1
|
Perruchot MH, Boudry G, Mayeur-Nickel F, Grondin M, Wiart-Letort S, Giblin L, Grundy MML. In Vitro Evaluation of Intestinal Barrier Function after Exposure to Digested Pea Ingredients─Food Matrix Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:584-594. [PMID: 39681414 DOI: 10.1021/acs.jafc.4c09963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Dietary fibers (DF) are important components of human and animal diets. However, they can decrease protein digestibility and absorption and thus the nutritional value of a food. The aim of this study was to investigate how the form of delivery of pea DF impacted the integrity of the intestinal barrier and, thereby, the potential absorption of molecules. To this end, two pea flours, with either intact or ruptured cell walls, and two controls, pea fibers and pea protein, were digested in vitro and the digesta obtained applied onto a jejunum porcine cell line (IPEC-J2 cells). Cell viability and integrity were evaluated by transepithelial electrical resistance measurement, colorimetric assay (MTS), and immunohistochemistry for tight junction proteins. Additionally, the diffusion of FITC-dextran (FD4) and lucifer yellow (LY) through the epithelial cell monolayers was monitored. The digested pea samples did not alter the IPEC-J2 viability and permeability. For instance, no difference in the diffusion of molecules either FD4 or LY across the monolayers was observed between the different digesta and the control. Similarly, no effect was observed in ZO-1 labeling intensity compared to the control. This study demonstrated that intestinal integrity was maintained whether pea cell walls were intact or ruptured.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- NUMECAN, INSERM, INRAE, Université de Rennes, Saint Gilles 35590, France
| | | | | | | | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland
| | | |
Collapse
|
2
|
Rybicka A, Medel P, Gómez E, Carro MD, García J. Different Physiochemical Properties of Novel Fibre Sources in the Diet of Weaned Pigs Influence Animal Performance, Nutrient Digestibility, and Caecal Fermentation. Animals (Basel) 2024; 14:2612. [PMID: 39272397 PMCID: PMC11394630 DOI: 10.3390/ani14172612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The effect of including micronised fibre sources (FS) differing in fermentability and hydration capacity (HC) on growth performance, faecal digestibility, and caecal fermentation was investigated in piglets. There were four dietary treatments: a control diet (CON) and three treatments differing in the HC and fermentability of FS added at 1.5% to prestarter (28-42 d) and starter (42-61 d) diets. These were: LHC (low-HC by-product-based insoluble fibre (IF) with a prebiotic fraction (PF) from chicory root); MHC (medium-HC by-product-based IF with a PF); and HHC (high-HC non-fermentable wood-based IF with no PF). There were eight replicates per treatment. Over the entire period, LHC and MHC piglets showed a 10% increase in daily growth and feed intake (p ≤ 0.019) and tended to have a reduced feed conversion ratio (p = 0.087) compared to HHC piglets. At 42 d, faecal protein digestibility increased by 5% in the LHC and MHC groups compared with the HHC group (p = 0.035) and did not differ from the CON group. Both LHC and MHC fibres were more fermented in vitro with caecal inocula from 61 d old piglets than HHC fibre (p ≤ 0.003). These results suggest that balanced soluble and insoluble fibre concentrates can improve piglet performance.
Collapse
Affiliation(s)
- Agnieszka Rybicka
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | - Emilio Gómez
- Centro de Pruebas de Porcino, ITACyL, Hontalbilla, 40353 Segovia, Spain
| | - María Dolores Carro
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Javier García
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Xu G, Huang J, Chen W, Zhao A, Pan J, Yu F. The Influence of Increasing Roughage Content in the Diet on the Growth Performance and Intestinal Flora of Jinwu and Duroc × Landrace × Yorkshire Pigs. Animals (Basel) 2024; 14:1913. [PMID: 38998025 PMCID: PMC11240776 DOI: 10.3390/ani14131913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
The Jinwu pig (JW) is a hybrid breed originating from the Chinese indigenous Jinhua pig and Duroc pig, boasting excellent meat quality and fast growth rates. This study aimed to verify the tolerance of JW to roughage, similar to most Chinese indigenous pigs. In this research, two types of feed were provided to JW and Duroc × Landrace × Yorkshire pigs (DLY): a basal diet and a roughage diet (increasing the rice bran and wheat bran content in the basal diet from 23% to 40%) for a 65-day experimental period. The roughage diet showed an increasing trend in the feed conversion ratio (F/G), with a 17.61% increase in feed consumption per unit weight gain for DLY, while the increase for JW was only 4.26%. A 16S rRNA sequencing analysis revealed that the roughage diet increased the relative abundance of beneficial bacteria, such as Lactobacillus and Clostridium, while reducing the relative abundance of some potential pathogens, thus improving the gut microbiota environment. After being fed with the roughage diet, the abundance of bacterial genera, such as Treponema, Terrisporobacter, Coprococcus, and Ruminococcaceae, which aid in the digestion and utilization of dietary fiber, were significantly higher in Jinwu compared to DLY, indicating that these bacterial genera confer Jinwu with a higher tolerance to roughage than DLY.
Collapse
Affiliation(s)
- Gaili Xu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, 666 Wu Su Street, Hangzhou 311300, China
| | - Jing Huang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Wenduo Chen
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, 666 Wu Su Street, Hangzhou 311300, China
| | - Ayong Zhao
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, 666 Wu Su Street, Hangzhou 311300, China
| | - Jianzhi Pan
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Fuxian Yu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| |
Collapse
|
4
|
Huangfu W, Cao S, Li S, Zhang S, Liu M, Liu B, Zhu X, Cui Y, Wang Z, Zhao J, Shi Y. In vitro and in vivo fermentation models to study the function of dietary fiber in pig nutrition. Appl Microbiol Biotechnol 2024; 108:314. [PMID: 38683435 PMCID: PMC11058960 DOI: 10.1007/s00253-024-13148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: • The fermentation characteristics of dietary fiber in vitro models were reviewed. • Metabolic pathways of metabolites and their roles in the intestine were reviewed. • The role of dietary fiber in pigs at different stages was reviewed.
Collapse
Affiliation(s)
- Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shuhang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China.
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China.
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
5
|
Li Y, Lu Y, Yu B, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, Yan H, He J. Effect of cordyceps militaris on growth performance, antioxidant capacity, and intestinal epithelium functions in weaned pigs. J Anim Sci 2024; 102:skae194. [PMID: 39001695 PMCID: PMC11322740 DOI: 10.1093/jas/skae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/13/2024] [Indexed: 08/15/2024] Open
Abstract
To explore the effects of cordyceps militaris (CM) on growth performance and intestinal epithelium functions, 180 weaned pigs were randomly assigned into 5 treatments with 6 replicate pens per treatment (6 pigs per pen). Pigs were fed with basal diet (control) or basal diet supplemented with 100, 200, 400, and 800 mg/kg CM. The trial lasted for 42 d, and pigs from the control and optimal-dose groups (based on growth performance) were picked for blood and tissue collection (n = 6). Results showed that CM elevated the average daily gain (ADG) and decreased the ratio of feed intake to gain (F:G) in the weaned pigs (P < 0.05). CM supplementation at 100 mg/kg improved the digestibilities of dry matter (DM), crude protein (CP), and gross energy (GE) (P < 0.05). CM not only increased the activities of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) but also increased the concentration of interleukin-10 (IL-10) in serum (P < 0.05). The serum concentrations of malondialdehyde (MDA), d-lactate, and diamine oxidase (DAO) were reduced by CM (P < 0.05). Interestingly, CM elevated the villus height and the ratio of villus height to crypt depth in the duodenum and jejunum and increased the activities of duodenal sucrase and maltase (P < 0.05). Moreover, CM elevated the expression levels of tight-junction proteins ZO-1, claudin-1, and occluding, as well as critical functional genes such as the fatty acid transport protein (FATP1), cationic amino acid transporter 1 (CAT1), and NF-E2-related factor 2 (Nrf2) in the duodenum and jejunum (P < 0.05). Importantly, CM increased the concentrations of acetic acid and butyric acid, and elevated the abundances of Bacillus and Lactobacillus in the cecum and colon, respectively (P < 0.05). These results indicated potential benefits of CM in improving the growth of weaned pigs, and such effect may be tightly associated with improvement in antioxidant capacity and intestinal epithelium functions.
Collapse
Affiliation(s)
- YanPing Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Yang Lu
- Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| |
Collapse
|
6
|
Harasawa A, Ishiyama S, Mochizuki K. Fructo-Oligosaccharides Enhance the Expression of Genes Related to Focal Adhesion- and Inflammation-Pathways in Small Intestinal Absorptive Caco-2 Cells. J Nutr Sci Vitaminol (Tokyo) 2024; 70:481-489. [PMID: 39756968 DOI: 10.3177/jnsv.70.481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Recently, we demonstrated, using mRNA microarray analysis, that fructo-oligosaccharides (FOS), which are indigestible carbohydrates, enhanced the expression of several inflammation-related genes, such as CLEC7A, CCL2, ITGA2, and F3, by ≥4-fold in Caco-2 cells, a model of human intestinal absorptive cells, independently of intestinal bacteria (Harasawa A et al., Nutrition, 112140, 2023). However, whether FOS enhances the expression of genes in other pathways, particularly the non-inflammatory pathways, in Caco-2 cells has not been investigated. Here, we explored the pathways affected by FOS, based on identification of differentially expressed genes with ≥2-fold change (linear-fold change) in expression upon FOS treatment. Caco-2 cells were cultured for 24 h in high glucose-Dulbecco's modified Eagle medium supplemented with 10% fetal calf serum containing FOS. The differentially expressed genes in these cells, identified using mRNA microarray analysis, were categorized using the pathway analysis and subsequently upregulated genes in typical pathways were subjected to protein network analysis. RT-qPCR was performed to validate the expression of selected genes. Treatment with 10% FOS enhanced the expression of a set of genes, such as ITGB8, ITGA6, SPP1, CAV1, LAMA3, ARHGAP5, and LAMC2, in the focal adhesion pathway. In addition, this treatment increased the expression of many genes involved in various inflammatory pathways, such as TNF, ITGA5, ITGB3, PTGS2, FGF2, FLNC, EDNRB, VEGFA, and MMP13. Protein network analysis showed that genes in the focal adhesion and endothelin pathways induced by FOS were closely associated with each other. FOS treatment of human intestinal absorptive-like cells enhances a set of genes in the focal adhesion and inflammation pathways.
Collapse
Affiliation(s)
- Aya Harasawa
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi
| | - Shiori Ishiyama
- Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi
| | - Kazuki Mochizuki
- Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi
| |
Collapse
|
7
|
Harasawa A, Ishiyama S, Mochizuki K. Fructo-oligosaccharide-mediated alteration in claudin expression in small intestinal absorptive Caco-2 cells is positively associated with the induction of inflammatory genes and the glucan receptor gene CLEC7A. Nutrition 2023; 115:112140. [PMID: 37481839 DOI: 10.1016/j.nut.2023.112140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVES Indigestible carbohydrates may strengthen tight junctions (TJs) independently of intestinal bacteria. This study investigated whether indigestible carbohydrates (i.e., fructo-oligosaccharides [FOS]) promote TJs directly to intestinal absorptive Caco-2 cells and examined the association between the expression of genes constructing TJs and other genes using mRNA microarray analysis. METHODS Caco-2 cells at 1.0 × 105/mL were seeded in a type I collagen plate and cultured in high-glucose Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal calf serum (FCS); the cells reached confluence at 7 d after seeding. Ten days after the cells reached confluency, they were cultured for 24 h in 10% FCS-containing DMEM medium supplemented with 0%, 5%, or 10% FOS. We performed mRNA microarray to identify the genes whose expression was altered by FOS. Subsequently, quantitative reverse transcription polymerase chain reaction was performed for these altered genes, including CLEC7A encoding the glucan receptor, and for the claudin (CLDN) family genes. The expression of CLDN2, CLDN4, and CLEC7A proteins was assessed using western blot analysis. RESULTS FOS decreased the mRNA and protein expression of CLDN2, which weakens TJs, and increased those of CLDN4, which strengthens TJs, in Caco-2 cells. FOS treatment (10%) reduced the mRNA expression of antioxidative genes and induced the expression of immune response-related genes, including CLEC7A, CCL2, and ITGA2. Furthermore, the expression of CLEC7A protein was enhanced by FOS. CONCLUSIONS Induction of TJ-strengthening CLDN4 and reduction of TJ-weakening CLDN2 by FOS treatment in small intestinal absorptive Caco-2 cells is positively associated with the induction of inflammatory genes, including CLEC7A.
Collapse
Affiliation(s)
- Aya Harasawa
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Japan
| | - Shiori Ishiyama
- Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Kazuki Mochizuki
- Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan.
| |
Collapse
|
8
|
Tian Y, Pan Z, Lan L, Chang Y, Zhao T, Fu Z, Wu S, Deng T, Cao M, Wang W, Bi Y, Yang R, Yang Lee BJ, Liu Q. Amelioration of intestinal barrier function and reduction of blood lead level in adult women with recurrent spontaneous abortion by a novel product of dietary fiber mixture, Holofood. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:63. [PMID: 37420277 DOI: 10.1186/s41043-023-00394-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/29/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND The elevated circulating toxins secondary to the impairment of intestinal barrier integrity commonly elicit a chronic inflammatory response and finally contribute to multiple diseases. These toxins, including bacterial by-products and heavy metals, are the potent risk factors for the development of recurrent spontaneous abortion (RSA). Preclinical evidence suggests that several dietary fibers can restore intestinal barrier function and decrease the accumulation of heavy metals. However, it is uncertain whether treatment with a newly developed blend of dietary fibers product (Holofood) benefits patients with RSA. METHODS In this trial, we enrolled 70 adult women with RSA, who were randomly assigned into the experiment group and the control group in a 2:1 ratio. Upon the basis of conventional therapy, subjects in the experiment group (n = 48) received 8 weeks oral administration with Holofood three times daily at a dose of 10 g each time. Subjects without Holofood consumption were set as the control (n = 22). Blood samples were collected for the determinations of metabolic parameters, heavy mental lead, and the indices related to intestinal barrier integrity (D-lactate, bacterial endotoxin, and diamine oxidase activity). RESULTS The reduction amplitude in blood lead from baseline to week 8 was 40.50 ± 54.28 (μg/L) in the experiment group as compared with 13.35 ± 36.81 (μg/L) in the control group (P = 0.037). The decreased level of serum D-lactate from baseline to week 8 was 5.58 ± 6.09 (mg/L) in the experiment group as compared with - 2.38 ± 8.90 (mg/L, P < 0.0001) in the control group. The change in serum DAO activity from baseline to week 8 was 3.26 ± 2.23 (U/L) in the experiment group as compared with - 1.24 ± 2.22 (U/L, P < 0.0001) in the control group. Participants who received Holofood had a greater decline in blood endotoxin from baseline to week 8 than those in the control group. Moreover, by comparing with the self-baseline, Holofood consumption significantly decreased the blood levels of lead, D-lactate, bacterial endotoxin, and DAO activity. CONCLUSION Our results suggest that Holofood affords a clinically relevant improvements in blood lead level and intestinal barrier dysfunction in patients with RSA.
Collapse
Affiliation(s)
- Ye Tian
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, 518053, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Liling Lan
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China
| | - Yuxiao Chang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ting Zhao
- Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Zhihong Fu
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China
| | - Shuhua Wu
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China
| | - Tianqin Deng
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China
| | - Meilan Cao
- Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, 518053, China
| | - Weizhou Wang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100007, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - B J Yang Lee
- Beijing Future Science & Technology Development Co., Ltd., Rm. 1702A #1 Guanhu International Plaza, 105 Yaojiayuan Road, Chaoyang District, Beijing, 100025, China.
| | - Qingzhi Liu
- Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, No. 3012, Fuqiang Road, Futian District, Shenzhen, 518028, China.
- Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, 518053, China.
| |
Collapse
|
9
|
Liu J, Luo Y, Kong X, Yu B, Zheng P, Huang Z, Mao X, Yu J, Luo J, Yan H, He J. Influences of wheat bran fiber on growth performance, nutrient digestibility, and intestinal epithelium functions in Xiangcun pigs. Heliyon 2023; 9:e17699. [PMID: 37449141 PMCID: PMC10336591 DOI: 10.1016/j.heliyon.2023.e17699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Dietary fiber (DF) has long been looked as an essential "nutrients" both for animals and humans as it can promote the intestinal tract development and modulate the intestinal epithelium functions and the gut microbiota. This study was conducted to investigate the influences of wheat bran fiber (WBF) on growth performance and intestinal epithelium functions in Xiangcun pigs. Twenty Xiangcun pigs with 60 days of age were divided to two groups and exposed to a basal diet (BD) or BD containing 4.3% wheat bran fiber (WFD). WFD improved the average daily gain (ADG) and feed-to-gain ratio (F:G) (p < 0.01). Moreover, WFD lowered the serum triglyceride (TC), d-lactate, and malonicdialdehyde (MDA) concentrations, but significantly improved the glutathione (GSH) activity and total antioxidant capacity (T-AOC) (p < 0.05). Interestingly, WFD observably improved the villus height (VH) and the villus height to crypt depth ratio (V/C) in the small intestine (p < 0.05). The jejunal sucrase and ileal maltase activities were higher in the WFD group (p < 0.05). WFD markedly elevated the tight junction protein ZO-1 and claudin-1 expression levels in the jejunum and ileum (p < 0.05). The sodium/glucose co-transporter 1 (SGLT1), glucose transporter 2 (GLUT2), and fatty acid transport proteins 4 (FATP-4) expression levels in jejunum and ileum were also elevated under WFD (p < 0.05). WFD decreased the IL-6 impression level in the duodenum and ileum, but significantly increased the IL-10 expression levels in jejunum and ileum (p < 0.05). Moreover, WFD reduced the abundance of E. coli, but elevated the abundances of beneficial microorganisms (e.g. Lactobacillus and Bacillus) and the production microbial metabolites (e.g. propionic acid and butyrate acid) in the cecum (p < 0.05).
Collapse
Affiliation(s)
- Jiahao Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 611130 410125, PR China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, PR China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, PR China
| |
Collapse
|
10
|
Júnior DTV, de Amorim Rodrigues G, Soares MH, Silva CB, Frank EO, Gonzalez-Vega JC, Htoo JK, Brand HG, Silva BAN, Saraiva A. Supplementation of Bacillus subtilis DSM 32540 improves performance and intestinal health of weaned pigs fed diets containing different fiber sources. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
11
|
Yang C, Lu H, Li E, Oladele P, Ajuwon KM. Inulin supplementation induces expression of hypothalamic antioxidant defence genes in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:157-164. [PMID: 35253266 DOI: 10.1111/jpn.13698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/10/2023]
Abstract
Fibre plays an important role in diluting dietary energy density. Fibre is also implicated in the regulation of appetite, perhaps through direct effects in the brain. However, there is little information on this effect in pigs. Therefore, this study was conducted to investigate the effect of fibre type in regulating the expression of genes involved in appetite control, inflammation and antioxidant defence in the hypothalamus of weaned piglets. A total of 64 Duroc × Landrace × Yorkshire barrows at 37 days old were blocked by body weight and allotted to two dietary treatments, supplementation with either 0.25% cellulose (Solka-Floc) or inulin (INU) for 28 days, after which animals were killed for analysis. Pigs fed INU had a tendency (p = 0.06) for reduced feed intake in the first week, although this effect disappeared in subsequent weeks. Pigs supplemented with INU had lower expression of dopamine (dopamine receptor D2), serotonin (5-hydroxytryptamine receptor 1B), free fatty acid (GPR43) and neuropeptide Y receptor Y2 receptors in the hypothalamus (p < 0.05). Expression of the tryptophan hydroxylase 2 gene in the hypothalamus also tended (p = 0.09) to be lower for pigs fed INU. The abundance of antioxidant defence genes, superoxide dismutase (SOD1) and catalase, were greater (p < 0.05) but that of a proinflammatory gene, interleukin 1β, was lower (p < 0.05) in the hypothalamus of pigs fed INU. Therefore, consumption of INU causes downregulation of inflammation in the hypothalamus and regulation of the abundance of serotonin or dopamine receptors, and may also increase antioxidant defence through upregulation of SOD and catalase in weaned piglets.
Collapse
Affiliation(s)
- Can Yang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA.,College of Life Sciences and Environment, Hengyang Normal University, Hengyang, Hunan, China.,Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, Hunan, China
| | - Hang Lu
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Enkai Li
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Paul Oladele
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
12
|
Liu J, Luo Y, Kong X, Yu B, Zheng P, Huang Z, Mao X, Yu J, Luo J, Yan H, He J. Effects of Dietary Fiber on Growth Performance, Nutrient Digestibility and Intestinal Health in Different Pig Breeds. Animals (Basel) 2022; 12:ani12233298. [PMID: 36496820 PMCID: PMC9740264 DOI: 10.3390/ani12233298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
To explore the effect of dietary fiber on growth performance and intestinal health in different pig breeds, forty Taoyuan and Duroc pigs (pure breeds) of 60 days of age were randomly divided into a 2 (diet) × 2 (breed) factorial experiment (n = 10), and fed with a basal diet (BD) or high-fiber diet (HFD). The trial lasted for 28 d, and results showed that the Taoyuan pigs had a higher average daily feed intake (ADFI) than the Duroc pigs (p < 0.05). The average daily gain (ADG) and digestibilities of gross energy (GE) and crude protein (CP) were higher in Taoyuan pigs than in the Duroc pigs under HFD feeding (p < 0.05). The HFD increased the superoxide dismutase (SOD) and catalase (CAT) activity in Taoyuan pigs (p < 0.05). Interestingly, Taoyuan pigs had a higher jejunal villus height and ratio of villus height to crypt depth (V/C) than the Duroc pigs. The HFD significantly improved the villus height and V/C ratio in duodenum and jejunum (p < 0.05). The HFD also increased the jejunal maltase and ileal sucrase activities in Duroc and Taoyuan pigs, respectively (p < 0.05). Taoyuan pigs had a higher expression level of duodenal fatty acid transport protein-1 (FATP-1) than the Duroc pigs (p < 0.05). Furthermore, the HFD acutely improved the expression levels of ileal SGLT-1 and GLUT-2, and the expression levels of jejunal occludin and claudin-1 in Taoyuan pigs (p < 0.05). Importantly, Taoyuan pigs had a higher colonic Bifidobacterium abundance than the Duroc pigs (p < 0.05). The HFD not only elevated the colonic Lactobacillus abundance and butyrate acid content in Taoyuan pigs, but also increased the acetic and propionic acid contents in both the pig breeds (p < 0.05). These results indicated a difference in dietary fiber (DF) utilization by the two pig breeds, and results may also suggest a beneficial character of DF in regulating intestinal health.
Collapse
Affiliation(s)
- Jiahao Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410000, China
- Correspondence: (X.K.); (J.H.); Tel.: +86-13419354223 (J.H.); Fax: +86-28-8629-1781 (J.H.)
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
- Correspondence: (X.K.); (J.H.); Tel.: +86-13419354223 (J.H.); Fax: +86-28-8629-1781 (J.H.)
| |
Collapse
|
13
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
14
|
The Role of Gut Microbiota in the Skeletal Muscle Development and Fat Deposition in Pigs. Antibiotics (Basel) 2022; 11:antibiotics11060793. [PMID: 35740199 PMCID: PMC9220283 DOI: 10.3390/antibiotics11060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
Pork quality is a factor increasingly considered in consumer preferences for pork. The formation mechanisms determining meat quality are complicated, including endogenous and exogenous factors. Despite a lot of research on meat quality, unexpected variation in meat quality is still a major problem in the meat industry. Currently, gut microbiota and their metabolites have attracted increased attention in the animal breeding industry, and recent research demonstrated their significance in muscle fiber development and fat deposition. The purpose of this paper is to summarize the research on the effects of gut microbiota on pig muscle and fat deposition. The factors affecting gut microbiota composition will also be discussed, including host genetics, dietary composition, antibiotics, prebiotics, and probiotics. We provide an overall understanding of the relationship between gut microbiota and meat quality in pigs, and how manipulation of gut microbiota may contribute to increasing pork quality for human consumption.
Collapse
|
15
|
Chang Y, Mei J, Yang T, Zhang Z, Liu G, Zhao H, Chen X, Tian G, Cai J, Wu B, Wu F, Jia G. Effect of Dietary Zinc Methionine Supplementation on Growth Performance, Immune Function and Intestinal Health of Cherry Valley Ducks Challenged With Avian Pathogenic Escherichia coli. Front Microbiol 2022; 13:849067. [PMID: 35602082 PMCID: PMC9115567 DOI: 10.3389/fmicb.2022.849067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
This study was carried out to evaluate the effects of supplemental zinc methionine (Zn-Met) on growth performance, immune function, and intestinal health of meat ducks challenged with avian pathogenic Escherichia coli (APEC). A total of 480 1-day-old Cherry Valley male ducks were randomly assigned to 8 treatments with 10 replicates, each replicate containing 10 ducks. A 4 × 2 factor design was used with four dietary zinc levels (0, 30, 60, 120 mg Zn/kg in the form Zn-Met was added to the corn-soybean basal diet) and challenged with or without APEC at 8-days-old ducks. The trial lasted for 14 days. The results showed that a dietary Zn-Met supplementation significantly increased body weight (BW) of 14 days and BW gain, and decreased mortality during 7-14-days-old ducks (p < 0.05). Furthermore, dietary 30, 60, 120 mg/kg Zn-Met supplementation noticeably increased the thymus index at 2 days post-infection (2 DPI) and 8 DPI (p < 0.05), and 120 mg/kg Zn-Met enhanced the serum IgA at 2 DPI and IgA, IgG, IgM, C3 at 8 DPI (p < 0.05). In addition, dietary 120 mg/kg Zn-Met supplementation dramatically increased villus height and villus height/crypt depth (V/C) of jejunum at 2 DPI and 8 DPI (p < 0.05). The TNF-α and IFN-γ mRNA expression were downregulated after supplemented with 120 mg/kg Zn-Met in jejunum at 8 DPI (p < 0.05). Moreover, dietary 120 mg/kg Zn-Met supplementation stimulated ZO-3, OCLN mRNA expression at 2 DPI and ZO-2 mRNA expression in jejunum at 8 DPI (p < 0.05), and improved the MUC2 concentration in jejunum at 2 DPI and 8 DPI (p < 0.05). At the same time, the cecal Bifidobacterium and Lactobacillus counts were increased (p < 0.05), and Escherichia coli counts were decreased (p < 0.05) after supplemented with Zn-Met. In conclusion, inclusion of 120 mg/kg Zn-Met minimizes the adverse effects of APEC challenge on meat ducks by improving growth performance and enhancing immune function and intestinal health.
Collapse
Affiliation(s)
- Yaqi Chang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jia Mei
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Ting Yang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zhenyu Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Institute of Animal Husbandry and Veterinary Medicine, Meishan Vocational Technical College, Meishan, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bing Wu
- Chelota Group, Guanghan, China
| | - Fali Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Hao Y, Ji Z, Shen Z, Xue Y, Zhang B, Yu D, Liu T, Luo D, Xing G, Tang J, Hou S, Xie M. Increase Dietary Fiber Intake Ameliorates Cecal Morphology and Drives Cecal Species-Specific of Short-Chain Fatty Acids in White Pekin Ducks. Front Microbiol 2022; 13:853797. [PMID: 35464956 PMCID: PMC9021919 DOI: 10.3389/fmicb.2022.853797] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
The current study was to investigate the modulatory effects of total dietary fiber (TDF) levels on cecal morphology and the response of microbiota to maintain gut health for duck growth. A total of 192 14-day-old male white Pekin ducks were randomly allocated to three dietary groups and fed diets, containing 12.4, 14.7, and 16.2% TDF, respectively, until 35 days under the quantitative feed intake. Each dietary group consisted of eight replicate cages of eight birds. The results revealed that 14.7 and 16.2% TDF groups significantly promoted growth performance and improved villus height, the ratio of villus to crypt, muscle layer thickness, and goblet cells per villus of cecum in ducks. qPCR results showed that the transcriptional expression of Claudin-1, Muc2, IGF-1, and SLC16A1 was significantly upregulated in cecum in 14.7 and 16.2% TDF groups. Meanwhile, the concentration of IGF-1 in circulating was significantly increased in 14.7 and 16.2% TDF groups while that of DAO was significantly decreased in 16.2% TDF group. Furthermore, the concentrations of butyrate, isobutyrate, valerate, and isovalerate in cecum were conspicuously improved in 14.7 and 16.2% TDF groups while that of propionate was significantly decreased. In addition, the concentrations of butyrate, isobutyrate, valerate, and isovalerate in cecum presented negative correlations with the concentration of DAO in circulating. 16S rRNA gene sequencing results showed that the 14.7% TDF group importantly elevated the microbial richness. Simultaneously, butyrate-producing bacteria like the family Lachnospiraceae, Oscillospiraceae, and Erysipelatoclostridiaceae were enriched as biomarkers in the 16.2% TDF group. Correlation network analysis revealed that the associations between specific bacteria and short-chain fatty acids (SCFAs) induced by different TDF levels, and the correlations among bacteria were also witnessed. For example, the genus Monoglobus and CHKCI002 showed a positive correlation with butyrate, and there was a positively coexistent association between Monoglobus and CHKCI002. In summary, these data revealed that increasing the TDF level could enhance the cecal morphology and drive cecal species-specific of SCFAs in ducks.
Collapse
Affiliation(s)
- Yongsheng Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanqing Ji
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongjian Shen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjia Xue
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daxin Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tong Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangnan Xing
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Effect of Inulin Source and a Probiotic Supplement in Pig Diets on Carcass Traits, Meat Quality and Fatty Acid Composition in Finishing Pigs. Animals (Basel) 2021; 11:ani11082438. [PMID: 34438895 PMCID: PMC8388667 DOI: 10.3390/ani11082438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/04/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
In this experiment, we investigated the effect of the supplementation of probiotic bacteria in the diet with inulin or dried Jerusalem artichoke tubers on the performance, meat quality, and fatty acid composition in the meat and backfat of fatteners. One hundred and forty-four crossbred pigs (PIC × Penarlan P76) were divided into six groups and fattened from 30 to 114 kg. The meat proximate composition, pH, color, texture, shear force, water-holding capacity, sensory attributes, and thiobarbituric-acid-reactive substances were measured. Normal post-mortem meat glycolysis was demonstrated and no meat defects were present. The chemical constituents in muscle tissues were similar, except for intramuscular fat (IMF). The addition of the prebiotics resulted in a higher IMF level, whereas a significantly lower content was found after the probiotic supplementation. Meat from both prebiotic groups was lighter, less red, and more yellow and showed a higher hue angle. The addition of both prebiotics significantly improved the antioxidant status of meat (by approximately 16% and 18%) and the water-holding capacity (less free water and higher M/T ratios), but reduced shear force (by 17%, p ≤ 0.05) and hardness (by 39% and 35%, respectively, p ≤ 0.05). The addition of the prebiotics and probiotics had no effect on any of the evaluated sensory attributes.
Collapse
|
18
|
Zou T, Yang J, Guo X, He Q, Wang Z, You J. Dietary seaweed-derived polysaccharides improve growth performance of weaned pigs through maintaining intestinal barrier function and modulating gut microbial populations. J Anim Sci Biotechnol 2021; 12:28. [PMID: 33750476 PMCID: PMC7945339 DOI: 10.1186/s40104-021-00552-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/11/2021] [Indexed: 01/24/2023] Open
Abstract
Background Seaweed-derived polysaccharides (SDP) represent an attractive source of prebiotic nutraceuticals for the food and animal husbandry industry. However, the mechanism by which SDP from Enteromorpha mediates pig growth are not fully understood. This study aimed to investigate how SDP supplementation influences the growth performance and intestinal health in weaned pigs. Results In Exp. 1, 240 weaned pigs were randomly assigned to four dietary treatments and fed with a basal diet or a basal diet containing 200, 400 or 800 mg/kg SDP, respectively, in a 21-day trial. Pigs on the 400 or 800 mg/kg SDP-supplemented group had greater ADG and lower F/G ratio than those on the control group (P<0.05). In Exp. 2, 20 male weaned pigs were randomly assigned to two treatments and fed with a basal diet (CON group) or a basal diet supplemented with 400 mg/kg SDP (the optimum does from Exp. 1), in a 21-day trial. Pigs fed the SDP diet had greater ADG, the concentrations of serum IL-6 and TNF-α and the activities of glutathione peroxidase, superoxide dismutase and catalase (P<0.05), and lower F/G, diarrhea rate, as well as serum D-lactate concentrations and diamine oxidase activity (P<0.05). Moreover, dietary SDP supplementation enhanced secretory immunoglobulin A content, villus height and villous height: crypt depth ratio in small intestine, as well as the lactase and maltase activities in jejunum mucosa (P<0.05). SDP supplementation elevated the mRNA levels of inflammatory response-related genes (IL-6, TNF-α, TLR4, TLR6 and MyD88), and the mRNA and protein levels of ZO-1, claudin-1 and occludin in jejunum mucosa (P<0.05). Importantly, SDP not only increased the Lactobacillus population but also reduced the Escherichia coli population in cecum (P<0.05). Furthermore, SDP increased acetic acid and butyric acid concentrations in cecum (P<0.05). Conclusions These results not only suggest a beneficial effect of SDP on growth performance and intestinal barrier functions, but also offer potential mechanisms behind SDP-facilitated intestinal health in weaned pigs.
Collapse
Affiliation(s)
- Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, 330045, China
| | - Jin Yang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, 330045, China
| | - Xiaobo Guo
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, 330045, China
| | - Qin He
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, 330045, China
| | - Zirui Wang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China. .,Jiangxi Province Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production, Nanchang, 330045, China.
| |
Collapse
|
19
|
Qi M, Tan B, Wang J, Liao S, Deng Y, Ji P, Song T, Zha A, Yin Y. The microbiota-gut-brain axis: A novel nutritional therapeutic target for growth retardation. Crit Rev Food Sci Nutr 2021; 62:4867-4892. [PMID: 33523720 DOI: 10.1080/10408398.2021.1879004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growth retardation (GR), which commonly occurs in childhood, is a major health concern globally. However, the specific mechanism remains unclear. It has been increasingly recognized that changes in the gut microbiota may lead to GR through affecting the microbiota-gut-brain axis. Microbiota interacts with multiple factors such as birth to affect the growth of individuals. Microbiota communicates with the nerve system through chemical signaling (direct entry into the circulation system or stimulation of enteroendocrine cells) and nervous signaling (interaction with enteric nerve system and vagus nerve), which modulates appetite and immune response. Besides, they may also influence the function of enteric glial cells or lymphocytes and levels of systemic inflammatory cytokines. Environmental stress may cause leaky gut through perturbing the hypothalamic-pituitary-adrenal axis to further result in GR. Nutritional therapies involving probiotics and pre-/postbiotics are being investigated for helping the patients to overcome GR. In this review, we summarize the role of microbiota in GR with human and animal models. Then, existing and potential regulatory mechanisms are reviewed, especially the effect of microbiota-gut-brain axis. Finally, we propose nutritional therapeutic strategies for GR by the intervention of microbiota-gut-brain axis, which may provide novel perspectives for the treatment of GR in humans and animals.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuankun Deng
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peng Ji
- Department of Nutrition, University of California, Davis, California, USA
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
20
|
He Y, Peng X, Liu Y, Wu Q, Zhou Q, Hu L, Fang Z, Lin Y, Xu S, Feng B, Li J, Zhuo Y, Wu D, Che L. Effects of Maternal Fiber Intake on Intestinal Morphology, Bacterial Profile and Proteome of Newborns Using Pig as Model. Nutrients 2020; 13:E42. [PMID: 33375592 PMCID: PMC7823571 DOI: 10.3390/nu13010042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Dietary fiber intake during pregnancy may improve offspring intestinal development. The aim of this study was to evaluate the effect of maternal high fiber intake during late gestation on intestinal morphology, microbiota, and intestinal proteome of newborn piglets. Sixteen sows were randomly allocated into two groups receiving the control diet (CD) and high-fiber diet (HFD) from day 90 of gestation to farrowing. Newborn piglets were selected from each litter, named as CON and Fiber group, respectively. Maternal high fiber intake did not markedly improve the birth weight, but increased the body length, the ileal crypt depth and colonic acetate level. In addition, maternal high fiber intake increased the -diversity indices (Observed species, Simpson, and ACE), and the abundance of Acidobacteria and Bacteroidetes at phylum level, significantly increased the abundance of Bradyrhizobium and Phyllobacterium at genus level in the colon of newborn piglets. Moreover, maternal high fiber intake markedly altered the ileal proteome, increasing the abundances of proteins associated with oxidative status, energy metabolism, and immune and inflammatory responses, and decreasing abundances of proteins related to cellular apoptosis, cell structure, and motility. These findings indicated that maternal high fiber intake could alter intestinal morphology, along with the altered intestinal microbiota composition and proteome of offspring.
Collapse
Affiliation(s)
- Ying He
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Xie Peng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Yang Liu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Qing Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Qiang Zhou
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Liang Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Jian Li
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - De Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| |
Collapse
|