1
|
Nossar LF, Lopes JA, Pereira-Acácio A, Costa-Sarmento G, Rachid R, Wendt CHC, Miranda K, Galina A, Rodrigues-Ferreira C, Muzi-Filho H, Vieyra A. Chronic undernutrition impairs renal mitochondrial respiration accompanied by intense ultrastructural damage in juvenile rats. Biochem Biophys Res Commun 2024; 739:150583. [PMID: 39182354 DOI: 10.1016/j.bbrc.2024.150583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
This study investigated whether chronic undernutrition alters the mitochondrial structure and function in renal proximal tubule cells, thus impairing fluid transport and homeostasis. We previously showed that chronic undernutrition downregulates the renal proximal tubules (Na++K+)ATPase, the main molecular machine responsible for fluid transport and ATP consumption. Male rats received a multifactorial deficient diet, the so-called Regional Basic Diet (RBD), mimicking those used in impoverished regions worldwide, from weaning to a juvenile age (3 months). The diet has a low content (8 %) of poor-quality proteins, low lipids, and no vitamins compared to control (CTR). We investigated citrate synthase activity, mitochondrial respiration (oxygraphy) in phosphorylating and non-phosphorylating conditions with different substrates/inhibitors, potential across the internal membrane (Δψ), and anion superoxide/H2O2 formation. The data were correlated with ultrastructural alterations evaluated using transmission electron microscopy (TEM) and focused ion beam scanning electron microscopy (FIB-SEM). Citrate synthase activity decreased (∼50 %) in RBD rats, accompanied by a similar reduction in respiration in non-phosphorylating conditions, maximum respiratory capacity, and ATP synthesis. The Δψ generation and its dissipation after carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone remained unmodified in the survival mitochondria. H2O2 production increased (∼100 %) after Complex II energization. TEM demonstrated intense matrix vacuolization and disruption of cristae junctions in a subpopulation of RBD mitochondria, which was also demonstrated in the 3D analysis of FIB-SEM tomography. In conclusion, chronic undernutrition impairs mitochondrial functions in renal proximal tubules, with profound alterations in the matrix and internal membrane ultrastructure that culminate with the compromise of ATP supply for transport processes.
Collapse
Affiliation(s)
- Luiz F Nossar
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jarlene A Lopes
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Amaury Pereira-Acácio
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil
| | - Glória Costa-Sarmento
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Rachel Rachid
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Camila H C Wendt
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Kildare Miranda
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Antonio Galina
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Clara Rodrigues-Ferreira
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Humberto Muzi-Filho
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Adalberto Vieyra
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil; National Institute of Science and Technology for Regenerative Medicine/REGENERA, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
2
|
Rabadi MM, Verde MR, Camilliere M, Vecchio N, Kandhi S, Sekulic M, Wolin MS, Ratliff BB. Renal and Vascular Functional Decline in Aged Low Birth Weight Murine Adults. Kidney Blood Press Res 2024; 49:1075-1090. [PMID: 39571568 DOI: 10.1159/000542141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/16/2024] [Indexed: 12/19/2024] Open
Abstract
INTRODUCTION Maternal undernutrition (MUN)-induced low birth weight (LBW) neonates are susceptible to the development of high blood pressure and kidney disease later in life, although the underlying pathological causes remain unclear. The study here investigated the role of renal oxidative stress, impairment of vascular function, and altered sensitivity to angiotensin II (Ang II) as factors that contribute to these pathologies in aged LBW mice. METHODS LBW offspring were generated using a combined protein and caloric restricted MUN mouse model. The resulting LBW offspring were examined 1 year after birth for mean arterial blood pressure (MABP) (carotid artery catheterization), renal blood flow (RBF) (laser Doppler flowmetry), glomerular filtration rate (GFR) (sinistrin clearance), vasoreactivity (myograph), renal vascular density (CD31 staining), and reactive oxygen species (ROS) (ROS probes). Immunoblotting examined Ang II type 1 receptor (AT1R), soluble guanylate cyclase (sGC), and antioxidant systems. Pharmacological agents delivered to animals included the sGC stimulator δ-aminolevulinic acid (ALA), the AT1R inhibitor losartan, the antioxidant ethyl pyruvate (EP), and the toll-like receptor 4 inhibitor TAK242. RESULTS After 1 year, MABP was increased, while RBF, GFR, vascular reactivity, renal vascular density, and sGC were all reduced in the LBW aged adult. All four pharmacological agents improved MABP, RBF, GFR, vascular density, and vascular reactivity. Renal ROS was increased in the LBW adult but was reduced by ALA, EP, and TAK242 treatment. AT1R was upregulated in the LBW adult, while sGC was decreased, an effect reversed by ALA treatment. Endogenous antioxidant systems, including SOD1, catalase, and glutathione were downregulated in the LBW adult. CONCLUSION MUN-induced LBW mice experience increased Ang II sensitivity and oxidative stress. The increased Ang II sensitivity and ROS generation influences vascular density and reactivity, which drive an increase in MABP, and a concomitantly decrease in RBF and glomerular filtration. Pharmacological intervention that inhibits AT1R, enhances levels of sGC, reduces ROS, or inhibits toll-like receptor 4 improves vascular and renal function in the LBW adult.
Collapse
Affiliation(s)
- May M Rabadi
- Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - Marella R Verde
- Department of Physiology, New York Medical College, Valhalla, New York, USA
| | - Mia Camilliere
- Department of Pathology, New York Medical College, Valhalla, New York, USA
| | - Nicholas Vecchio
- Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York, USA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York, USA
| | - Brian B Ratliff
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
3
|
Silva JK, Veras ACC, Sousa SM, Albuquerque JSS, Ribeiro FPB, Lima NKS, Nascimento LBS, Alves RRV, Aires RS, Coelho LCBB, Napoleão TH, Paiva PMG, Paixão AD, Vieira LD. The water extract and the lectin WSMoL from the seeds of Moringa oleifera prevent the hypertension onset by decreasing renal oxidative stress. AN ACAD BRAS CIENC 2024; 96:e20231266. [PMID: 39319849 DOI: 10.1590/0001-3765202420231266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/19/2024] [Indexed: 09/26/2024] Open
Abstract
Maternal endotoxemia disturbs the intrauterine environment, impairs nephrogenesis, and increases the risk of hypertension and kidney disease in adulthood. Here, it was investigated whether maternal treatment with the water extract of Moringa oleifera seeds (WEMoS) or the water-soluble M. oleifera seed lectin (WSMoL) prevents the oxidative stress induced by lipopolysaccharide (LPS) in pregnant rats, and the renal injury and hypertension in the adult offspring. The administration of WEMoS or WSMoL prevented the stimulatory effects of LPS on lipid peroxidation in the maternal-placenta-fetuses environment. The impact of WEMoS was linked to decreased superoxide anions production in the placenta. The effects of WSMoL were parallel to the inhibition of superoxide anion production and NADPH oxidase activity. The WSMoL also prevented increased NADPH oxidase activity in the fetal kidney. The LPS offspring presented higher systolic blood pressure (SBP) and increased lipid peroxidation, reactive oxygen species (ROS), NADPH oxidase activity, and nitrate/nitrite in the kidney; the maternal treatment with WEMoS and WSMoL prevented these changes. In conclusion, the present study demonstrates that WEMoS and WSMoL have protective effects on maternal endotoxemia, which involve antioxidant and anti-inflammatory actions that prevent the programming of hypertension.
Collapse
Affiliation(s)
- Jeoadã Karollyne Silva
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Alana Carolina C Veras
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Shirley Maria Sousa
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Jessica S S Albuquerque
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Fernanda Priscila B Ribeiro
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Natalia Kryzia S Lima
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Laryssa Beatriz S Nascimento
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Robson R V Alves
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Regina S Aires
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Luana Cassandra B B Coelho
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Thiago Henrique Napoleão
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Patrícia Maria G Paiva
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Ana D Paixão
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Leucio D Vieira
- Universidade Federal de Pernambuco, Departamento de Fisiologia e Farmacologia, Centro de Biociências, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| |
Collapse
|
4
|
Cirilo MAS, Santos VBS, Lima NKS, Muzi-Filho H, Paixão ADO, Vieyra A, Vieira LD. Reactive oxygen species impair Na+ transport and renal components of the renin-angiotensin-aldosterone system after paraquat poisoning. AN ACAD BRAS CIENC 2024; 96:e20230971. [PMID: 38597493 DOI: 10.1590/0001-3765202420230971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/14/2023] [Indexed: 04/11/2024] Open
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.
Collapse
Affiliation(s)
- Marry A S Cirilo
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Valéria B S Santos
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Natália K S Lima
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Humberto Muzi-Filho
- Federal University of Rio de Janeiro, Center for Research in Precision Medicine, First Floor, Carlos Chagas Filho Institute of Biophysics, Carlos Chagas Filho Ave., University City, 21941-904 Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine-REGENERA, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Ana D O Paixão
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Adalberto Vieyra
- Federal University of Rio de Janeiro, Center for Research in Precision Medicine, First Floor, Carlos Chagas Filho Institute of Biophysics, Carlos Chagas Filho Ave., University City, 21941-904 Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine-REGENERA, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- Grande Rio University, 1160 Professor José de Souza Herdy Street, Building C, Second Floor, 25071-202 Duque de Caxias, RJ, Brazil
| | - Leucio D Vieira
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Barati A, Rahbar Saadat Y, Meybodi SM, Nouraei S, Moradi K, Kamrani Moghaddam F, Malekinejad Z, Hosseiniyan Khatibi SM, Zununi Vahed S, Bagheri Y. Eplerenone reduces renal ischaemia/reperfusion injury by modulating Klotho, NF-κB and SIRT1/SIRT3/PGC-1α signalling pathways. J Pharm Pharmacol 2022:6648426. [PMID: 35866843 DOI: 10.1093/jpp/rgac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Acute kidney injury (AKI) is a sudden impairment in kidney function that is associated with high morbidity and mortality. Inflammation, oxidative stress, mitochondrial impairment and energy depletion, along with organ dysfunction are hallmarks of AKI. This study aimed to evaluate the effects of Eplerenone, an aldosterone receptor antagonist, on the kidney injury caused by ischaemia/reperfusion (I/R). METHODS Male Wistar rats (n = 24) were randomly allocated into four groups: sham, IR, Eplerenone and Eplerenone+IR. Rats in the two last groups 1 h before I/R induction, were treated with Eplerenone (100 mg/kg) via intraperitoneal injection. Protein levels of Klotho, heat shock protein 70 (HSP70), sirtuin1 (SIRT1), SIRT3 and peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC-1α) along with antioxidant, apoptotic (caspase 3, Bax and Bcl2) and inflammatory [nuclear factor kappa-B (NF-κB) p65, Interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2)] factors were evaluated in the kidney tissues of the experimental groups. KEY FINDINGS Eplerenone pre-treatment significantly could improve IR-induced pathological changes and kidney function and increase the renal antioxidant factors compared to the IR group (P < 0.05). Furthermore, in the Eplerenone + IR group, significant elevation of the Klotho, SIRT1, SIRT3 and PGC-1α at the protein level was identified compared to the IR group. Eplerenone pretreatment could not only downregulate NF-κB signalling and its downstream inflammatory factors (IL-6, COX-2 and TNF-α) but also could decrease apoptotic factors (P ≤ 0.01). CONCLUSIONS The results recommended that Eplerenone exerts a protective effect against kidney IR injury by up-regulating Klotho, HSP70, sirtuins and PGC-1α to preserve mitochondrial function and cell survival. Moreover, it hinders renal inflammation by suppressing NF-κB signalling. These results offer insight into the prevention or treatment of AKI in the future.
Collapse
Affiliation(s)
- Alireza Barati
- Department of Pathobiology, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yalda Rahbar Saadat
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sana Nouraei
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Kimia Moradi
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Zahra Malekinejad
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | | | - Yasin Bagheri
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Voggel J, Mohr J, Nüsken KD, Dötsch J, Nüsken E, Alejandre Alcazar MA. Translational insights into mechanisms and preventive strategies after renal injury in neonates. Semin Fetal Neonatal Med 2022; 27:101245. [PMID: 33994314 DOI: 10.1016/j.siny.2021.101245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adverse perinatal circumstances can cause acute kidney injury (AKI) and contribute to chronic kidney disease (CKD). Accumulating evidence indicate that a wide spectrum of perinatal conditions interferes with normal kidney development and ultimately leads to aberrant kidney structure and function later in life. The present review addresses the lack of mechanistic knowledge with regard to perinatal origins of CKD and provides a comprehensive overview of pre- and peri-natal insults, including genetic predisposition, suboptimal nutritional supply, obesity and maternal metabolic disorders as well as placental insufficiency leading to intrauterine growth restriction (IUGR), prematurity, infections, inflammatory processes, and the need for life-saving treatments (e.g. oxygen supplementation, mechanical ventilation, medications) in neonates. Finally, we discuss future preventive, therapeutic, and regenerative directions. In summary, this review highlights the perinatal vulnerability of the kidney and the early origins of increased susceptibility toward AKI and CKD during postnatal life. Promotion of kidney health and prevention of disease require the understanding of perinatal injury in order to optimize perinatal micro- and macro-environments and enable normal kidney development.
Collapse
Affiliation(s)
- Jenny Voggel
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany
| | - Jasmine Mohr
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany
| | - Kai-Dietrich Nüsken
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Jörg Dötsch
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Eva Nüsken
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Miguel A Alejandre Alcazar
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany; Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Faculty of Medicine, University Hospital Cologne Cologne, Germany; Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Gießen, Germany.
| |
Collapse
|
7
|
Shao L, Ma Y, Fang Q, Huang Z, Wan S, Wang J, Yang L. Role of protein phosphatase 2A in kidney disease (Review). Exp Ther Med 2021; 22:1236. [PMID: 34539832 PMCID: PMC8438693 DOI: 10.3892/etm.2021.10671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Kidney disease affects millions of people worldwide and is a financial burden on the healthcare system. Protein phosphatase 2A (PP2A), which is involved in renal development and the function of ion-transport proteins, aquaporin-2 and podocytes, is likely to serve an important role in renal processes. PP2A is associated with the pathogenesis of a variety of different kidney diseases including podocyte injury, inflammation, tumors and chronic kidney disease. The current review aimed to discuss the structure and function of PP2A subunits in the context of kidney diseases. How dysregulation of PP2A in the kidneys causes podocyte death and the inactivation of PP2A in renal carcinoma tissues is discussed. Inhibition of PP2A activity prevents epithelial-mesenchymal transition and attenuates renal fibrosis, creating a favorable inflammatory microenvironment and promoting the initiation and progression of tumor pathogenesis. The current review also indicates that PP2A serves an important role in protection against renal inflammation. Understanding the detailed mechanisms of PP2A provides information that can be utilized in the design and application of novel therapeutics for the treatment and prevention of renal diseases.
Collapse
Affiliation(s)
- Lishi Shao
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Yiqun Ma
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Qixiang Fang
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Ziye Huang
- Department of Urology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Shanshan Wan
- Department of Radiology, Yunnan Kun-Gang Hospital, Anning, Yunnan 650300, P.R. China
| | - Jiaping Wang
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Li Yang
- Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
8
|
Voggel J, Lubomirov L, Lechner F, Fink G, Nüsken E, Wohlfarth M, Pfitzer G, Shah-Hosseini K, Hellmich M, Alejandre Alcázar MA, Dötsch J, Nüsken KD. Vascular tone regulation in renal interlobar arteries of male rats is dysfunctional after intrauterine growth restriction. Am J Physiol Renal Physiol 2021; 321:F93-F105. [PMID: 34056927 DOI: 10.1152/ajprenal.00653.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intrauterine growth restriction (IUGR) due to an adverse intrauterine environment predisposes to arterial hypertension and loss of kidney function. Here, we investigated whether vascular dysregulation in renal interlobar arteries (RIAs) may contribute to hypertensive glomerular damage after IUGR. In rats, IUGR was induced by bilateral uterine vessel ligation. Offspring of nonoperated rats served as controls. From postnatal day 49, blood pressure was telemetrically recorded. On postnatal day 70, we evaluated contractile function in RIAs and mesenteric arteries. In addition, blood, urine, and glomerular parameters as well as renal collagen deposition were analyzed. IUGR RIAs not only showed loss of stretch activation in 9 of 11 arteries and reduced stretch-induced myogenic tone but also showed a shift of the concentration-response relation of acetylcholine-induced relaxation toward lower concentrations. However, IUGR RIAs also exhibited augmented contractions through phenylephrine. Systemic mean arterial pressure [mean difference: 4.8 mmHg (daytime) and 5.7 mmHg (night)], mean glomerular area (IUGR: 9,754 ± 338 µm2 and control: 8,395 ± 227 µm2), and urinary protein-to-creatinine ratio (IUGR: 1.67 ± 0.13 g/g and control: 1.26 ± 0.10 g/g) were elevated after IUGR. We conclude that male IUGR rat offspring may have increased vulnerability toward hypertensive glomerular damage due to loss of myogenic tone and augmented endothelium-dependent relaxation in RIAs.NEW & NOTEWORTHY For the first time, our study presents wire myography data from renal interlobar arteries (RIAs) and mesenteric arteries of young adult rat offspring after intrauterine growth restriction (IUGR). Our data indicate that myogenic tone in RIAs is dysfunctional after IUGR. Furthermore, IUGR offspring suffer from mild arterial hypertension, glomerular hypertrophy, and increased urinary protein-to-creatinine ratio. Dysregulation of vascular tone in RIAs could be an important variable that impacts upon vulnerability toward glomerular injury after IUGR.
Collapse
Affiliation(s)
- Jenny Voggel
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Lubomir Lubomirov
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Felix Lechner
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria Wohlfarth
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Kija Shah-Hosseini
- Institute of Medical Statistics and Computational Biology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Miguel A Alejandre Alcázar
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany.,Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Gießen, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Animal Models for DOHaD Research: Focus on Hypertension of Developmental Origins. Biomedicines 2021; 9:biomedicines9060623. [PMID: 34072634 PMCID: PMC8227380 DOI: 10.3390/biomedicines9060623] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that fetal programming through environmental exposure during a critical window of early life leads to long-term detrimental outcomes, by so-called developmental origins of health and disease (DOHaD). Hypertension can originate in early life. Animal models are essential for providing convincing evidence of a causal relationship between diverse early-life insults and the developmental programming of hypertension in later life. These insults include nutritional imbalances, maternal illnesses, exposure to environmental chemicals, and medication use. In addition to reviewing the various insults that contribute to hypertension of developmental origins, this review focuses on the benefits of animal models in addressing the underlying mechanisms by which early-life interventions can reprogram disease processes and prevent the development of hypertension. Our understanding of hypertension of developmental origins has been enhanced by each of these animal models, narrowing the knowledge gap between animal models and future clinical translation.
Collapse
|
10
|
Jannuzzi LB, Pereira-Acacio A, Ferreira BSN, Silva-Pereira D, Veloso-Santos JPM, Alves-Bezerra DS, Lopes JA, Costa-Sarmento G, Lara LS, Vieira LD, Abadie-Guedes R, Guedes RCA, Vieyra A, Muzi-Filho H. Undernutrition - thirty years of the Regional Basic Diet: the legacy of Naíde Teodósio in different fields of knowledge. Nutr Neurosci 2021; 25:1973-1994. [PMID: 33871318 DOI: 10.1080/1028415x.2021.1915631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Undernutrition is characterized by an imbalance of essential nutrients with an insufficient nutritional intake, a disorder in which the clinical manifestations in most cases are the result of the economic and social context in which the individual lives. In 1990, the study by the medical and humanitarian Naíde Teodósio (1915-2005) and coworkers, which formulated the Regional Basic Diet (RBD) model for inducing undernutrition, was published. This diet model took its origin from the observation of the dietary habits of families that inhabited impoverished areas from the Pernambuco State. RBD mimics an undernutrition framework that extends not only to the Brazilian population, but to populations in different regions worldwide. The studies based on RBD-induced deficiencies provide a better understanding of the impact of undernutrition on the pathophysiological mechanisms underlying the most diverse prevalent diseases. Indexed papers that are analyzed in this review focus on the importance of using RBD in different areas of knowledge. These papers reflect a new paradigm in translational medicine: they show how the study of pathology using the RBD model in animals over the past 30 years has and still can help scientists today, shedding light on the mechanisms of prevalent diseases that affect impoverished populations.
Collapse
Affiliation(s)
- Larissa B Jannuzzi
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amaury Pereira-Acacio
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna S N Ferreira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Silva-Pereira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João P M Veloso-Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danilo S Alves-Bezerra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jarlene A Lopes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glória Costa-Sarmento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucienne S Lara
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leucio D Vieira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Ricardo Abadie-Guedes
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Rubem C A Guedes
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology of Regenerative Medicine/REGENERA, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Lima NKS, Farias WRA, Cirilo MAS, Oliveira AG, Farias JS, Aires RS, Muzi-Filho H, Paixão ADO, Vieira LD. Renal ischemia-reperfusion leads to hypertension and changes in proximal tubule Na + transport and renin-angiotensin-aldosterone system: Role of NADPH oxidase. Life Sci 2020; 266:118879. [PMID: 33310030 DOI: 10.1016/j.lfs.2020.118879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Acute renal injury (AKI) is a risk factor for the development of hypertension, which involves oxidative stress, changes in Na+ handling, and the intrarenal renin-angiotensin-aldosterone system (RAAS) as underlying mechanisms. We investigated in rats whether renal ischemia-reperfusion (IR) leads to changes in the proximal tubule ATP-dependent Na+ transport and the intrarenal content of RAAS components, as well as the role of NADPH oxidase. Rats weighing 300-350 g were submitted to AKI by bilateral IR (n = 25). After IR injury, the animals were followed up for 4 weeks. One part (n = 7) received daily treatment with the NADPH oxidase inhibitor apocynin (100 mg/kg, drinking water), while another part (n = 9) received apocynin 24 h before and after IR. One group was submitted to sham surgery (n = 8). Four weeks after IR, the rats presented elevated systolic blood pressure, as well as increased lipid peroxidation, NADPH oxidase activity, (Na++K+)ATPase activity, and upregulation of type 1 angiotensin II receptor in the renal cortex. On the other hand, there was a decrease in Na+-ATPase activity and downregulation of the isoforms 1 and 2 of the angiotensin-converting enzyme, type 2 angiotensin II receptor, and of the α and ε isoforms of protein kinase C. Most of these alterations was prevented by both apocynin treatment protocols. Thus, we conclude that AKI-induced by IR may induce changes in proximal tubule ATPases and RAAS components compatible with renal Na+ retention and hypertension. These data also indicate that the NADPH oxidase represents a key factor in the origin of these alterations.
Collapse
Affiliation(s)
- Natália K S Lima
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Wilka R A Farias
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Marry A S Cirilo
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Angélica G Oliveira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Juliane S Farias
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Regina S Aires
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana D O Paixão
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil; National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leucio D Vieira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil; National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Nüsken E, Voggel J, Fink G, Dötsch J, Nüsken KD. Impact of early-life diet on long-term renal health. Mol Cell Pediatr 2020; 7:17. [PMID: 33269431 PMCID: PMC7710776 DOI: 10.1186/s40348-020-00109-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
In the last years, great advances have been made in the effort to understand how nutritional influences can affect long-term renal health. Evidence has accumulated that maternal nutrition before and during pregnancy and lactation as well as early postnatal nutrition is of special significance. In this review, we summarize epidemiologic and experimental data on the renal effects of perinatal exposure to energy restriction, low-protein diet, high-fat diet, high-fructose diet, and high- and low-salt diet as well as micronutrient deficiencies. Interestingly, different modifications during early-life diet may end up with similar sequelae for the offspring. On the other hand, molecular pathways can be influenced in opposite directions by different dietary interventions during early life. Importantly, postnatal nutrition significantly modifies the phenotype induced by maternal diet. Sequelae of altered macro- or micronutrient intakes include altered nephron count, blood pressure dysregulation, altered sodium handling, endothelial dysfunction, inflammation, mitochondrial dysfunction, and oxidative stress. In addition, renal prostaglandin metabolism as well as renal AMPK, mTOR, and PPAR signaling can be affected and the renin-angiotensin-aldosterone system may be dysregulated. Lately, the influence of early-life diet on gut microbiota leading to altered short chain fatty acid profiles has been discussed in the etiology of arterial hypertension. Against this background, the preventive and therapeutic potential of perinatal nutritional interventions regarding kidney disease is an emerging field of research. Especially individuals at risk (e.g., newborns from mothers who suffered from malnutrition during gestation) could disproportionately benefit from well-targeted dietary interventions.
Collapse
Affiliation(s)
- Eva Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Jenny Voggel
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| |
Collapse
|
13
|
Jiang W, Han T, Duan W, Dong Q, Hou W, Wu H, Wang Y, Jiang Z, Pei X, Chen Y, Li Y, Sun C. Prenatal famine exposure and estimated glomerular filtration rate across consecutive generations: association and epigenetic mediation in a population-based cohort study in Suihua China. Aging (Albany NY) 2020; 12:12206-12221. [PMID: 32554859 PMCID: PMC7343514 DOI: 10.18632/aging.103397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
Abstract
Prenatal malnutrition could promote renal dysfunction in adulthood, but it is unclear whether the detrimental effect could be transmitted to the next generation. We investigated whether famine exposure was associated with variation of estimated glomerular filtration rate(eGFR) in two generations and explored the mediation role of methylation alterations. The longitudinal analysis included 2909 participants from Suihua rural area. F1 and F2 generations were divided into non-famine and famine group based on their birth year and exposure status of their parents, respectively. The eGFR was calculated by using the chronic kidney disease epidemiology collaboration equation. We applied mixed-effect models to investigate the association between famine and ΔeGFR and tested blood DNA methylomes in 46 families across two generations. The mediation-analysis models were utilized to examine the mediation effect of methylation alterations on the famine-ΔeGFR association. In mixed-effect models, famine exposure was associated with declined ΔeGFR level in F1(β:-8.32;95%CI:-11.51,-5.12) and in F2(β:-6.11;95%CI:-11.88, -0.43). Methylation850K BeadChip data showed only 19 of 961 F1 differentially methylated sites showed concordant alterations in F2. The mediation-analysis results showed methylation alterations on AGTR1 and PRKCA might mediate the famine-ΔeGFR association. Overall, prenatal famine exposure may have long-term effects on eGFR decline across consecutive generations which might be partly mediated by methylation alterations on AGTR1 and PRKCA.
Collapse
Affiliation(s)
- Wenbo Jiang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Tianshu Han
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Wei Duan
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Qiuying Dong
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Wanying Hou
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Huanyu Wu
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Yue Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Zehui Jiang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Xinyi Pei
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Yingying Chen
- The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang Province 150081, P. R. China
| | - Ying Li
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China
| |
Collapse
|
14
|
Early-Life Programming and Reprogramming of Adult Kidney Disease and Hypertension: The Interplay between Maternal Nutrition and Oxidative Stress. Int J Mol Sci 2020; 21:ijms21103572. [PMID: 32443635 PMCID: PMC7278949 DOI: 10.3390/ijms21103572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Kidney disease and hypertension both have attained the status of a global pandemic. Altered renal programming resulting in kidney disease and hypertension can begin in utero. Maternal suboptimal nutrition and oxidative stress have important implications in renal programming, while specific antioxidant nutrient supplementations may serve as reprogramming strategies to prevent kidney disease and hypertension of developmental origins. This review aims to summarize current knowledge on the interplay of maternal nutrition and oxidative stress in response to early-life insults and its impact on developmental programming of kidney disease and hypertension, covering two aspects. Firstly, we present the evidence from animal models supporting the implication of oxidative stress on adult kidney disease and hypertension programmed by suboptimal maternal nutrition. In the second part, we document data on specific antioxidant nutrients as reprogramming strategies to protect adult offspring against kidney disease and hypertension from developmental origins. Research into the prevention of kidney disease and hypertension that begin early in life will have profound implications for future health.
Collapse
|
15
|
Farias JS, Santos KM, Lima NK, Cabral EV, Aires RS, Veras AC, Paixão AD, Vieira LD. Maternal endotoxemia induces renal collagen deposition in adult offspring: Role of NADPH oxidase/TGF-β1/MMP-2 signaling pathway. Arch Biochem Biophys 2020; 684:108306. [DOI: 10.1016/j.abb.2020.108306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 01/19/2023]
|
16
|
Barbosa SDS, Mello APDFAC, Nogueira VDO, da Silva IF, de Melo PED, dos Santos CR, Costa‐Silva JHD, Araújo AV. Consumption of a high‐fat diet does not potentiate the deleterious effects on lipid and protein levels and body development in rats subjected to maternal protein restriction. Clin Exp Pharmacol Physiol 2019; 47:412-421. [DOI: 10.1111/1440-1681.13210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Sávio dos Santos Barbosa
- Nucleus of Physical Education and Sport Sciences Universidade Federal de Pernambuco (CAV/UFPE) Vitória de Santo Antão Brazil
| | | | - Viviane de Oliveira Nogueira
- Nucleus of Physical Education and Sport Sciences Universidade Federal de Pernambuco (CAV/UFPE) Vitória de Santo Antão Brazil
| | - Ially Fabiane da Silva
- Nucleus of Physical Education and Sport Sciences Universidade Federal de Pernambuco (CAV/UFPE) Vitória de Santo Antão Brazil
| | | | - Carlos Renato dos Santos
- Nucleus of Public Health Centro Acadêmico de Vitória Universidade Federal de Pernambuco (CAV/UFPE) Vitória de Santo Antão Brazil
| | - João Henrique da Costa‐Silva
- Nucleus of Physical Education and Sport Sciences Universidade Federal de Pernambuco (CAV/UFPE) Vitória de Santo Antão Brazil
| | - Alice Valença Araújo
- Nucleus of Public Health Centro Acadêmico de Vitória Universidade Federal de Pernambuco (CAV/UFPE) Vitória de Santo Antão Brazil
| |
Collapse
|
17
|
Maternal physical activity prevents the overexpression of hypoxia-inducible factor 1-α and cardiorespiratory dysfunction in protein malnourished rats. Sci Rep 2019; 9:14406. [PMID: 31594995 PMCID: PMC6783408 DOI: 10.1038/s41598-019-50967-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Maternal physical activity attenuates cardiorespiratory dysfunctions and transcriptional alterations presented by the carotid body (CB) of rats. Rats performed physical activity and were classified as inactive/active. During gestation and lactation, mothers received either normoprotein (NP-17% protein) or low-protein diet (LP-8% protein). In offspring, biochemical serum levels, respiratory parameters, cardiovascular parameters and the mRNA expression of hypoxia-inducible factor 1-alpha (HIF-1α), tyrosine hydroxylase (TH) and purinergic receptors were evaluate. LP-inactive pups presented lower RF from 1st to 14th days old, and higher RF at 30 days than did NP-inactive and NP-active pups. LP-inactive pups presented with reduced serum protein, albumin, cholesterol and triglycerides levels and an increased fasting glucose level compared to those of NP-inactive and NP-active groups. LP and LP-inactive animals showed an increase in the cardiac variability at the Low-Frequency bands, suggesting a major influence of sympathetic nervous activity. In mRNA analyses, LP-inactive animals showed increased HIF-1α expression and similar expression of TH and purinergic receptors in the CB compared to those of NP groups. All these changes observed in LP-inactive pups were reversed in the pups of active mothers (LP-active). Maternal physical activity is able to attenuate the metabolic, cardiorespiratory and HIF-1α transcription changes induced by protein malnutrition.
Collapse
|
18
|
Cabral EV, Vieira LD, Sant'Helena BRM, Ribeiro VS, Farias JS, Aires RS, Paz ST, Muzi‐Filho H, Paixão AD, Vieyra A. Alpha‐Tocopherol during lactation and after weaning alters the programming effect of prenatal high salt intake on cardiac and renal functions of adult male offspring. Clin Exp Pharmacol Physiol 2019; 46:1151-1165. [DOI: 10.1111/1440-1681.13161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Edjair V. Cabral
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Leucio D. Vieira
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | | | - Valdilene S. Ribeiro
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
| | - Juliane S. Farias
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
| | - Regina S. Aires
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
| | - Silvania T. Paz
- Department of Pathology Federal University of Pernambuco Recife Brazil
| | - Humberto Muzi‐Filho
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Carlos Chagas Filho Institute of Biophysics Federal University of Rio de Janeiro Rio de Janeiro Brazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERA Rio de Janeiro Brazil
| | - Ana D. Paixão
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Adalberto Vieyra
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Carlos Chagas Filho Institute of Biophysics Federal University of Rio de Janeiro Rio de Janeiro Brazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERA Rio de Janeiro Brazil
- Graduate Program in Translational Biomedicine/BIOTRANS Grande Rio University Duque de Caxias Brazil
| |
Collapse
|
19
|
Méndez E, Caruso Neves C, López Mañanes A. Two sodium pumps in the hepatopancreas of the intertidal euryhaline crab Neohelice granulata: biochemical characteristics and differential modulation after feeding. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
No study has been done on the existence, biochemical characteristics, and modulation of K+-independent ouabain-insensitive Na+ ATPase activity (the second sodium pump) in the digestive tract of intertidal euryhaline crabs and moreover on the coexistence and modulation under distinct physiological and (or) environmental conditions of different sodium pumps. We determined the occurrence, characteristics, and responses at different times (0, 1, 24, 48, and 120 h) after feeding upon distinct salinities of Na+ ATPase activity and Na+/K+ ATPase in the hepatopancreas of Neohelice granulata (Dana, 1851), which is a model species. The stimulation by Na+ under total inhibition of Na+/K+ ATPase activity revealed the occurrence of Na+ ATPase activity that was totally inhibited by 2 mmol·L–1 furosemide, exhibits Michaelis–Menten kinetics for ATP (apparent Km = 0.52 ± 0.16 mmol·L–1), and highest activity at around pH 7.4. In crabs acclimated to 35 psu (osmoconforming conditions), Na+ ATPase activity was highly increased (about 15-fold) (532 ± 58 nmol Pi·mg protein−1·min−1) in the hepatopancreas 48 h after feeding. In 10 psu (hyper-regulating conditions), Na+ ATPase activity decreased in the hepatopancreas 24 h after feeding (7 ± 9 nmol Pi·mg protein−1·min−1) and recovered initial values after 48 h (24 ± 35 nmol Pi·mg protein−1·min−1). Unlike Na+ ATPase, Na+/K+ ATPase activity did not change after feeding at any salinity, suggesting the specific modulation of the second sodium pump and its role in postprandial adjustments in the hepatopancreas.
Collapse
Affiliation(s)
- E. Méndez
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Argentina
| | | | - A.A. López Mañanes
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Argentina
| |
Collapse
|
20
|
Ribeiro VS, Cabral EV, Vieira LD, Aires RS, Farias JS, Muzi-Filho H, Vieyra A, Paixão AD. Perinatal α-tocopherol overload programs alterations in kidney development and renal angiotensin II signaling pathways at birth and at juvenile age: Mechanisms underlying the development of elevated blood pressure. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2458-2471. [PMID: 29654944 DOI: 10.1016/j.bbadis.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
α-Tocopherol (α-Toc) overload increases the risk of dying in humans (E.R. Miller III et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality Ann Int Med. 142 (2005) 37-46), and overload during early development leads to elevation of blood pressure at adult life, but the mechanism(s) remains unknown. We hypothesized that α-Toc overload during organogenesis affects the renal renin angiotensin system (RAS) components and renal Na+ handling, culminating with late elevated blood pressure. Pregnant Wistar rats received α-Toc or the superoxide dismutase mimetic tempol throughout pregnancy. We evaluated components of the intrarenal renin angiotensin system in neonate and juvenile offspring: Ang II-positive cells, Ang II receptors (AT1 and AT2), linked protein kinases, O2- production, NADPH oxidase abundance, lipid peroxidation and activity of Na+-transporting ATPases. In juvenile offspring we followed the evolution of arterial blood pressure. Neonates from α-Toc and tempol mothers presented with accentuated retardment in tubular development, pronounced decrease in glomerular Ang II-positive cells and AT1/AT2 ratio, intense production of O2- and upregulation of the α, ε and λ PKC isoforms. α-Toc decreased or augmented the abundance of renal (Na++K+)ATPase depending on the age and α-Toc dose. In juvenile rats the number of Ang II-positive cells returned to control values as well as PKCα, but co-existing with marked upregulation in the activity of (Na++K+) and Na+-ATPase and elevated arterial pressure at 30 days. We conclude that the mechanisms of these alterations rely on selective targeting of renal RAS components through genic and pro-oxidant effects of the vitamin.
Collapse
Affiliation(s)
- Valdilene S Ribeiro
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Edjair V Cabral
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Leucio D Vieira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Regina S Aires
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Juliane S Farias
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Humberto Muzi-Filho
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil; Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil; National Institute in Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil; Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil; National Institute in Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil; Graduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias 25071-202, Rio de Janeiro, Brazil
| | - Ana D Paixão
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Abstract
Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to "re-program" renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin-angiotensin-aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application. Early nutritional concepts with specific modifications in macro- or micronutrients are among the most promising approaches to improve future renal health.
Collapse
Affiliation(s)
- Eva Nüsken
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lutz T Weber
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Pediatric Nephrology, Department of Pediatrics, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Sampaio LS, da Silva PA, Ribeiro VS, Castro-Chaves C, Lara LS, Vieyra A, Einicker-Lamas M. Bioactive lipids are altered in the kidney of chronic undernourished rats: is there any correlation with the progression of prevalent nephropathies? Lipids Health Dis 2017; 16:245. [PMID: 29246161 PMCID: PMC5732436 DOI: 10.1186/s12944-017-0634-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/03/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Undernutrition during childhood leads to chronic diseases in adult life including hypertension, diabetes and chronic kidney disease. Here we explore the hypothesis that physiological alterations in the bioactive lipids pattern within kidney tissue might be involved in the progression of chronic kidney disease. METHODS Membrane fractions from kidney homogenates of undernourished rats (RBD) were submitted to lipid extraction and analysis by thin layer chromatography and cholesterol determination. RESULTS Kidneys from RBD rats had 25% lower cholesterol content, which disturb membrane microdomains, affecting Ca2+ homeostasis and the enzymes responsible for important lipid mediators such as phosphatidylinositol-4 kinase, sphingosine kinase, diacylglicerol kinase and phospholipase A2. We observed a decrease in phosphatidylinositol(4)-phosphate (8.8 ± 0.9 vs. 3.6 ± 0.7 pmol.mg-1.mim-1), and an increase in phosphatidic acid (2.2 ± 0.8 vs. 3.8 ± 1.3 pmol.mg-1.mim-1), being these lipid mediators involved in the regulation of key renal functions. Ceramide levels are augmented in kidney tissue from RBD rats (18.7 ± 1.4 vs. 21.7 ± 1.5 fmol.mg-1.min-1) indicating an ongoing renal lesion. CONCLUSION Results point to an imbalance in the bioactive lipid generation with further consequences to key events related to kidney function, thus contributing to the establishment of chronic kidney disease.
Collapse
Affiliation(s)
- Luzia S Sampaio
- Instituto de Biofísica Carlos Chagas Filho - CCS, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Paulo A da Silva
- Instituto de Biofísica Carlos Chagas Filho - CCS, UFRJ, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Biomedicina Translacional, Universidade do Grande Rio, Duque de Caxias, RJ, Brazil
| | | | | | - Lucienne S Lara
- Instituto de Ciências Biomédicas, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Adalberto Vieyra
- Instituto de Biofísica Carlos Chagas Filho - CCS, UFRJ, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Biomedicina Translacional, Universidade do Grande Rio, Duque de Caxias, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), UFRJ, Rio de Janeiro, Brazil
| | - M Einicker-Lamas
- Instituto de Biofísica Carlos Chagas Filho - CCS, UFRJ, Rio de Janeiro, RJ, Brazil.
- Present Address: Laboratório de Biomembranas, Sala G1-037, Bloco G, Instituto de Biofísica Carlos Chagas Filho - CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
23
|
Dias J, Axelband F, Lara LS, Muzi-Filho H, Vieyra A. Is angiotensin-(3-4) (Val-Tyr), the shortest angiotensin II-derived peptide, opening new vistas on the renin-angiotensin system? J Renin Angiotensin Aldosterone Syst 2017; 18:1470320316689338. [PMID: 28097883 PMCID: PMC5843854 DOI: 10.1177/1470320316689338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Angiotensin-(3−4) (Ang-(3−4) or Val-Tyr) is the shorter angiotensin (Ang) II-derived peptide, formed through successive hydrolysis that culminates with the release of Val-Tyr as a dipeptide. It is formed both in plasma and in kidney from Ang II and Ang III, and can be considered a component of the systemic and organ-based renin–angiotensin system. It is potently antihypertensive in humans and rats, and its concerted actions on proximal tubule cells culminate in the inhibition of fluid reabsorption, hyperosmotic urinary excretion of Na+. At the renal cell signaling level, Ang-(3−4) counteracts Ang II-type 1 receptor-mediated responses by acting as an allosteric enhancer in Ang II-type 2 receptor populations that target adenosine triphosphate-dependent Ca2+ and Na+ transporters through a cyclic adenosine monophosphate-activated protein kinase pathway.
Collapse
Affiliation(s)
- Juliana Dias
- 1 National Institute of Cancer, Rio de Janeiro, Brazil.,2 Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, Brazil.,3 National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Brazil
| | | | - Lucienne S Lara
- 3 National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Brazil.,4 Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- 2 Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, Brazil.,3 National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- 2 Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, Brazil.,3 National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Brazil.,5 Translational Biomedicine Graduate Program, Grande Rio University, Brazil
| |
Collapse
|
24
|
Takaya J, Yamanouchi S, Tanabe Y, Kaneko K. A Calcium-Deficient Diet in Rat Dams during Gestation Decreases HOMA-β% in 3 Generations of Offspring. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2017; 9:276-286. [PMID: 28190006 DOI: 10.1159/000456025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Prenatal malnutrition can affect the phenotype of offspring by altering epigenetic regulation. Calcium (Ca) plays an important role in the pathogenesis of insulin resistance syndrome. AIMS We hypothesized that a Ca-deficient diet during pregnancy would alter insulin resistance and secretion in more than 1 generation of offspring. METHODS Female Wistar rats consumed either a Ca-deficient or a control diet ad libitum from 3 weeks before conception to 21 days after parturition and were mated with control males. Randomly selected F1 and F2 females were mated with males of each generation on postnatal day 70. The F1 and F2 dams were fed a control diet ad libitum during pregnancy and lactation. All offspring were fed a control diet starting at the time of weaning and were sacrificed on day 180. RESULTS HOMA-β% decreased in F1 through F3, and levels in F2 and F3 males and females were significantly lower than in controls. The mean levels of insulin and HOMA-IR were higher in F1 males but lower in F3 males than in control males. The HOMA-IR did not differ between any of the female offspring and controls. CONCLUSIONS Maternal Ca restriction during pregnancy and/or lactation influences insulin secretion in 3 generations of offspring.
Collapse
Affiliation(s)
- Junji Takaya
- Department of Pediatrics, Kawachi General Hospital, Higashi-Osaka, Japan
| | | | | | | |
Collapse
|
25
|
Muzi-Filho H, Souza AM, Bezerra CGP, Boldrini LC, Takiya CM, Oliveira FL, Nesi RT, Valença SS, Silva AMS, Zapata-Sudo G, Sudo RT, Einicker-Lamas M, Vieyra A, Lara LS, Cunha VMN. Rats undernourished in utero have altered Ca2+ signaling and reduced fertility in adulthood. Physiol Rep 2015; 3:3/10/e12587. [PMID: 26508737 PMCID: PMC4632956 DOI: 10.14814/phy2.12587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Epidemiological and animal studies have shown that placental undernutrition impairs reproduction in adult offspring, but the underlying molecular mechanisms within the male genital tract remain unknown. Due to its special physiological characteristics in transport and the modulation of the environment to which its luminal content is exposed, we hypothesized that the vas deferens would be a highly sensitive target. The goals were to investigate whether intrauterine malnutrition affects molecular mechanisms related to Ca(2+)- and oxidative stress-modulated processes and causes structural alterations in the adult rat vas deferens that could attenuate fecundity and fertility. Male adult rats malnourished in utero had increased vas deferens weight associated with thickening of the muscular coat, a decrease in the total and haploid germ cells, a marked increase in the immature cells, and a decline in the numbers of pregnant females and total offspring per male rat. The ex vivo response of vas deferens from malnourished rats demonstrated an accentuated decrease in the contractile response to phenylephrine. The vas deferens had a marked decrease in Ca(2+) transport due to the uncoupling of Ca(2+)-stimulated ATP hydrolysis and ATP-driven Ca(2+) flux, and the downregulation of both sarco-endoplasmic reticulum Ca(2+)-ATPase 2 and the coupling factor 12-kDa FK506-binding protein. An increase in protein carbonylation (a marker of oxidative damage) and an imbalance between protein kinases C and A were observed as a legacy of undernutrition in early life. These results provide the structural and molecular basis to explain at least in part how maternal undernutrition affects fecundity and fertility in adult male rats.
Collapse
Affiliation(s)
- Humberto Muzi-Filho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Alessandro M Souza
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila G P Bezerra
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo C Boldrini
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Directorate of Metrology Applied Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Christina M Takiya
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe L Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata T Nesi
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel S Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ananssa M S Silva
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto T Sudo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Lucienne S Lara
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Valeria M N Cunha
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Altered signaling pathways linked to angiotensin II underpin the upregulation of renal Na(+)-ATPase in chronically undernourished rats. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2357-66. [PMID: 25283821 DOI: 10.1016/j.bbadis.2014.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/17/2014] [Accepted: 09/30/2014] [Indexed: 01/23/2023]
Abstract
This study has investigated the participation of altered signaling linked to angiotensin II (Ang II) that could be associated with increased Na(+) reabsorption in renal proximal tubules during chronic undernutrition. A multideficient chow for rats (basic regional diet, BRD) was used, which mimics several human diets widely taken in developing countries. The Vmax of the ouabain-resistant Na(+)-ATPase resident in the basolateral membranes increased >3-fold (P<0.001) accompanied by an increase in Na(+) affinity from 4.0 to 0.2mM (P<0.001). BRD rats had a >3-fold acceleration of the formation of phosphorylated intermediates in the early stage of the catalytic cycle (in the E1 conformation) (P<0.001). Immunostaining showed a huge increase in Ang II-positive cells in the cortical tubulointerstitium neighboring the basolateral membranes (>6-fold, P<0.001). PKC isoforms (α, ε, λ, ζ), Ang II type 1 receptors and PP2A were upregulated in BRD rats (in %): 55 (P<0.001); 35 (P<0.01); 125, 55, 11 and 30 (P<0.001). PKA was downregulated by 55% (P<0.001). With NetPhosK 1.0 and NetPhos 2.0, we detected 4 high-score (>0.70) regulatory phosphorylation sites for PKC and 1 for PKA in the primary sequence of the Na(+)-ATPase α-subunit, which are located in domains that are key for Na(+) binding and catalysis. Therefore, chronic undernutrition stimulates tubulointerstitial activity of Ang II and impairs PKC- and PKA-mediated regulatory phosphorylation, which culminates in an exaggerated Na(+) reabsorption across the proximal tubular epithelium.
Collapse
|
27
|
Silva PA, Monnerat-Cahli G, Pereira-Acácio A, Luzardo R, Sampaio LS, Luna-Leite MA, Lara LS, Einicker-Lamas M, Panizzutti R, Madeira C, Vieira-Filho LD, Castro-Chaves C, Ribeiro VS, Paixão ADO, Medei E, Vieyra A. Mechanisms involving Ang II and MAPK/ERK1/2 signaling pathways underlie cardiac and renal alterations during chronic undernutrition. PLoS One 2014; 9:e100410. [PMID: 24983243 PMCID: PMC4077653 DOI: 10.1371/journal.pone.0100410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 05/27/2014] [Indexed: 02/07/2023] Open
Abstract
Background Several studies have correlated protein restriction associated with other nutritional deficiencies with the development of cardiovascular and renal diseases. The driving hypothesis for this study was that Ang II signaling pathways in the heart and kidney are affected by chronic protein, mineral and vitamin restriction. Methodology/Principal Findings Wistar rats aged 90 days were fed from weaning with either a control or a deficient diet that mimics those used in impoverished regions worldwide. Such restriction simultaneously increased ouabain-insensitive Na+-ATPase and decreased (Na++K+)ATPase activity in the same proportion in cardiomyocytes and proximal tubule cells. Type 1 angiotensin II receptor (AT1R) was downregulated by that restriction in both organs, whereas AT2R decreased only in the kidney. The PKC/PKA ratio increased in both tissues and returned to normal values in rats receiving Losartan daily from weaning. Inhibition of the MAPK pathway restored Na+-ATPase activity in both organs. The undernourished rats presented expanded plasma volume, increased heart rate, cardiac hypertrophy, and elevated systolic pressure, which also returned to control levels with Losartan. Such restriction led to electrical cardiac remodeling represented by prolonged ventricular repolarization parameters, induced triggered activity, early after-depolarization and delayed after-depolarization, which were also prevented by Losartan. Conclusion/Significance The mechanisms responsible for these alterations are underpinned by an imbalance in the PKC- and PKA-mediated pathways, with participation of angiotensin receptors and by activation of the MAPK/ERK1/2 pathway. These cellular and molecular alterations culminate in cardiac electric remodeling and in the onset of hypertension in adulthood.
Collapse
Affiliation(s)
- Paulo A. Silva
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Gustavo Monnerat-Cahli
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Amaury Pereira-Acácio
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Ricardo Luzardo
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Luzia S. Sampaio
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Marcia A. Luna-Leite
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucienne S. Lara
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Rogério Panizzutti
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Madeira
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leucio D. Vieira-Filho
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Carmen Castro-Chaves
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Valdilene S. Ribeiro
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Ana D. O. Paixão
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Emiliano Medei
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|