1
|
Laveriano-Santos EP, Luque-Corredera C, Trius-Soler M, Lozano-Castellón J, Dominguez-López I, Castro-Barquero S, Vallverdú-Queralt A, Lamuela-Raventós RM, Pérez M. Enterolignans: from natural origins to cardiometabolic significance, including chemistry, dietary sources, bioavailability, and activity. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38952149 DOI: 10.1080/10408398.2024.2371939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The enterolignans, enterolactone and enterodiol, the main metabolites produced from plant lignans by the gut microbiota, have enhanced bioavailability and activity compared to their precursors, with beneficial effects on metabolic and cardiovascular health. Although extensively studied, the biosynthesis, cardiometabolic effects, and other therapeutic implications of mammalian lignans are still incompletely understood. The aim of this review is to provide a comprehensive overview of these phytoestrogen metabolites based on up-to-date information reported in studies from a wide range of disciplines. Established and novel synthetic strategies are described, as are the various lignan precursors, their dietary sources, and a proposed metabolic pathway for their conversion to enterolignans. The methodologies used for enterolignan analysis and the available data on pharmacokinetics and bioavailability are summarized and their cardiometabolic bioactivity is explored in detail. The special focus given to research on the health benefits of microbial-derived lignan metabolites underscores the critical role of lignan-rich diets in promoting cardiovascular health.
Collapse
Affiliation(s)
- Emily P Laveriano-Santos
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | | | - Marta Trius-Soler
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Julian Lozano-Castellón
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Inés Dominguez-López
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Sara Castro-Barquero
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- BCNatal|Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Rosa M Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Lopparelli RM, Gelain ME, Capolongo F, Pauletto M, Dacasto M, Giantin M. Establishment and characterization of cytochrome P450 1A1 CRISPR/Cas9 Knockout Bovine Foetal Hepatocyte Cell Line (BFH12). Cell Biol Toxicol 2024; 40:18. [PMID: 38528259 DOI: 10.1007/s10565-024-09856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
The cytochrome P450 1A (CYP1A) subfamily of xenobiotic metabolizing enzymes (XMEs) consists of two different isoforms, namely CYP1A1 and CYP1A2, which are highly conserved among species. These two isoenzymes are involved in the biotransformation of many endogenous compounds as well as in the bioactivation of several xenobiotics into carcinogenic derivatives, thereby increasing the risk of tumour development. Cattle (Bos taurus) are one of the most important food-producing animal species, being a significant source of nutrition worldwide. Despite daily exposure to xenobiotics, data on the contribution of CYP1A to bovine hepatic metabolism are still scarce. The CRISPR/Cas9-mediated knockout (KO) is a useful method for generating in vivo and in vitro models for studying xenobiotic biotransformations. In this study, we applied the ribonucleoprotein (RNP)-complex approach to successfully obtain the KO of CYP1A1 in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP1A1 excision was confirmed at the DNA, mRNA and protein level. Therefore, RNA-seq analysis revealed significant transcriptomic changes associated with cell cycle regulation, proliferation, and detoxification processes as well as on iron, lipid and mitochondrial homeostasis. Altogether, this study successfully generates a new bovine CYP1A1 KO in vitro model, representing a valuable resource for xenobiotic metabolism studies in this important farm animal species.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy.
| |
Collapse
|
3
|
Zhang W, Wu F. Linoleic acid induces human ovarian granulosa cell inflammation and apoptosis through the ER-FOXO1-ROS-NFκB pathway. Sci Rep 2024; 14:6392. [PMID: 38493198 PMCID: PMC10944505 DOI: 10.1038/s41598-024-56970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex reproductive endocrinological disorder influenced by a combination of genetic and environmental factors. Linoleic acid (LA) is a widely consumed ω-6 polyunsaturated fatty acid, accounting for approximately 80% of daily fatty acid intake. Building upon the prior investigations of our team, which established a connection between LA levels in the follicular fluid and PCOS, this study deeply examined the specific impact of LA using a granulosa cell line. Our findings revealed that LA exerts its influence on granulosa cells (GCs) by binding to the estrogen receptor (ER). Activated ER triggers the transcription of the FOXO1 gene. Reactive oxygen species (ROS)-related oxidative stress (OS) and inflammation occur downstream of LA-induced FOXO1 activation. Increased OS and inflammation ultimately culminate in GC apoptosis. In summary, LA modulates the apoptosis and inflammation phenotypes of GCs through the ER-FOXO1-ROS-NF-κB pathway. Our study provides additional experimental evidence to comprehend the pathophysiology of PCOS and provides novel insights into the dietary management of individuals with PCOS.
Collapse
Affiliation(s)
- Wenying Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fuju Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
4
|
Yui K, Imataka G, Shiohama T. Lipid Peroxidation via Regulating the Metabolism of Docosahexaenoic Acid and Arachidonic Acid in Autistic Behavioral Symptoms. Curr Issues Mol Biol 2023; 45:9149-9164. [PMID: 37998751 PMCID: PMC10670603 DOI: 10.3390/cimb45110574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The association between the lipid peroxidation product malondialdehyde (MDA)-modified low-density lipoprotein (MDA-LDL) and the pathophysiology of autism spectrum disorder (ASD) is unclear. This association was studied in 17 children with ASD and seven age-matched controls regarding autistic behaviors. Behavioral symptoms were assessed using the Aberrant Behavior Checklist (ABC). To compensate for the small sample size, adaptive Lasso was used to increase the likelihood of accurate prediction, and a coefficient of variation was calculated for suitable variable selection. Plasma MDA-LDL levels were significantly increased, and plasma SOD levels were significantly decreased in addition to significantly increased plasma docosahexaenoic acid (DHA) levels and significantly decreased plasma arachidonic acid (ARA) levels in the 17 subjects with ASD as compared with those of the seven healthy controls. The total ABC scores were significantly higher in the ASD group than in the control group. The results of multiple linear regression and adaptive Lasso analyses revealed an association between increased plasma DHA levels and decreased plasma ARA levels, which were significantly associated with total ABC score and increased plasma MDA-LDL levels. Therefore, an imbalance between plasma DHA and ARA levels induces ferroptosis via lipid peroxidation. Decreased levels of α-linolenic acid and γ-linolenic acid may be connected to the total ABC scores with regard to lipid peroxidation.
Collapse
Affiliation(s)
- Kunio Yui
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
- Department of Urology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - George Imataka
- Department of Pediatrics, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| |
Collapse
|
5
|
Zhang J, Zhang T, Xu D, Zhu M, Luo X, Zhang R, He G, Chen Z, Mei S, Zhou B, Wang K, Zhu E, Cheng Z, Chen C. Plasma Metabolomic Profiling after Feeding Dried Distiller's Grains with Solubles in Different Cattle Breeds. Int J Mol Sci 2023; 24:10677. [PMID: 37445854 DOI: 10.3390/ijms241310677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023] Open
Abstract
Dried distiller's grains with solubles (DDGS) are rich in nutrients and can enhance animals' growth and immunity. However, there are few reports on the effects of a diet of DDGS on plasma metabolism and the related action pathways in domestic animals. In this study, groups of Guanling yellow cattle (GY) and Guanling crossbred cattle (GC) having a basal diet served as the control groups (GY-CG and GC-CG), and DDGS replacing 25% of the diet of GY and GC served as the replacement groups (GY-RG and GC-RG), with three cattle in each group. Plasma samples were prepared for metabolomic analysis. Based on multivariate statistical and univariate analyses, differential metabolites and metabolic pathways were explored. Twenty-nine significantly different metabolites (p < 0.05) were screened in GY-RG compared with those in GY-CG and were found to be enriched in the metabolic pathways, including choline metabolism in cancer, linolenic acid metabolism, and amino acid metabolism. Nine metabolites showed significant differences (p < 0.05) between GC-RG and GC-CG and were mainly distributed in the metabolic pathways of choline metabolism in cancer, glycerophospholipid metabolism, prostate cancer metabolism, and gonadotropin-releasing hormone (GnRH) secretion. These results suggest that a DDGS diet may promote healthy growth and development of experimental cattle by modulating these metabolic pathways. Our findings not only shed light on the nutritional effects of the DDGS diet and its underlying mechanisms related to metabolism but also provide scientific reference for the feed utilization of DDGS.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Tiantian Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Duhan Xu
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Mingming Zhu
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiaofen Luo
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Rong Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Guangxia He
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ze Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Shihui Mei
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bijun Zhou
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Kaigong Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Erpeng Zhu
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Zhang P, Wang W, Mao M, Gao R, Shi W, Li D, Calderone R, Sui B, Tian X, Meng X. Similarities and Differences: A Comparative Review of the Molecular Mechanisms and Effectors of NAFLD and AFLD. Front Physiol 2021; 12:710285. [PMID: 34393826 PMCID: PMC8362097 DOI: 10.3389/fphys.2021.710285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) are the most prevalent metabolic liver diseases globally. Due to the complex pathogenic mechanisms of NAFLD and AFLD, no specific drugs were approved at present. Lipid accumulation, oxidative stress, insulin resistance, inflammation, and dietary habits are all closely related to the pathogenesis of NAFLD and AFLD. However, the mechanism that promotes disease progression has not been fully elucidated. Meanwhile, the gut microbiota and their metabolites also play an important role in the pathogenesis and development of NAFLD and AFLD. This article comparatively reviewed the shared and specific signaling pathways, clinical trials, and potential intervention effectors of NAFLD and AFLD, revealing their similarities and differences. By comparing the shared and specific molecular regulatory mechanisms, this paper provides mutual reference strategies for preventing and treating NAFLD, AFLD, and related metabolic diseases. Furthermore, it provides enlightenment for discovering novel therapies of safe and effective drugs targeting the metabolic liver disease.
Collapse
Affiliation(s)
- Pengyi Zhang
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Weiya Wang
- School of Sports and Health, Shandong Sport University, Jinan, China.,Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Min Mao
- Department of Allied Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ruolin Gao
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Wenting Shi
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Bo Sui
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xuewen Tian
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan, China
| |
Collapse
|
7
|
Ukiya M, Motegi K, Sato D, Kimura H, Satsu H, Koketsu M, Ninomiya M, Myint LM, Nishina A. Effect of Compounds from Moringa oleifera Lam. on in Vitro Non-Alcoholic Fatty Liver Disease (NAFLD) Model System. Chem Biodivers 2021; 18:e2100243. [PMID: 34128328 DOI: 10.1002/cbdv.202100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/27/2021] [Indexed: 11/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease in the world, with a prevalence of 25 % in many countries. To date, no drug has been approved to treat NAFLD, therefore, the use of phytochemicals to prevent this disease is meaningful. In this study, we focused on the effects of Moringa oleifera Lam. on diabetes, attempted to isolate compounds that regulate NAFLD. Compounds 1 and 2 were isolated from the ethyl acetate fraction of M. oleifera. Spectral data revealed that they were 1-hydroxy-3-phenylpropan-2-yl benzoate (1) and benzyl benzylcarbamate (2), respectively. The three-dimensional structure of compound 1 was determined by single crystal X-ray structural analysis. Neither compound was toxic to HepG2 cells, and compound 1 was found to have a concentration-dependent inhibitory effect on intracellular lipid accumulation induced by stimulation of linoleic acid (LA). As a result of measuring the effects of compound 1 on the intracellular lipid production-related protein, it was found that compound 1 enhanced protein expression that promotes lipolysis. On the other hand, since the action of compound 1 was similar to that of PPARα agonists, it is deduced that compound 1 enhanced the activity of PPARα and further enhanced the expression of lipolytic proteins, which is related to the suppression of intracellular lipid accumulation. Furthermore, as the result of docking simulation, compound 1 had a higher binding affinity to the ligand binding site of PPARα than fenofibrate, which is a PPARα agonist, and thus compound 1 was considered to be promising as an agonist of PPARα.
Collapse
Affiliation(s)
- Motohiko Ukiya
- Department of Applied Chemistry, College of Science and Technology, Nihon University, 1-5-1 Kandasurugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Kazuki Motegi
- Department of Applied Chemistry, College of Science and Technology, Nihon University, 1-5-1 Kandasurugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Daisuke Sato
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa, 992-8510, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Science, Gunma Paz University, 1-7-1 Tonyamachi, Takasaki, Gunma, 370-0006, Japan
| | - Hideo Satsu
- Department of Biotechnology, Maebashi Institute of Technology, 460-1 Kamisadorimachi, Maebashi, Gunma, 371-0816, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Lwin Mon Myint
- FAME Pharmaceuticals Industry Co., Ltd, Mingyi Mahar Min Gaung Street, Yangon, Myamar
| | - Atsuyoshi Nishina
- Department of Applied Chemistry, College of Science and Technology, Nihon University, 1-5-1 Kandasurugadai, Chiyoda, Tokyo, 101-0062, Japan
| |
Collapse
|
8
|
Fiore E, Lisuzzo A, Tessari R, Spissu N, Moscati L, Morgante M, Gianesella M, Badon T, Mazzotta E, Berlanda M, Contiero B, Fiore F. Milk Fatty Acids Composition Changes According to β-Hydroxybutyrate Concentrations in Ewes during Early Lactation. Animals (Basel) 2021; 11:ani11051371. [PMID: 34065915 PMCID: PMC8150806 DOI: 10.3390/ani11051371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Ketosis can occur during the last six weeks of gestation and continue to the early weeks of lactation due to an increase in energy requirement. This condition can cause substantial economic issues because of the decrease in production, the cost of medical management, the loss of the mothers and the lambs. A better knowledge of this disorder and its early diagnosis could make treatment more effective and optimize productivity. The aims of this study were to understand the metabolic status of the early-lactating ewes and to identify biomarkers for precocious diagnosis of subclinical ketosis using gas chromatographic technique. Different relationships were found between milk fatty acids and metabolic status of the ewes. Furthermore, 8 potential biomarkers were determined. Abstract Ketosis is a metabolic disease of pregnant and lactating ewes linked to a negative energy balance which can cause different economic losses. The aims of this study were to understand the metabolic status of the early-lactating ewes and to identify biomarkers for early diagnosis of subclinical ketosis. Forty-six Sarda ewes were selected in the immediate post-partum for the collection of the biological samples. A blood sample from the jugular vein was used to determine β-Hydroxybutyrate (BHB) concentrations. Animals were divided into two groups: BHB 0 or healthy group (n = 28) with BHB concentration < 0.86 mmol/L; and BHB 1 or subclinical ketosis (n = 18) with a BHB concentration ≥ 0.86 mmol/L. Ten mL of pool milk were collected at the morning milking for the analyses. The concentration of 34 milk fatty acids was evaluated using gas chromatography. Two biochemical parameters and 11 milk fatty acids of the total lipid fraction presented a p-value ≤ 0.05. The study revealed different relationships with tricarboxylic acid cycle, blood flows, immune and nervous systems, cell functions, inflammatory response, and oxidative stress status. Eight parameters were significant for the receiver operating characteristic (ROC) analysis with an area under the curve greater than 0.70.
Collapse
Affiliation(s)
- Enrico Fiore
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
- Correspondence:
| | - Anastasia Lisuzzo
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Rossella Tessari
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Nicoletta Spissu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (N.S.); (F.F.)
| | - Livia Moscati
- Experimental Zooprophylactic Institute of Umbria and Marche, Via G. Salvemini, 06126 Perugia, Italy;
| | - Massimo Morgante
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Matteo Gianesella
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Tamara Badon
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Elisa Mazzotta
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Michele Berlanda
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Barbara Contiero
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro, Italy; (A.L.); (R.T.); (M.M.); (M.G.); (T.B.); (E.M.); (M.B.); (B.C.)
| | - Filippo Fiore
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (N.S.); (F.F.)
| |
Collapse
|
9
|
Agustinho BC, Zeoula LM, Santos NW, Machado E, Yoshimura EH, Ribas JCR, Bragatto JM, Stemposki MR, dos Santos VJ, Faciola AP. Effects of Flaxseed Oil and Vitamin E Supplementation on Digestibility and Milk Fatty Composition and Antioxidant Capacity in Water Buffaloes. Animals (Basel) 2020; 10:ani10081294. [PMID: 32751092 PMCID: PMC7460195 DOI: 10.3390/ani10081294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Flaxseed oil is rich in n-3 fatty acids, while vitamin E is a potent antioxidant. Both have been tested in dairy cows’ diets to increase n-3 concentration and antioxidant capacity in the milk. However, there is no published research testing flaxseed oil and vitamin E supplementation simultaneously in lactating dairy buffaloes, which can have a different response compared to dairy cows. Increasing milk unsaturated fatty acids while not increasing lipid oxidation is a challenge; however, in this experiment we demonstrated that it is possible to achieve these in buffalo milk by supplementing the diet with flaxseed oil and vitamin E. Flaxseed oil supplementation increased the n-3 fatty acid concentration and oxidation products in the milk, while vitamin E supplementation increased milk’s antioxidant capacity. Abstract This study aimed to evaluate the effects of the supplementation of flaxseed oil and/or vitamin E on dry matter (DM) and nutrient digestibility, milk composition, fatty acid composition, and antioxidant capacity in buffalo milk. Four crossbred female dairy water buffaloes (97 ± 22 days in milk; 6.57 ± 2.2 kg of milk/day, mean ± SD) were distributed in a 4 × 4 Latin square design, with a 2 × 2 factorial arrangement (with or without flaxseed oil at 25 g/kg dry matter; with or without vitamin E at 375 IU/kg dry matter). The experimental period was divided into four periods of 21 days each (16 days for adaptation; five days for data collection). There were four treatments: control diet (no flaxseed oil and no added vitamin E); flaxseed oil diet (flaxseed oil at 25 g/kg DM); vitamin E diet (vitamin E at 375 IU/kg DM), and a combination of both flaxseed oil and vitamin E. The animals were fed total mixed ratios. For all response variables, there was no interaction between flaxseed oil and vitamin E. Flaxseed oil supplementation reduced neutral detergent fiber (NDF) and acid detergent fiber (ADF) apparent total tract digestibility, increased the n-3 fatty acid concentration in milk approximately three-fold while reducing the n-6/n-3 ratio from 9.3:1 to 2.4:1. Vitamin E supplementation increased NDF apparent total tract digestibility and milk total antioxidant capacity. Although there was no interaction between the treatments; flaxseed oil supplementation in lactating buffaloes increased polyunsaturated fatty acid, while vitamin E supplementation increased antioxidant capacity and decreased oxidation products.
Collapse
Affiliation(s)
- Bruna C. Agustinho
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
- Correspondence: ; Tel.: +1-(352)-870-3589
| | - Lucia M. Zeoula
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
| | - Nadine W. Santos
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
| | - Erica Machado
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
| | - Emerson H. Yoshimura
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
| | - Jessyca C. R. Ribas
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
| | - Janaina M. Bragatto
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
| | - Mariana R. Stemposki
- Department of Animal Science, State University of Maringa, Maringa PR 87020-900, Brazil; (L.M.Z.); (N.W.S.); (E.M.); (E.H.Y.); (J.C.R.R.); (J.M.B.); (M.R.S.)
| | | | - Antonio P. Faciola
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
10
|
Harvey TN, Sandve SR, Jin Y, Vik JO, Torgersen JS. Liver slice culture as a model for lipid metabolism in fish. PeerJ 2019; 7:e7732. [PMID: 31576253 PMCID: PMC6753922 DOI: 10.7717/peerj.7732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatic lipid metabolism is traditionally investigated in vitro using hepatocyte monocultures lacking the complex three-dimensional structure and interacting cell types essential liver function. Precision cut liver slice (PCLS) culture represents an alternative in vitro system, which benefits from retention of tissue architecture. Here, we present the first comprehensive evaluation of the PCLS method in fish (Atlantic salmon, Salmo salar L.) and validate it in the context of lipid metabolism using feeding trials, extensive transcriptomic data, and fatty acid measurements. We observe an initial period of post-slicing global transcriptome adjustment, which plateaued after 3 days in major metabolic pathways and stabilized through 9 days. PCLS fed alpha-linolenic acid (ALA) and insulin responded in a liver-like manner, increasing lipid biosynthesis gene expression. We identify interactions between insulin and ALA, where two PUFA biosynthesis genes that were induced by insulin or ALA alone, were highly down-regulated when insulin and ALA were combined. We also find that transcriptomic profiles of liver slices are exceedingly more similar to whole liver than hepatocyte monocultures, both for lipid metabolism and liver marker genes. PCLS culture opens new avenues for high throughput experimentation on the effect of “novel feed composition” and represent a promising new strategy for studying genotype-specific molecular features of metabolism.
Collapse
Affiliation(s)
- Thomas N Harvey
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simen R Sandve
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Yang Jin
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jon Olav Vik
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | |
Collapse
|
11
|
Berk K, Drygalski K, Harasim-Symbor E, Charytoniuk T, Iłowska N, Łukaszuk B, Chabowski A, Konstantynowicz-Nowicka K. The effect of enterolactone on liver lipid precursors of inflammation. Life Sci 2019; 221:341-347. [DOI: 10.1016/j.lfs.2019.02.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/07/2023]
|
12
|
Qu L, Liu Q, Zhang Q, Liu D, Zhang C, Fan D, Deng J, Yang H. Kiwifruit seed oil ameliorates inflammation and hepatic fat metabolism in high-fat diet-induced obese mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
13
|
Charytoniuk T, Iłowska N, Berk K, Drygalski K, Chabowski A, Konstantynowicz-Nowicka K. The effect of enterolactone on sphingolipid pathway and hepatic insulin resistance development in HepG2 cells. Life Sci 2018; 217:1-7. [PMID: 30468835 DOI: 10.1016/j.lfs.2018.11.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022]
Abstract
AIMS Obesity and type 2 diabetes mellitus, correlate with increased tissue concentration of sphingolipids, which directly interfere with insulin signaling pathway. Phytoestrogens are a group of plant-derived compounds that have been studied in the case of metabolic disorders treatment. Therefore, the aim of this study was to ascertain whether enterolactone (ENL), a commonly known phytoestrogen, may affect sphingolipid metabolism and decrease hepatic insulin resistance development in a lipid overload state. MAIN METHODS The study was conducted on HepG2 cells incubated with ENL and/or palmitic acid (PA) for 16 h. Intra- and extracellular sphingolipid concentrations were assessed by high performance liquid chromatography. The expression of sphingolipid pathway enzymes, apoptosis and insulin signaling pathway proteins and glucose metabolism regulators were evaluated by Western Blot. KEY FINDINGS In HepG2 cells, a considerable augmentation of intracellular ceramide and sphingosine concentration in ENL with PA group were indicated with simultaneous increase in extracellular ceramide concentration. The ENL treatment increased expression of selected enzymes from de novo ceramide synthesis pathway with lower expression of ceramide transfer protein. We also observed a decreased expression of insulin-stimulated phosphorylation of AKT and AMPK after exposure to ENL with PA. Our research demonstrated that ENL with PA resulted in an increased expression of caspase-3. SIGNIFICANCE Enterolactone, in a higher fatty acids availability, led to the development of hepatic IR in HepG2 cells. This phenomenon may be the result of elevated intracellular ceramide accumulation caused by increased de novo synthesis pathway what led to enhanced apoptosis of HepG2 cells.
Collapse
Affiliation(s)
- Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | - Nicoletta Iłowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | - Klaudia Berk
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | - Krzysztof Drygalski
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | | |
Collapse
|
14
|
Guo WW, Wang X, Chen XQ, Ba YY, Zhang N, Xu RR, Zhao WW, Wu X. Flavonones from Penthorum chinense Ameliorate Hepatic Steatosis by Activating the SIRT1/AMPK Pathway in HepG2 Cells. Int J Mol Sci 2018; 19:ijms19092555. [PMID: 30154382 PMCID: PMC6165420 DOI: 10.3390/ijms19092555] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/04/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Pinocembrin-7-O-β-d-glucoside (PCBG), pinocembrin (PCB), and 5-methoxy-pinocembrin-7-O-β-d-glucoside (MPG) are three flavonones isolated from Penthorum chinense Pursh (P. chinense). The effects of the three flavonones on hepatic steatosis and their molecular mechanisms in HepG2 cells were investigated in this study for the first time. A model of hepatic steatosis in HepG2 cells was induced by free fatty acid (FFA), and co-treated with the three flavonones as mentioned. Intracellular lipid droplets were detected by Oil Red O staining. PCB, PCBG, and MPG suppressed oxidative stress by decreasing malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. The levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were ameliorated. Moreover, these flavonones enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and the expression of silent mating type information regulation 2 homolog 1 (SIRT1) and peroxisome proliferator-activated receptor α (PPARα), and reduced the expression of sterol regulatory element binding protein-1c (SREBP1c) and the downstream targets fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and stearoyl-CoA desaturase 1 (SCD1). Molecular docking was used to predict the interaction and combination patterns between the three flavonones and the enzymes above. The results revealed that the SIRT1/AMPK pathway is involved in the functions of the three flavonones, and the most effective flavonone against hepatic steatosis might be PCBG, followed by MPG and PCB. Therefore, the three flavonones from P. chinense were found to exert preventive effects against hepatic steatosis by regulating the SIRT1/AMPK pathway.
Collapse
Affiliation(s)
- Wei-Wei Guo
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 10 Youanmen, Xitoutiao, Beijing 100069, China.
| | - Xing Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 10 Youanmen, Xitoutiao, Beijing 100069, China.
| | - Xiao-Qing Chen
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 10 Youanmen, Xitoutiao, Beijing 100069, China.
| | - Yin-Ying Ba
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 10 Youanmen, Xitoutiao, Beijing 100069, China.
| | - Nan Zhang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 10 Youanmen, Xitoutiao, Beijing 100069, China.
| | - Rong-Rong Xu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 10 Youanmen, Xitoutiao, Beijing 100069, China.
| | - Wen-Wen Zhao
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 10 Youanmen, Xitoutiao, Beijing 100069, China.
| | - Xia Wu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 10 Youanmen, Xitoutiao, Beijing 100069, China.
| |
Collapse
|
15
|
Lebda MA, El-Far AH, Noreldin AE, Elewa YHA, Al Jaouni SK, Mousa SA. Protective Effects of Miswak ( Salvadora persica) against Experimentally Induced Gastric Ulcers in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6703296. [PMID: 30116487 PMCID: PMC6079327 DOI: 10.1155/2018/6703296] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/26/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022]
Abstract
Gastric ulcers are among the most broadly perceived illnesses affecting individuals. Alcohol consumption is the main cause of gastric ulceration. This study assessed the protective effects of Salvadora persica (SP) extract against ethanol-induced gastric ulcer and elucidated the conceivable underlying mechanisms involved. For this purpose, 40 rats were allotted into 4 equal groups (control, ethanol- (EtOH-) treated, and SP-treated "SP200 and SP400" groups). The control and EtOH-treated groups were given phosphate buffer saline (PBS), and both the SP200 and SP400 groups were given SP extract dissolved in PBS at doses of 200 and 400 mg/kg b.w., respectively. All treatments were given orally for 7 constitutive days. On the 8th day, all rats were fasted for 24 h followed by oral gavage of PBS in the control group and chilled absolute ethanol solution (5 ml/kg b.w.) in the EtOH- and SP-treated groups to induce gastric lesions. One hour later, the rats were sacrificed and the stomachs were harvested. Gross and microscopic examinations of the EtOH-treated group showed severe gastric hemorrhagic necrosis, submucosal edema, destruction of epithelial cells, and reduced glycoprotein content at the mucus surface. These pathological lesions were defeated by SP extract treatment. Administration of SP extract modulated the oxidative stress and augmented the antioxidant defenses. The elevated ethanol-expressed tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) genes, as well as bcl-2-like protein 4 (Bax) and inducible nitric oxide synthase (iNOS), were diminished in the SP-treated group. Curiously, SP extract upregulated endothelial nitric oxide synthase (eNOS) and transforming growth factor-β1 (TGF-β1) gene expression comparable to that of the EtOH-treated rats. Aggregately, SP exerted antiulcer activities in ethanol-induced gastric ulcer rat models via modulation of oxidant/antioxidant status, mitigation of proinflammatory cytokines, and apoptosis, as well as remodeling of both NOS isoforms.
Collapse
Affiliation(s)
- Mohamed A. Lebda
- Biochemistry Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Ali H. El-Far
- Biochemistry Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ahmed E. Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Yaser H. A. Elewa
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary, Hokkaido University, Sapporo, Japan
| | - Soad K. Al Jaouni
- Department of Pediatric Hematology/Oncology, King Abdulaziz University Hospital and Scientific Chair of Yousef Abdul Latif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|