemin de Tournefeuille, F-31027 Toulouse, France.,Université de Toulouse III, INP, ENVT, UPS, TOXALIM, F-31027 Toulouse, France
| | - Françoise Guéraud
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 chemin de Tournefeuille, F-31027 Toulouse, France.,Université de Toulouse III, INP, ENVT, UPS, TOXALIM, F-31027 Toulouse, France
| | - Sylviane Taché
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 chemin de Tournefeuille, F-31027 Toulouse, France.,Université de Toulouse III, INP, ENVT, UPS, TOXALIM, F-31027 Toulouse, France
| | - Nathalie Naud
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 chemin de Tournefeuille, F-31027 Toulouse, France.,Université de Toulouse III, INP, ENVT, UPS, TOXALIM, F-31027 Toulouse, France
| | - Isabelle Jouanin
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 chemin de Tournefeuille, F-31027 Toulouse, France.,Université de Toulouse III, INP, ENVT, UPS, TOXALIM, F-31027 Toulouse, France
| | - Céline Chantelauze
- INRA, UMR1213 Herbivores, F-63112 Saint-Genès-Champanelle, France.,Université de Lyon - VetAgro Sup, UMR1213 Herbivores, F-69280 Marcy l'Etoile, France
| | - Denys Durand
- INRA, UMR1213 Herbivores, F-63112 Saint-Genès-Champanelle, France.,Université de Lyon - VetAgro Sup, UMR1213 Herbivores, F-69280 Marcy l'Etoile, France
| | - Charlotte Joly
- INRA, UMR1019, Plateforme d'Exploration du Métabolisme, F-63000 Clermont-Ferrand, France and.,INRA, UMR1019, UNH, F-63000 Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- INRA, UMR1019, Plateforme d'Exploration du Métabolisme, F-63000 Clermont-Ferrand, France and.,INRA, UMR1019, UNH, F-63000 Clermont-Ferrand, France
| | - Fabrice H Pierre
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 chemin de Tournefeuille, F-31027 Toulouse, France.,Université de Toulouse III, INP, ENVT, UPS, TOXALIM, F-31027 Toulouse, France
| | - Laurence Huc
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 chemin de Tournefeuille, F-31027 Toulouse, France.,Université de Toulouse III, INP, ENVT, UPS, TOXALIM, F-31027 Toulouse, France
| |
Collapse
|
10
|
Nagayama K, Morino K, Sekine O, Nakagawa F, Ishikado A, Iwasaki H, Okada T, Tawa M, Sato D, Imamura T, Nishio Y, Ugi S, Kashiwagi A, Okamura T, Maegawa H. Duality of n-3 Polyunsaturated Fatty Acids on Mcp-1 Expression in Vascular Smooth Muscle: A Potential Role of 4-Hydroxy Hexenal. Nutrients 2015; 7:8112-26. [PMID: 26402697 PMCID: PMC4586576 DOI: 10.3390/nu7095381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 01/12/2023] Open
Abstract
N-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have protective effects against atherosclerosis. Monocyte chemotactic protein (MCP)-1 is a major inflammatory mediator in the progression of atherosclerosis. However, little is known about the regulation of MCP-1 by DHA and EPA in vessels and vascular smooth muscle cells (VSMCs). In this study, we compared the effect of DHA and EPA on the expression of Mcp-1 in rat arterial strips and rat VSMCs. DHA, but not EPA, suppressed Mcp-1 expression in arterial strips. Furthermore, DHA generated 4-hydroxy hexenal (4-HHE), an end product of n-3 polyunsaturated fatty acids (PUFAs), in arterial strips as measured by liquid chromatography-tandem mass spectrometry. In addition, 4-HHE treatment suppressed Mcp-1 expression in arterial strips, suggesting 4-HHE derived from DHA may be involved in the mechanism of this phenomenon. In contrast, Mcp-1 expression was stimulated by DHA, EPA and 4-HHE through p38 kinase and the Keap1-Nuclear factor erythroid-derived 2-like 2 (Nrf2) pathway in VSMCs. In conclusion, there is a dual effect of n-3 PUFAs on the regulation of Mcp-1 expression. Further study is necessary to elucidate the pathological role of this phenomenon.
Collapse
MESH Headings
- Aldehydes/metabolism
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Cells, Cultured
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Chromatography, Liquid
- Docosahexaenoic Acids/pharmacology
- Dose-Response Relationship, Drug
- Down-Regulation
- Eicosapentaenoic Acid/pharmacology
- In Vitro Techniques
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- NF-E2-Related Factor 2/metabolism
- RNA Interference
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Tandem Mass Spectrometry
- Time Factors
- Transfection
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Kohji Nagayama
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan.
| | - Katsutaro Morino
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan.
| | - Osamu Sekine
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan.
| | - Fumiyuki Nakagawa
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan.
- Osaka Laboratory, JCL Bioassay Corporation, 5-16-26, Minamisuita, Suita-shi, Osaka 564-0043, Japan.
| | - Atsushi Ishikado
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan.
- Sunstar Inc., 3-1 Asahi-machi, Takatsuki, Osaka 569-1195, Japan.
- Joslin Diabetes Centre, Harvard Medical School, MA 02115, USA.
| | - Hirotaka Iwasaki
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan.
- Department of Pharmacology, Shiga University of Medical Science, Shiga 520-2192, Japan.
| | - Takashi Okada
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan.
| | - Masashi Tawa
- Department of Pharmacology, Shiga University of Medical Science, Shiga 520-2192, Japan.
| | - Daisuke Sato
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan.
| | - Takeshi Imamura
- Department of Pharmacology, Shiga University of Medical Science, Shiga 520-2192, Japan.
| | - Yoshihiko Nishio
- Department of Diabetes and Endocrine Medicine, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan.
| | - Atsunori Kashiwagi
- Kusatsu General Hospital, 1660, Yabase-cho, Kusatsu, Shiga 525-8585, Japan.
| | - Tomio Okamura
- Department of Pharmacology, Shiga University of Medical Science, Shiga 520-2192, Japan.
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan.
| |
Collapse
|
11
|
Affiliation(s)
- Cécile Gladine
- INRA; CRNH Auvergne; Clermont-Ferrand France
- Clermont Université; Université d'Auvergne, Unité de Nutrition Humaine; Clermont-Ferrand France
| | - André Mazur
- INRA; CRNH Auvergne; Clermont-Ferrand France
- Clermont Université; Université d'Auvergne, Unité de Nutrition Humaine; Clermont-Ferrand France
| |
Collapse
|
12
|
Gladine C, Zmojdzian M, Joumard-Cubizolles L, Verny MA, Comte B, Mazur A. The omega-3 fatty acid docosahexaenoic acid favorably modulates the inflammatory pathways and macrophage polarization within aorta of LDLR(-/-) mice. GENES AND NUTRITION 2014; 9:424. [PMID: 25134659 DOI: 10.1007/s12263-014-0424-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/25/2014] [Indexed: 12/11/2022]
Abstract
The omega-3 fatty acid docosahexaenoic acid (DHA) has potent anti-atherogenic properties but its mechanisms of action at the vascular level remain poorly explored. Knowing the broad range of molecular targets of omega-3 fatty acids, microarray analysis was used to open-mindedly evaluate the effects of DHA on aorta gene expression in LDLR(-/-) mice and better understand its local anti-atherogenic action. Mice were fed an atherogenic diet and received daily oral gavages with oils rich in oleic acid or DHA. Bioinformatics analysis of microarray data first identified inflammation and innate immunity as processes the most affected by DHA supplementation within aorta. More precisely, several down-regulated genes were associated with the inflammatory functions of macrophages (e.g., CCL5 and CCR7), cell movement (e.g., ICAM-2, SELP, and PECAM-1), and the major histocompatibility complex (e.g., HLA-DQA1 and HLA-DRB1). Interestingly, several genes were identified as specific biomarkers of macrophage polarization, and their changes suggested a preferential orientation toward a M2 reparative phenotype. This observation was supported by the upstream regulator analysis highlighting the involvement of three main regulators of macrophage polarization, namely PPARγ (z-score = 2.367, p = 1.50 × 10(-13)), INFγ (z-score = -2.797, p = 2.81 × 10(-14)), and NFκB (z-score = 2.360, p = 6.32 × 10(-9)). Moreover, immunohistological analysis of aortic root revealed an increased abundance of Arg1 (+111 %, p = 0.01), a specific biomarker of M2 macrophage. The present study showed for the first time that DHA supplementation during atherogenesis is associated with protective modulation of inflammation and innate immunity pathways within aorta putatively through the orientation of plaque macrophages toward a M2 reparative phenotype.
Collapse
Affiliation(s)
- Cécile Gladine
- INRA, UMR1019, UNH, CRNH Auvergne, Clermont-Ferrand, France,
| | | | | | | | | | | |
Collapse
|
13
|
Gladine C, Newman JW, Durand T, Pedersen TL, Galano JM, Demougeot C, Berdeaux O, Pujos-Guillot E, Mazur A, Comte B. Lipid profiling following intake of the omega 3 fatty acid DHA identifies the peroxidized metabolites F4-neuroprostanes as the best predictors of atherosclerosis prevention. PLoS One 2014; 9:e89393. [PMID: 24558496 PMCID: PMC3928438 DOI: 10.1371/journal.pone.0089393] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/20/2014] [Indexed: 12/13/2022] Open
Abstract
The anti-atherogenic effects of omega 3 fatty acids, namely eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) are well recognized but the impact of dietary intake on bioactive lipid mediator profiles remains unclear. Such a profiling effort may offer novel targets for future studies into the mechanism of action of omega 3 fatty acids. The present study aimed to determine the impact of DHA supplementation on the profiles of polyunsaturated fatty acids (PUFA) oxygenated metabolites and to investigate their contribution to atherosclerosis prevention. A special emphasis was given to the non-enzymatic metabolites knowing the high susceptibility of DHA to free radical-mediated peroxidation and the increased oxidative stress associated with plaque formation. Atherosclerosis prone mice (LDLR−/−) received increasing doses of DHA (0, 0.1, 1 or 2% of energy) during 20 weeks leading to a dose-dependent reduction of atherosclerosis (R2 = 0.97, p = 0.02), triglyceridemia (R2 = 0.97, p = 0.01) and cholesterolemia (R2 = 0.96, p<0.01). Targeted lipidomic analyses revealed that both the profiles of EPA and DHA and their corresponding oxygenated metabolites were substantially modulated in plasma and liver. Notably, the hepatic level of F4-neuroprostanes, a specific class of DHA peroxidized metabolites, was strongly correlated with the hepatic DHA level. Moreover, unbiased statistical analysis including correlation analyses, hierarchical cluster and projection to latent structure discriminate analysis revealed that the hepatic level of F4-neuroprostanes was the variable most negatively correlated with the plaque extent (p<0.001) and along with plasma EPA-derived diols was an important mathematical positive predictor of atherosclerosis prevention. Thus, oxygenated n-3 PUFAs, and F4-neuroprostanes in particular, are potential biomarkers of DHA-associated atherosclerosis prevention. While these may contribute to the anti-atherogenic effects of DHA, further in vitro investigations are needed to confirm such a contention and to decipher the molecular mechanisms of action.
Collapse
Affiliation(s)
- Cécile Gladine
- UMR1019 Unité de Nutrition Humaine (UNH), INRA, CRNH Auvergne, Clermont Université, Université d’Auvergne, Clermont-Ferrand, France
| | - John W. Newman
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, United States of America
- Department of Nutrition, University of California, Davis, California, United States of America
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR CNRS 5247, Universités de Montpellier I et II, France, Montpellier, France
| | - Theresa L. Pedersen
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR CNRS 5247, Universités de Montpellier I et II, France, Montpellier, France
| | - Céline Demougeot
- EA 4267 Fonctions et Dysfonctions epithéliales, University of Franche-Comté, Besançon, France
| | - Olivier Berdeaux
- UMR6265 Centre des Sciences du Goût et de l’Alimentation, CNRS, Dijon, France
- UMR1324 Centre des Sciences du Goût et de l’Alimentation, INRA, Dijon, France
- UMR Centre des Sciences du Goût et de l’Alimentation, Université de Bourgogne, Dijon, France
| | - Estelle Pujos-Guillot
- UMR1019 Unité de Nutrition Humaine (UNH), INRA, CRNH Auvergne, Clermont Université, Université d’Auvergne, Clermont-Ferrand, France
- UMR 1019, Plateforme d’Exploration du Métabolisme, INRA, Clermont-Ferrand, France
| | - Andrzej Mazur
- UMR1019 Unité de Nutrition Humaine (UNH), INRA, CRNH Auvergne, Clermont Université, Université d’Auvergne, Clermont-Ferrand, France
| | - Blandine Comte
- UMR1019 Unité de Nutrition Humaine (UNH), INRA, CRNH Auvergne, Clermont Université, Université d’Auvergne, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
14
|
Zhang T, Zhao S, Li W, Ma L, Ding M, Li R, Liu Y. High-fat diet from perilla oil induces insulin resistance despite lower serum lipids and increases hepatic fatty acid oxidation in rats. Lipids Health Dis 2014; 13:15. [PMID: 24422660 PMCID: PMC3904189 DOI: 10.1186/1476-511x-13-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/02/2014] [Indexed: 12/16/2022] Open
Abstract
Background The purpose of this study is to investigate the effects of a high-fat diet from perilla oil on serum lipids, hepatic lipid metabolism and insulin sensitivity. Methods Male Sprague–Dawley (SD) rats were fed either a control (CT) diet or a diet high in perilla oil (HP). After 16 weeks of feeding, the serum lipids were measured, and the gene expressions involved in hepatic fatty acid oxidation and synthesis were determined. In addition, hepatic fat deposition was detected, and insulin sensitivity was evaluated by means of euglycemic-hyperinsulinemic clamp. Results Compared with the rats in the CT group, the HP-feeding significantly decreased the levels of triglyceride (TG), total cholesterol (TCH) and HDL-cholesterol (HDL-c). HP-feeding did not change the levels of LDL-cholesterol (LDL-c), free fatty acid (FFA), intrahepatic lipids or body weight. Moreover, the HP-feeding dramatically increased the mRNA expressions of fatty acid oxidation markers (PPAR-alpha, CPT1A) and fatty acid synthesis markers (SREBP-1, FASN and ACC) in the liver. The HP-feeding induced increased protein levels of CPT1A, while reducing the protein levels of FASN and ACC in the liver. However, the glucose infusion rate significantly increased in the HP group compared with the CT group. Conclusions Our data show that, in rats, excessive perilla oil intake may significantly lower serum lipids, strengthen hepatic fatty acid oxidation, and inhibit hepatic fatty acid synthesis, but at the same time may also lead to insulin resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuan Liu
- Laboratory Animal Center of the Academy of Military Medical Science, Beijing 100071, China.
| |
Collapse
|
15
|
4-Hydroxy hexenal derived from dietary n-3 polyunsaturated fatty acids induces anti-oxidative enzyme heme oxygenase-1 in multiple organs. Biochem Biophys Res Commun 2013; 443:991-6. [PMID: 24361890 DOI: 10.1016/j.bbrc.2013.12.085] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 11/20/2022]
Abstract
It has recently been reported that expression of heme oxygenase-1 (HO-1) plays a protective role against many diseases. Furthermore, n-3 polyunsaturated fatty acids (PUFAs) were shown to induce HO-1 expression in several cells in vitro, and in a few cases also in vivo. However, very few reports have demonstrated that n-3 PUFAs induce HO-1 in vivo. In this study, we examined the effect of fish-oil dietary supplementation on the distribution of fatty acids and their peroxidative metabolites and on the expression of HO-1 in multiple tissues (liver, kidney, heart, lung, spleen, intestine, skeletal muscle, white adipose, brown adipose, brain, aorta, and plasma) of C57BL/6 mice. Mice were divided into 4 groups, and fed a control, safflower-oil, and fish-oil diet for 3 weeks. One group was fed a fish-oil diet for just 1 week. The concentration of fatty acids, 4-hydroxy hexenal (4-HHE), and 4-hydroxy nonenal (4-HNE), and the expression of HO-1 mRNA were measured in the same tissues. We found that the concentration of 4-HHE (a product of n-3 PUFAs peroxidation) and expression of HO-1 mRNA were significantly increased after fish-oil treatment in most tissues. In addition, these increases were paralleled by an increase in the level of docosahexaenoic acid (DHA) but not eicosapentaenoic acid (EPA) in each tissue. These results are consistent with our previous results showing that DHA induces HO-1 expression through 4-HHE in vascular endothelial cells. In conclusion, we hypothesize that the HO-1-mediated protective effect of the fish oil diet may be through production of 4-HHE from DHA but not EPA in various tissues.
Collapse
|
16
|
Ishikado A, Morino K, Nishio Y, Nakagawa F, Mukose A, Sono Y, Yoshioka N, Kondo K, Sekine O, Yoshizaki T, Ugi S, Uzu T, Kawai H, Makino T, Okamura T, Yamamoto M, Kashiwagi A, Maegawa H. 4-Hydroxy hexenal derived from docosahexaenoic acid protects endothelial cells via Nrf2 activation. PLoS One 2013; 8:e69415. [PMID: 23936010 PMCID: PMC3720569 DOI: 10.1371/journal.pone.0069415] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/10/2013] [Indexed: 01/11/2023] Open
Abstract
Recent studies have proposed that n-3 polyunsaturated fatty acids (n-3 PUFAs) have direct antioxidant and anti-inflammatory effects in vascular tissue, explaining their cardioprotective effects. However, the molecular mechanisms are not yet fully understood. We tested whether n-3 PUFAs showed antioxidant activity through the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcriptional factor for antioxidant genes. C57BL/6 or Nrf2−/− mice were fed a fish-oil diet for 3 weeks. Fish-oil diet significantly increased the expression of heme oxygenase-1 (HO-1), and endothelium-dependent vasodilation in the aorta of C57BL/6 mice, but not in the Nrf2−/− mice. Furthermore, we observed that 4-hydroxy hexenal (4-HHE), an end-product of n-3 PUFA peroxidation, was significantly increased in the aorta of C57BL/6 mice, accompanied by intra-aortic predominant increase in docosahexaenoic acid (DHA) rather than that in eicosapentaenoic acid (EPA). Human umbilical vein endothelial cells were incubated with DHA or EPA. We found that DHA, but not EPA, markedly increased intracellular 4-HHE, and nuclear expression and DNA binding of Nrf2. Both DHA and 4-HHE also increased the expressions of Nrf2 target genes including HO-1, and the siRNA of Nrf2 abolished these effects. Furthermore, DHA prevented oxidant-induced cellular damage or reactive oxygen species production, and these effects were disappeared by an HO-1 inhibitor or the siRNA of Nrf2. Thus, we found protective effects of DHA through Nrf2 activation in vascular tissue, accompanied by intra-vascular increases in 4-HHE, which may explain the mechanism of the cardioprotective effects of DHA.
Collapse
Affiliation(s)
- Atsushi Ishikado
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
- Research & Development Department, Sunstar Inc., Osaka, Japan
| | - Katsutaro Morino
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihiko Nishio
- Department of Diabetes, Metabolism and Endocrinology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- * E-mail:
| | - Fumiyuki Nakagawa
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
- Osaka Laboratory, JCL Bioassay Corporation, Osaka, Japan
| | - Atsushi Mukose
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Yoko Sono
- Research & Development Department, Sunstar Inc., Osaka, Japan
| | | | - Keiko Kondo
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Osamu Sekine
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Takeshi Yoshizaki
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Takashi Uzu
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Hiromichi Kawai
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | | | - Tomio Okamura
- Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Atsunori Kashiwagi
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
17
|
Effects of long-term administration of saturated and n-3 fatty acid-rich diets on lipid utilisation and oxidative stress in rat liver and muscle tissues. Br J Nutr 2013; 110:1789-802. [DOI: 10.1017/s0007114513001311] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of metabolic syndrome components including obesity, lipid deregulation, insulin resistance (IR) and non-alcoholic fatty liver disease is increasing rapidly in wealthy societies. The present study was designed to determine the effect of different nutritional lipid patterns (quantity and quality) on lipid utilisation and oxidative stress in the liver and muscle of rats in an integrated fashion. A total of forty-eight Wistar male rats were fed for 12 weeks with a mixed, lard or fish-oil diet, containing either 50 or 300 g lipid/kg. Rats developed liver steatosis associated with moderate liver injury when fed the 30 % lipid diets, in spite of the absence of overt obesity or IR, except when fed the lard 30 % lipid diet. The intake of the 30 % lipid diets decreased hepatic lipogenesis and mitochondriogenesis and increased lipid peroxidation and protein oxidation. Surprisingly, muscle lipid content was not modified whatever the administered diet. The intake of the 30 % lipid diets increased the muscle protein expression of fatty acid (FA) translocase/cluster of differentiation 36 (FAT/CD36), PPARγ co-activator 1α (PGC-1α) and muscle carnitine palmitoyltransferase 1 (m-CPT1), reflecting increased FA transport in the muscle associated with increased oxidative metabolism. The lard 30 % lipid diet led to IR without modifying the muscle lipid content. The fish-oil 30 % lipid diet failed to prevent the development of hepatic steatosis and made the tissues more prone to oxidation. Overall, the present study suggests that the FA composition of muscle is more important than lipid accumulation itself in the modulation of insulin sensitivity, and indicates that precaution should be taken when advising an unphysiologically high (pharmacological) supplementation with long-chain n-3 PUFA.
Collapse
|