1
|
Huang H, Fu J, Lu K, Fu Y, Zhuge P, Yao Y. Association between dietary fiber intake and suicidal ideation: a cross-sectional survey. Front Nutr 2024; 11:1465736. [PMID: 39539370 PMCID: PMC11557476 DOI: 10.3389/fnut.2024.1465736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background Dietary fiber is beneficial for improving mental health. However, few studies have evaluated the relationship between fiber-rich food and suicidal ideation. Thus, we aimed to assess whether dietary fiber consumption was associated with the risk of suicidal ideation. Methods Data of 21,865 American adults were retrieved from the National Health and Nutrition Examination Survey (NHANES). Logistic and restricted cubic spline regression analyses were performed in order to evaluate the association of dietary fiber intake with suicidal ideation, as indicated by item nine of the nine-item Patient Health Questionnaire (PHQ-9). These analyses took into consideration several confounding factors that may potentially influence the results. Results Herein, we detected an L-shaped association between dietary fiber intake and the risk of suicidal ideation. For the most conclusive model, an increase of 1 g/1000 kcal/d in dietary fiber intake was accompanied by a 5% reduction in the risk of suicidal ideation. The inflection point of the L-shaped association was located at 7.8 g/1000 kcal/d. When dietary fiber intake exceeded the above level, the risk of suicidal ideation no longer decreased. Conclusion Our findings of reduced risk of suicidal ideation in people with higher dietary fiber intake suggest the potential clinical and public health value of dietary fiber. Interventional investigations are warranted to prove whether adhering to a high-fiber diet prevents and reduces suicidality.
Collapse
Affiliation(s)
- Huaying Huang
- Department of Endocrinology and Metabolism, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jianjiong Fu
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Keyu Lu
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yaming Fu
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Pan Zhuge
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yu Yao
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Zhejiang, China
| |
Collapse
|
2
|
Li Y, He J, Zhang L, Liu H, Cao M, Lin Y, Xu S, Che L, Fang Z, Feng B, Li J, Zhuo Y, Wu D. Improvement of insulin sensitivity by dietary fiber consumption during late pregnant sows is associated with gut microbiota regulation of tryptophan metabolism. Anim Microbiome 2024; 6:34. [PMID: 38907293 PMCID: PMC11191243 DOI: 10.1186/s42523-024-00323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Dietary fiber (DF) consumption was reported to improve insulin sensitivity, change the tryptophan metabolism, and alter the gut microbiota. Herein, this study aimed to investigate the effects of DF consumption on insulin sensitivity, tryptophan metabolism, and gut microbiota composition in sows during late pregnancy, and explore the relationship between tryptophan metabolites and insulin sensitivity regulated by DF supplementation. RESULTS Twelve sows were randomly assigned to two dietary treatment groups (six/group): the low-fiber (LF) group, which was fed a basal diet, and the high-fiber (HF) group, which was fed the basal diet supplemented with 22.60 g/kg inulin and 181.60 g/kg cellulose. During late pregnancy, meal test, glucose tolerance test, and insulin challenge test were used to investigate the insulin sensitivity of sows, using the percutaneous brachiocephalic vein catheterization technique. High DF consumption resulted in improved insulin sensitivity, especially during the second and third trimesters, and promoted serotonin production from tryptophan. Additionally, plasma serotonin concentration was positively correlated with the insulin sensitivity index during late pregnancy. Moreover, DF consumption elevated fecal short-chain fatty acid (SCFA) concentrations, altered fecal microbial diversity, and increased the abundances of Rikenellaceae_RC9_gut_group, Alloprevotella, Parabacteroides, Roseburia, and Sphaerochaeta, which were positively correlated to plasma serotonin concentration. CONCLUSIONS DF consumption improved insulin sensitivity during late pregnancy in sows, which improved microbial diversity in fecal samples and increased fecal SCFA concentrations, resulting in a positive correlation with plasma serotonin level.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Panhe Street 7#, Tai'an, 271017, People's Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Heverlee, 3001, Belgium
| | - Jiaqi He
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Lijia Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Haoyu Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Meng Cao
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China.
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
3
|
Di Berardino C, Barceviciute U, Camerano Spelta Rapini C, Peserico A, Capacchietti G, Bernabò N, Russo V, Gatta V, Konstantinidou F, Donato M, Barboni B. High-fat diet-negative impact on female fertility: from mechanisms to protective actions of antioxidant matrices. Front Nutr 2024; 11:1415455. [PMID: 38915855 PMCID: PMC11194403 DOI: 10.3389/fnut.2024.1415455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Excessive calorie intake poses a significant threat to female fertility, leading to hormonal imbalances and reproductive challenges. Overconsumption of unhealthy fats exacerbates ovarian dysfunction, with an overproduction of reactive oxygen species causing oxidative stress, impairing ovarian follicle development and leading to irregular ovulation and premature ovarian failure. Interest in biological matrices with high antioxidant properties to combat diet-related oxidative stress has grown, as they contain various bioactive factors crucial for neutralizing free radicals potentially preventing female reproductive health. This systematic review evaluates the female reproductive impact of biological matrices in mitigating oxidative damages induced by over calory habits and, in particular, high fat diets. Methods A comparative approach among mammalian models was utilized to interpret literature available data. This approach specifically investigates the antioxidant mechanisms of biological matrices on early and late ovarian folliculogenesis, under physiological and hormone-induced female reproductive cycle. Adhering to the PRISMA 2020 guidelines, only English-language publications from peer-reviewed international indexes were considered. Results The analysis of 121 publications meeting the inclusion criteria facilitated the identification of crucial components of biological matrices. These components, including carbocyclic sugars, phytonutrients, organosulfur compounds, and vitamins, were evaluated for their impact on ovarian follicle resilience, oocyte quality, and reproductive lifespan. The detrimental effects of oxidative stress on female fertility, particularly exacerbated by high saturated fat diets, are well-documented. In vivo studies across mammalian preclinical models have underscored the potential of antioxidants derived from biological matrices to mitigate diet-induced conditions. These antioxidants enhance steroidogenesis and ovarian follicle development, thereby improving oocyte quality. Additionally, discussions within these publications emphasized the clinical significance of these biological matrices, translating research findings into practical applications for female health. Conclusion Further research is essential to fully exploit the potential of these matrices in enhancing female reproduction and mitigating the effects of diets rich in fatty acids. This requires intensified in vitro studies and comprehensive collection of in vivo data before clinical trials. The promotion of ovarian resilience offers promising avenues for enhancing understanding and advancing female reproductive health world-wide.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Urte Barceviciute
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Rome, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marisa Donato
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Bonmatí-Carrión MÁ, Rol MA. Melatonin as a Mediator of the Gut Microbiota-Host Interaction: Implications for Health and Disease. Antioxidants (Basel) 2023; 13:34. [PMID: 38247459 PMCID: PMC10812647 DOI: 10.3390/antiox13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, the role played by melatonin on the gut microbiota has gained increasingly greater attention. Additionally, the gut microbiota has been proposed as an alternative source of melatonin, suggesting that this antioxidant indoleamine could act as a sort of messenger between the gut microbiota and the host. This review analyses the available scientific literature about possible mechanisms involved in this mediating role, highlighting its antioxidant effects and influence on this interaction. In addition, we also review the available knowledge on the effects of melatonin on gut microbiota composition, as well as its ability to alleviate dysbiosis related to sleep deprivation or chronodisruptive conditions. The melatonin-gut microbiota relationship has also been discussed in terms of its role in the development of different disorders, from inflammatory or metabolic disorders to psychiatric and neurological conditions, also considering oxidative stress and the reactive oxygen species-scavenging properties of melatonin as the main factors mediating this relationship.
Collapse
Affiliation(s)
- María-Ángeles Bonmatí-Carrión
- Chronobiology Laboratory, Department of Physiology, College of Biology, Mare Nostrum Campus, University of Murcia, Instituto Universitario de Investigación en Envejecimiento, Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30100 Murcia, Spain;
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria-Angeles Rol
- Chronobiology Laboratory, Department of Physiology, College of Biology, Mare Nostrum Campus, University of Murcia, Instituto Universitario de Investigación en Envejecimiento, Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30100 Murcia, Spain;
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Li Z, Chen C, Yu W, Xu L, Jia H, Wang C, Pei N, Liu Z, Luo D, Wang J, Lv W, Yuan B, Zhang J, Jiang H. Colitis-Mediated Dysbiosis of the Intestinal Flora and Impaired Vitamin A Absorption Reduce Ovarian Function in Mice. Nutrients 2023; 15:nu15112425. [PMID: 37299390 DOI: 10.3390/nu15112425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Changes in the composition and ratio of the flora during colitis have been found to potentially affect ovarian function through nutrient absorption. However, the mechanisms have not been fully explored. To investigate whether colitis-induced dysbacteriosis of the intestinal flora affects ovarian function, mice were given dextran sodium sulfate (DSS) through drinking water. High-throughput sequencing technology was used to clarify the composition and proportion of bacterial flora as well as gene expression changes in the colon. Changes in follicle type, number, and hormone secretion in the ovary were detected. The results showed that 2.5% DSS could induce severe colitis symptoms, including increased inflammatory cell infiltration, severe damage to the crypt, and high expression of inflammatory factors. Moreover, vitamin A synthesis metabolism-related genes Rdh10, Aldh1a1, Cyp26a1, Cyp26b1, and Rarβ were significantly decreased, as well as the levels of the steroid hormone synthase-related proteins STAR and CYP11A1. The levels of estradiol, progesterone, and Anti-Mullerian hormone as well as the quality of oocytes decreased significantly. The significantly changed abundances of Alistipes, Helicobacter, Bacteroides, and some other flora had potentially important roles. DSS-induced colitis and impaired vitamin A absorption reduced ovarian function.
Collapse
Affiliation(s)
- Ze Li
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Chengzhen Chen
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Wenjie Yu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Lingxia Xu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Haitao Jia
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Chen Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Na Pei
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Zibin Liu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Dan Luo
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Jun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lv
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Jiabao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Xu B, Qin W, Chen Y, Tang Y, Zhou S, Huang J, Ma L, Yan X. Multi-omics analysis reveals gut microbiota-ovary axis contributed to the follicular development difference between Meishan and Landrace × Yorkshire sows. J Anim Sci Biotechnol 2023; 14:68. [PMID: 37122038 PMCID: PMC10150527 DOI: 10.1186/s40104-023-00865-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/09/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND The mechanism by which Meishan (MS) sows are superior to white crossbred sows in ovarian follicle development remains unclear. Given gut microbiota could regulate female ovarian function and reproductive capacity, this study aimed to determine the role of gut microbiota-ovary axis on follicular development in sows. METHODS We compared the ovarian follicular development, gut microbiota, plasma metabolome, and follicular fluid metabolome between MS and Landrace × Yorkshire (L × Y) sows. A H2O2-induced cell apoptosis model was used to evaluate the effects of multi-omics identified metabolites on the apoptosis of porcine ovarian granulosa cells in vitro. RESULTS Compared with L × Y sows, MS sows have greater ovary weight and improved follicular development, including the greater counts of large follicles of diameter ≥ 5 mm, secondary follicles, and antral follicles, but lesser atretic follicles. The ovarian granulosa cells in MS sows had alleviated apoptosis, which was indicated by the increased BCL-2, decreased caspases-3, and decreased cleaved caspases-3 than in L × Y sows. The ovarian follicular fluid of MS sows had higher concentrations of estradiol, progesterone, follicle-stimulating hormone, luteinizing hormone, and insulin like growth factor 1 than L × Y sows. Gut microbiota of MS sows formed a distinct cluster and had improved alpha diversity, including increased Shannon and decreased Simpson than those of L × Y sows. Corresponding to the enhanced function of carbohydrate metabolism and elevated short-chain fatty acids (SCFAs) in feces, the differential metabolites in plasma between MS and L × Y sows are also mainly enriched in pathways of fatty acid metabolism. There were significant correlations among SCFAs with follicular development, ovarian granulosa cells apoptosis, and follicular fluid hormones, respectively. Noteworthily, compared with L × Y sows, MS sows had higher follicular fluid SCFAs concentrations which could ameliorate H2O2-induced porcine granulosa cells apoptosis in vitro. CONCLUSION MS sows have more secondary and antral follicles, but fewer atretic follicles and apoptotic ovarian granulosa cells, as well as harbored a distinctive gut microbiota than L × Y sows. Gut microbiota may participate in regulating ovarian follicular development via SCFAs affecting granulosa cells apoptosis in sows.
Collapse
Affiliation(s)
- Baoyang Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Wenxia Qin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Yuwen Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Yimei Tang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Shuyi Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Juncheng Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China.
| |
Collapse
|
7
|
Grześkowiak Ł, Saliu EM, Martínez-Vallespín B, Aschenbach JR, Brockmann GA, Fulde M, Hartmann S, Kuhla B, Lucius R, Metges CC, Rothkötter HJ, Vahjen W, Wessels AG, Zentek J. Dietary fiber and its role in performance, welfare, and health of pigs. Anim Health Res Rev 2022; 23:165-193. [PMID: 36688278 DOI: 10.1017/s1466252322000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dietary fiber (DF) is receiving increasing attention, and its importance in pig nutrition is now acknowledged. Although DF for pigs was frowned upon for a long time because of reductions in energy intake and digestibility of other nutrients, it has become clear that feeding DF to pigs can affect their well-being and health. This review aims to summarize the state of knowledge of studies on DF in pigs, with an emphasis on the underlying mode of action, by considering research using DF in sows as well as suckling and weaned piglets, and fattening pigs. These studies indicate that DF can benefit the digestive tracts and the health of pigs, if certain conditions or restrictions are considered, such as concentration in the feed and fermentability. Besides the chemical composition and the impact on energy and nutrient digestibility, it is also necessary to evaluate the possible physical and physiologic effects on intestinal function and intestinal microbiota, to better understand the relation of DF to animal health and welfare. Future research should be designed to provide a better mechanistic understanding of the physiologic effects of DF in pigs.
Collapse
Affiliation(s)
- Ł Grześkowiak
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - E-M Saliu
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - B Martínez-Vallespín
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - G A Brockmann
- Breeding Biology and Molecular Animal Breeding, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - M Fulde
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - S Hartmann
- Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - B Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - R Lucius
- Institute of Molecular Parasitology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - C C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - H J Rothkötter
- Institute of Anatomy, Otto-von-Guericke-Universität, Medizinische Fakultät, Magdeburg, Germany
| | - W Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - A G Wessels
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| |
Collapse
|
8
|
Zhang Y, Lang R, Guo S, Luo X, Li H, Liu C, Dong W, Bao C, Yu Y. Intestinal microbiota and melatonin in the treatment of secondary injury and complications after spinal cord injury. Front Neurosci 2022; 16:981772. [PMID: 36440294 PMCID: PMC9682189 DOI: 10.3389/fnins.2022.981772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/24/2022] [Indexed: 09/12/2023] Open
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) disease that can cause sensory and motor impairment below the level of injury. Currently, the treatment scheme for SCI mainly focuses on secondary injury and complications. Recent studies have shown that SCI leads to an imbalance of intestinal microbiota and the imbalance is also associated with complications after SCI, possibly through the microbial-brain-gut axis. Melatonin is secreted in many parts of the body including pineal gland and gut, effectively protecting the spinal cord from secondary damage. The secretion of melatonin is affected by circadian rhythms, known as the dark light cycle, and SCI would also cause dysregulation of melatonin secretion. In addition, melatonin is closely related to the intestinal microbiota, which protects the barrier function of the gut through its antioxidant and anti-inflammatory effects, and increases the abundance of intestinal microbiota by influencing the metabolism of the intestinal microbiota. Furthermore, the intestinal microbiota can influence melatonin formation by regulating tryptophan and serotonin metabolism. This paper summarizes and reviews the knowledge on the relationship among intestinal microbiota, melatonin, and SCI in recent years, to provide new theories and ideas for clinical research related to SCI treatment.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui Lang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shunyu Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Huiting Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Cencen Liu
- Department of Pathology, People’s Hospital of Zhongjiang County, Deyang, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Changshun Bao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Zhuo Y, Yang P, Hua L, Zhu L, Zhu X, Han X, Pang X, Xu S, Jiang X, Lin Y, Che L, Fang Z, Feng B, Wang J, Li J, Wu D, Huang J, Jin C. Effects of Chronic Exposure to Diets Containing Moldy Corn or Moldy Wheat Bran on Growth Performance, Ovarian Follicular Pool, and Oxidative Status of Gilts. Toxins (Basel) 2022; 14:toxins14060413. [PMID: 35737074 PMCID: PMC9230446 DOI: 10.3390/toxins14060413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Background: We investigated the effect of replacing normal corn (NC) or normal wheat bran (NW) with moldy corn (MC) or moldy wheat bran (MW) on growth, ovarian follicular reserves, and oxidative status. Methods: Sixty-three Landrace × Yorkshire gilts were assigned to seven diets formulated by using MC to replace 0% (control), 25% (25% MC), 50% (50% MC), 75% (75% MC), and 100% NC (100% MC), MW to replace 100% NW (100% MW), and MC and MW to replace 100% NC and 100% NW (100% MC + MW), from postnatal day 110 to day 19 of the second estrous cycle. Results: Feeding the gilts with MC or MW induced a lower average daily gain at days 29−56 of the experiment. Age at puberty remained unchanged, but MC inclusion resulted in a linear decrease in antral follicles with diameter >3.0 mm, and control gilts had a 12.7 more large antral follicles than gilts in the 100% MC + MW treatment. MC inclusion linearly decreased the numbers of primordial follicles, growing follicles, and corpora lutea, associated with a lower anti-Müllerian hormone level in serum and 17β-estradiol level in follicular fluid. MC inclusion decreased the serum concentrations of insulin-like growth factor 1 and its mRNA levels in the liver, combined with higher malondialdehyde concentration and lower total superoxide dismutase activities in serum and liver. Conclusion: Chronic exposure to MC-containing diets caused the loss of follicles, even if levels of deoxynivalenol, zearalenone, and aflatoxin B1 were below the levels allowed by China and Europe standards.
Collapse
Affiliation(s)
- Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Pu Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Lei Zhu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinfa Han
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Xiaoxue Pang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
| | - Jiankui Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
- Guangxi Shangda Technology, Co., Ltd., Guangxi Research Center for Nutrition and Engineering Technology of Breeding Swine, Nanning 530105, China
- Correspondence: (J.H.); (C.J.)
| | - Chao Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (P.Y.); (L.H.); (L.Z.); (X.Z.); (X.H.); (X.P.); (S.X.); (X.J.); (Y.L.); (L.C.); (Z.F.); (B.F.); (J.W.); (J.L.); (D.W.)
- Correspondence: (J.H.); (C.J.)
| |
Collapse
|
10
|
Yang M, Hua L, Mao Z, Lin Y, Xu S, Li J, Jiang X, Wu D, Zhuo Y, Huang J. Effects of Dietary Fiber, Crude Protein Level, and Gestation Stage on the Nitrogen Utilization of Multiparous Gestating Sows. Animals (Basel) 2022; 12:ani12121543. [PMID: 35739881 PMCID: PMC9219437 DOI: 10.3390/ani12121543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
To investigate the effects of dietary fiber (DF), crude protein (CP) level, and gestation stage on nitrogen utilization, 28 Landrace-Yorkshire cross gestating sows at parity two were randomly divided into four dietary treatments with seven duplicates of one pig with a repeated-measures design. The diets comprised one with normal crude protein (CP) of 13.3%, one with a low CP diet of 10.1%, and two diets, one with dietary fiber (DF) supplementation of inulin and cellulose at the ratio of 1:1 and one without DF. The total litter size, litter size alive, and newborn birthweight of piglets did not differ between treatment groups. Sows that received high DF levels had greater nitrogen output in feces, lower urinary nitrogen, and increased nitrogen retention. Sows that received a low CP diet had reduced nitrogen excretion in feces and urine, lower nitrogen retention, and an unchanged nitrogen retention ratio. Sows at the late stage of gestation on days 95 to 98 had lower nitrogen excretion in urine and greater nitrogen retention than in the early stage of gestation on days 35 to 38, associated with a significant decrease in serum amino acids in late gestation. Maternal protein deposition was increased by high DF, decreased by low CP, and lower in late gestation compared with early gestation. Collectively, DF improved nitrogen utilization by decreasing urine nitrogen output, and nitrogen utilization increased as gestation advanced.
Collapse
Affiliation(s)
- Min Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu 611130, China
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
| | - Zhengyu Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
- Correspondence: (Y.Z.); (J.H.)
| | - Jiankui Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
- Guangxi Shangda Technology, Co., Ltd., Guangxi Research Center for Nutrition and Engineering Technology of Breeding Swine, Nanning 530105, China
- Correspondence: (Y.Z.); (J.H.)
| |
Collapse
|
11
|
Li Y, Yang M, Zhang L, Mao Z, Lin Y, Xu S, Fang Z, Che L, Feng B, Li J, Zhuo Y, Wu D. Dietary Fiber Supplementation in Gestating Sow Diet Improved Fetal Growth and Placental Development and Function Through Serotonin Signaling Pathway. Front Vet Sci 2022; 9:831703. [PMID: 35647096 PMCID: PMC9133666 DOI: 10.3389/fvets.2022.831703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The experiment was conducted to investigate the effects of dietary fiber (DF) supplementation in gestation diet on fetal growth and placental development and function and explore the possible mechanism of DF improving sow reproductive performance. A total of 16 Large White × Landrace crossbred gilts were randomly allotted to two groups and fed a semi-purified basal diet [non-fiber (NF) group, 0.1% total DF] or a basal diet supplemented with 8.33 g/kg inulin and 200 g/kg cellulose [Fiber (F) group] during the gestation period. On day 106 of gestation, five sows per group were chosen and slaughtered for sample collection. Results showed that DF supplementation during gestation increased the total fetal weight and placental weight on day 106 of gestation; elevated serum serotonin concentration; increased concentrations of serotonin and short-chain fatty acids (acetate, propionate, and butyrate), as well as tryptophan hydroxylase 1 expression, in colon; elevated serotonin and progesterone concentrations and up-regulated the serotonin transporter, cytochrome P450 11A1, and insulin-like growth factor 2 expressions in the placenta. Besides, the sows in the F group had microbial community structures distinct from those in the NF group. Supplementation of DF in gestation diet increased the Coprococcus 3 abundance that was positively correlated with colonic serotonin concentration, while significantly decreasing the Family XIII AD3011 group abundance which was negatively correlated with colonic serotonin concentration. Above all, DF supplementation in the gestation diet could increase placental serotonin levels by promoting maternal serotonin synthesis in the colon and the transport from the mother to the placenta in sows, and then improve placental development and function, finally promoting fetal growth. Our findings provided insight into the mechanisms of DF improving sow reproductive performance.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Min Yang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu, China
| | - Lijia Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yong Zhuo
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- De Wu
| |
Collapse
|
12
|
Zhuo Y, Hua L, Che L, Fang Z, Lin Y, Xu S, Wang J, Li J, Feng B, Wu D. Dietary Fiber Supplementation in Replacement Gilts Improves the Reproductive Performance From the Second to Fifth Parities. Front Vet Sci 2022; 9:839926. [PMID: 35558883 PMCID: PMC9088012 DOI: 10.3389/fvets.2022.839926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/17/2022] [Indexed: 12/04/2022] Open
Abstract
This study examined the effects of soluble fiber (SF) supplementation (0.8%), containing 17.4% rhamnose, 4.1% fucose, 11.1% arabinose, 30.6% xylose, and 16.4% galactose during the prepubescent phase on the subsequent performance from the second to fifth parities. After the first parity, 56 and 55 post-weaning sows in the control (CON) and SF groups had their reproductive performance monitored in succeeding parities. Circulating concentrations of anti-mullerian hormone (AMH) were greater in the SF group than in the CON group at 205 d of age and the first post-weaning day (p < 0.05). The SF treatment at the prepubescent phase resulted in an enhanced reproductive performance from parities three to five. In Parity three, the SF sows had 1.32 total born (p = 0.044), 1.43 born alive (p = 0.023) and 1.40 born effective, which was significantly more than in the CON group (p = 0.022). In Parity four, the SF sows had 1.1 total born (p = 0.058), 1.28 born alive (p = 0.019), and 1.06 born effective, significantly more than in the CON group (p = 0.049). In Parity five, the SF gilts had 1.43 total born (p = 0.075), 1.53 born alive (p = 0.067) and 1.65 born effective, significantly more than in the CON group (p = 0.020). No effects were observed for the removal of sows and backfat thickness at the mating in each parity between groups (p > 0.05). Collectively, gilts that received an extra 0.8% SF during the prepubescent phase increased their subsequent litter size as breeding sows. These results showed that nutritional decisions at the replacement phase could influence lifetime fertility.
Collapse
|
13
|
Zhuo Y, Huang Y, He J, Hua L, Xu S, Li J, Che L, Lin Y, Feng B, Wu D. Effects of Corn and Broken Rice Extrusion on the Feed Intake, Nutrient Digestibility, and Gut Microbiota of Weaned Piglets. Animals (Basel) 2022; 12:ani12070818. [PMID: 35405808 PMCID: PMC8997032 DOI: 10.3390/ani12070818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Extruded cereals are largely used in newly weaned piglet diets to increase nutrient digestibility and palatability. Our findings showed that corn and broken rice extrusion diets generated negative effects on average daily feed intake (−63.5 g/day, p = 0.054) and average daily gain (−60.6 g/d, p = 0.015) in weaned piglets. Decreased feed intake was associated with increased plasma levels of the gut-derived hormones, glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), which may have been attributed to increased microbiota pathogen abundance, including Sarcina, Clostridium_sensu_strictio_1, and Terrisporobacter, and decreased short-chain fatty acid-producing microbiota, such as Lactobaillaceae and Bifidobateriaceae. Our results showed that extruded cereals should be used cautiously when formulating diets for newly weaned piglets. Abstract In this study, we investigated the effects of corn and rice extrusion diets on feed intake, nutrient digestibility, and gut microbiota in weaned piglets. Animals were divided into four dietary groups and fed a controlled diet containing (1) 62.17% corn (CORN), 15% soybean, 10% extruded full-fat soybean, and 6% fishmeal (2) half the corn replaced by extruded corn (ECORN), (3) broken rice (RICE), and (4) extruded broken rice (ERICE) for 28 days. Rice supplementation increased dry matter total tract digestibility and gross energy. Extruded cereals generated a lower average daily feed intake (ADFI) at 15–28 and 1–28 days, decreased average daily growth (ADG) at 15–28 and 1–28 days, and a lowered body weight (BW) on day 28, regardless of cereal type. Dietary extruded cereals increased the appetite-regulating hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Piglets fed extruded cereals displayed low short-chain fatty acid (SCFA) levels in plasma and low Lactobaillaceae and Bifidobateriaceae levels in feces, whereas a higher abundance of the potential pathogens Sarcina, Clostridium_sensu_strictio_1 and Terrisporobacter was observed. Piglets fed extruded cereals displayed significantly lower gas and SCFA levels during in vitro fermentation. Combined, 50% corn substituted with extruded corn or broken rice decreased piglet growth performance, possibly by altering their microbiota.
Collapse
|
14
|
Xu S, Tang L, Xu H, Yang Y, Cao M, Chen S, Jiang X, Li J, Lin Y, Che L, Fang Z, Feng B, Zhuo Y, Wang J, Wu D. Effects of Energy and Dietary Fiber on the Breast Development in Gilt. Front Vet Sci 2022; 9:830392. [PMID: 35359671 PMCID: PMC8960423 DOI: 10.3389/fvets.2022.830392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
To study the effects of energy and dietary fiber on breast development in gilts and its possible mechanisms, 32 gilts (Landrace × Yorkshire) were randomly allocated into a 2 × 2 factorial design to receive a diet with low or high energy [LE: 33.37 MJ/d digestible energy (DE); HE: 41.87 MJ/d DE] and low or high fiber (LF: 0.3 kg/d dietary fiber, HF: 0.6 kg/d dietary fiber). The weight of breast tissue was recorded. The mammary glands were collected for further analyses. The high energy intake increased the relative weight of breast tissue (p < 0.05) and the content of breast fat (p < 0.05). At the same time, the oil red staining of breast slices also showed an increase in breast fat content in high-energy treatment. High energy intake increased the DNA concentration in breast tissues (p < 0.05). In addition, high energy intake increased the concentration of triglycerides, free fatty acids, and total cholesterol in the blood of gilts (p < 0.05), and the supplementation of high fiber tended to reduce free fatty acids, total cholesterol, and estradiol (p < 0.1). Proteomic analysis suggested that there were notable differences in the cytoskeleton, intracellular non–membrane-bounded organelle, apoptosis, receptor activity, and endopeptidase inhibitor activity in molecular function between the energy and fiber effects (p < 0.05). High fiber intake also decreased the mRNA expression of 5-HT7, Bax, and caspase-3 in the breast tissue of gilts (p < 0.05), which further confirmed the importance of fiber in regulating breast development in gilt. Our results indicate that increasing gilt energy intake improved breast weight and fat deposition and increased breast cell apoptosis. Increased fiber intake reduced breast fat deposition and breast cell apoptosis at high energy intake in gilts. These results provide a potential strategy for dietary intervention against high energy intake in gilts and even in humans.
Collapse
Affiliation(s)
- Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
- *Correspondence: Shengyu Xu
| | - Lianchao Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Haitao Xu
- Animal Husbandry Development Center of Changyi City, Changyi, China
| | - Yi Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Meng Cao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Sirun Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
- De Wu
| |
Collapse
|
15
|
Peng X, Huang Y, Wang G, He Y, Hu L, Fang Z, Lin Y, Xu S, Feng B, Li J, Tang J, Hua L, Jiang X, Zhuo Y, Che L, Wu D. Maternal Long-Term Intake of Inulin Improves Fetal Development through Gut Microbiota and Related Metabolites in a Rat Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1840-1851. [PMID: 35129337 DOI: 10.1021/acs.jafc.1c07284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adequate dietary fiber intake during gestation is critical for maternal-fetal health. This experiment aims to uncover the impacts of maternal long-term intake of inulin on fetal development and its underlying mechanism. Eighty female Sprague-Dawley rats were randomly assigned to two groups receiving either a fiber-free diet or an inulin diet (inulin) for three parities. On the 19th day of pregnancy in the third parity, blood, intestinal, placental, and colonic digesta samples were collected. Results showed that maternal intake of inulin significantly decreased the within-litter birth weight variation in parities 2 and 3. Inulin intake modified the gut microbiome profiles and elevated the colonic contents of short chain fatty acids (propionate and butyrate). Inulin decreased the serotonin (5-HT) concentration in the colon, whereas it increased the 5-HT concentrations in serum and placenta and the number of 5-HT+ enterochromaffin cells in the colon. The protein expression of melatonin-synthesizing enzyme (arylalkylamine N-acetyltransferase) and the melatonin concentration in the placenta were also increased by inulin. Inulin improved the placental redox status and nutrient transport. These findings indicated that maternal long-term intake of inulin improves fetal development by altering the intestinal microbiota and related metabolites in rats.
Collapse
Affiliation(s)
- Xie Peng
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingyan Huang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guixiang Wang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying He
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Hu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Li
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
16
|
Men Z, Cao M, Gong Y, Hua L, Zhang R, Zhu X, Tang L, Jiang X, Xu S, Li J, Che L, Lin Y, Feng B, Fang Z, Wu D, Zhuo Y. Microbial and metabolomic mechanisms mediating the effects of dietary inulin and cellulose supplementation on porcine oocyte and uterine development. J Anim Sci Biotechnol 2022; 13:14. [PMID: 35033192 PMCID: PMC8760789 DOI: 10.1186/s40104-021-00657-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background Dietary fiber (DF) is often eschewed in swine diet due to its anti-nutritional effects, but DF is attracting growing attention for its reproductive benefits. The objective of this study was to investigate the effects of DF intake level on oocyte maturation and uterine development, to determine the optimal DF intake for gilts, and gain microbial and metabolomic insight into the underlying mechanisms involved. Methods Seventy-six Landrace × Yorkshire (LY) crossbred replacement gilts of similar age (92.6 ± 0.6 d; mean ± standard deviation [SD]) and body weight (BW, 33.8 ± 3.9 kg; mean ± SD) were randomly allocated to 4 dietary treatment groups (n = 19); a basal diet without extra DF intake (DF 1.0), and 3 dietary groups ingesting an extra 50% (DF 1.5), 75% (DF 1.75), and 100% (DF 2.0) dietary fiber mixture consisting of inulin and cellulose (1:4). Oocyte maturation and uterine development were assessed on 19 d of the 2nd oestrous cycle. Microbial diversity of faecal samples was analysed by high-throughput pyrosequencing (16S rRNA) and blood samples were subjected to untargeted metabolomics. Results The rates of oocytes showing first polar bodies after in vitro maturation for 44 h and uterine development increased linearly with increasing DF intake; DF 1.75 gilts had a 19.8% faster oocyte maturation rate and a 48.9 cm longer uterus than DF 1.0 gilts (P < 0.05). Among the top 10 microbiota components at the phylum level, 8 increased linearly with increasing DF level, and the relative abundance of 30 of 53 microbiota components at the genus level (> 0.1%) increased linearly or quadratically with increasing DF intake. Untargeted metabolic analysis revealed significant changes in serum metabolites that were closely associated with microbiota, including serotonin, a gut-derived signal that stimulates oocyte maturation. Conclusions The findings provide evidence of the benefits of increased DF intake by supplementing inulin and cellulose on oocyte maturation and uterine development in gilts, and new microbial and metabolomic insight into the mechanisms mediating the effects of DF on reproductive performance of replacement gilts. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00657-0.
Collapse
Affiliation(s)
- Zhaoyue Men
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Meng Cao
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Yuechan Gong
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Ruihao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xin Zhu
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Lianchao Tang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
17
|
Wang H, Xia P, Lu Z, Su Y, Zhu W. Metabolome-Microbiome Responses of Growing Pigs Induced by Time-Restricted Feeding. Front Vet Sci 2021; 8:681202. [PMID: 34239912 PMCID: PMC8258120 DOI: 10.3389/fvets.2021.681202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/20/2021] [Indexed: 01/25/2023] Open
Abstract
Time-restricted feeding (TRF) mode is a potential strategy in improving the health and production of farm animals. However, the effect of TRF on microbiota and their metabolism in the large intestine of the host remains unclear. Therefore, the present study aimed to investigate the responses of microbiome and metabolome induced by TRF based on a growing-pig model. Twelve crossbred growing barrows were randomly allotted into two groups with six replicates (1 pig/pen), namely, the free-access feeding group (FA) and TRF group. Pigs in the FA group were fed free access while the TRF group were fed free access within a regular time three times per day at 07:00–08:00, 12:00–13:00, and 18:00–19:00, respectively. Results showed that the concentrations of NH4-N, putrescine, cadaverine, spermidine, spermine, total biogenic amines, isobutyrate, butyrate, isovalerate, total SCFA, and lactate were increased while the pH value in the colonic digesta and the concentration of acetate was decreased in the TRF group. The Shannon index was significantly increased in the TRF group; however, no significant effects were found in the Fisher index, Simpson index, ACE index, Chao1 index, and observed species between the two groups. In the TRF group, the relative abundances of Prevotella 1 and Eubacterium ruminantium group were significantly increased while the relative abundances of Clostridium sensu sticto 1, Lactobacillus, and Eubacterium coprostanoligenes group were decreased compared with the FA group. PLS-DA analysis revealed an obvious and regular variation between the FA and TRF groups, further pathway enrichment analysis showed that these differential features were mainly enriched in pyrimidine metabolism, nicotinate and nicotinamide metabolism, glycerolipid metabolism, and fructose and mannose metabolism. In addition, Pearson's correlation analysis indicated that the changes in the microbial genera were correlated with the colonic metabolites. In conclusion, these results together indicated that although the overall microbial composition in the colon was not changed, TRF induced the gradient changes of the nutrients and metabolites which were correlated with certain microbial genera including Lactobacillus, Eubacterium_ruminantium group, Eubacterium coprostanoligenes group, Prevotella 1, and Clostridium sensu sticto 1. However, more studies are needed to understand the impacts of TRF on the health and metabolism of growing pigs.
Collapse
Affiliation(s)
- Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Pengke Xia
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Zhiyang Lu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Yang M, Mao Z, Jiang X, Cozannet P, Che L, Xu S, Lin Y, Fang Z, Feng B, Wang J, Li J, Wu D, Zhuo Y. Dietary fiber in a low-protein diet during gestation affects nitrogen excretion in primiparous gilts, with possible influences from the gut microbiota. J Anim Sci 2021; 99:6237918. [PMID: 33871635 DOI: 10.1093/jas/skab121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
We investigated the effects of dietary fiber (DF) supplementation in normal or low crude protein (CP) diets on reproductive performance and nitrogen (N) utilization in primiparous gilts. In total, 77 Landrace × Yorkshire pregnant gilts were randomly allocated to four dietary treatments in a 2 × 2 factorial design. The groups comprised 1) equal intake of normal CP (12.82% and 0.61% total lysine), 2) low CP (LP) (10.53% and 0.61% total lysine), and 3) with or 4) without DF supplementation (cellulose, inulin, and pectin in a 34:10:1 ratio). A low-protein diet during gestation significantly reduced daily weight gain from days 91 to 110 of pregnancy (-162.5 g/d, P = 0.004). From N balance trials conducted at days 35 to 38, 65 to 68, and 95 to 98 of pregnancy, DF addition increased fecal N excretion at days 65 to 68 (+24.1%) and 95 to 98 (+13.8%) of pregnancy (P < 0.05) but reduced urinary N excretion (P < 0.05), resulting in greater N retention at each gestational stage. DF increased fecal microbial protein levels and excretion during gestation. An LP diet also reduced urinary N excretion at different gestational stages. An in vitro fermentation trial on culture media with nonprotein N urea and ammonium bicarbonate (NH4HCO3) as the only N sources revealed that microbiota derived from feces of gestating gilts fed the high DF diet exhibited a greater capacity to convert nonprotein N to microbial protein. Microbial fecal diversity, as measured by 16S rRNA sequencing, revealed significant changes from DF but not CP diets. Gilts fed an LP diet had a higher number of stillbirths (+0.83 per litter, P = 0.046) and a lower piglet birth weight (1.52 vs. 1.37 kg, P = 0.006), regardless of DF levels. Collectively, DF supplementation to gestation diets shifted N excretion from urine to feces in the form of microbial protein, suggesting that the microbiota had a putative role in controlling N utilization from DF. Additionally, a low-protein diet during gestation negatively affected the litter performance of gilts.
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China.,Chengdu Agricultural College, Wenjiang, Chengdu 611130, People's Republic of China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | | | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Jianping Wang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| |
Collapse
|
19
|
Hua L, Zhao L, Mao Z, Li W, Li J, Jiang X, Che L, Xu S, Lin Y, Fang Z, Feng B, Wu D, Zhuo Y. Beneficial effects of a decreased meal frequency on nutrient utilization, secretion of luteinizing hormones and ovarian follicular development in gilts. J Anim Sci Biotechnol 2021; 12:41. [PMID: 33820556 PMCID: PMC8022406 DOI: 10.1186/s40104-021-00564-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Replacement gilts are typically fed ad libitum, whereas emerging evidence from human and rodent studies has revealed that time-restricted access to food has health benefits. The objective of this study was to investigate the effect of meal frequency on the metabolic status and ovarian follicular development in gilts. Methods A total of 36 gilts (Landrace × Yorkshire) with an age of 150±3 d and a body weight of 77.6±3.8 kg were randomly allocated into one of three groups (n = 12 in each group), and based on the group allocation, the gilts were fed at a frequency of one meal (T1), two meals (T2), or six meals per day (T6) for 14 consecutive weeks. The effects of the meal frequency on growth preference, nutrient utilization, short-chain fatty acid production by gut microbial, the post-meal dynamics in the metabolic status, reproductive hormone secretions, and ovarian follicular development in the gilts were measured. Results The gilts in the T1 group presented a higher average daily gain (+ 48 g/d, P < 0.05) and a higher body weight (+ 4.9 kg, P < 0.05) than those in the T6 group. The meal frequency had no effect on the apparent digestibility of dry matter, crude protein, ether extract, ash, and gross energy, with the exception that the T1 gilts exhibited a greater NDF digestibility than the T6 gilts (P < 0.05). The nitrogen balance analysis revealed that the T1 gilts presented decreased urine excretion of nitrogen (− 8.17 g/d, P < 0.05) and higher nitrogen retention (+ 9.81 g/d, P < 0.05), and thus exhibited higher nitrogen utilization than the T6 gilts. The time-course dynamics of glucose, α-amino nitrogen, urea, lactate, and insulin levels in serum revealed that the T1 group exhibited higher utilization of nutrients after a meal than the T2 or T6 gilts. The T1 gilts also had a higher acetate content and SCFAs in feces than the T6 gilts (P < 0.05). The age, body weight and backfat thickness of the gilts at first estrous expression were not affected by the meal frequency, but the gilts in the T1 group had higher levels of serum luteinizing hormone on the 18th day of the 3rd estrus cycle and 17β-estradiol, a larger number of growing follicles and corpora lutea, and higher mRNA expression levels of genes related to follicular development on the 19th day of the 3rd estrus cycle. Conclusions The current findings revealed the benefits of a lower meal frequency equal feed intake on nutrient utilization and reproductive function in replacement gilts, and thus provide new insights into the nutritional strategy for replacement gilts, and the dietary pattern for other mammals, such as humans.
Collapse
Affiliation(s)
- Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Lianpeng Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Zhengyu Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Wentao Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Jing Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China. .,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China. .,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
20
|
Zhang Y, Yin C, Schroyen M, Everaert N, Ma T, Zhang H. Effects of the Inclusion of Fermented Mulberry Leaves and Branches in the Gestational Diet on the Performance and Gut Microbiota of Sows and Their Offspring. Microorganisms 2021; 9:604. [PMID: 33804202 PMCID: PMC7998242 DOI: 10.3390/microorganisms9030604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Fermented feed mulberry (FFM), being rich in dietary fiber, has not been fully evaluated to be used in sow's diet. In this study, we investigated the effects of 25.5% FFM supplemented in gestation diets on the performance and gut microbiota of sows and their offspring. Results showed that the serum concentration of glucose, progesterone, and estradiol were not affected by the dietary treatment, while the level of serum insulin and fecal short chain fatty acid were both reduced in FFM group on gestation day 60 (G60, p < 0.05). Additionally, FFM increased both voluntary feed intake and weaning litter weight (p < 0.05), while decreased the losses of both Backfat thickness and bodyweight throughout lactation (p < 0.05). 16S rRNA sequencing showed FFM supplementation significantly increased the diversity and relative abundance of sows' fecal microbiota on G60 (p < 0.05). The differential microbiota for sows from FFM group was that Bacteroidetes was increased on G60 while Firmicutes were decreased on Lactation day 7 (L7, p < 0.05), and which for the FFM piglets was that both unclassified_f_Lachnospiraceae on L0 and norank_f_Ruminococcaceae on L7 were increased (p < 0.05). In short, FFM can be recognized as a potential feed ingredient used in sow's diet.
Collapse
Affiliation(s)
- Yuping Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (C.Y.); (H.Z.)
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (M.S.); (N.E.)
| | - Chang Yin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (C.Y.); (H.Z.)
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (M.S.); (N.E.)
| | - Nadia Everaert
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (M.S.); (N.E.)
| | - Teng Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (C.Y.); (H.Z.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (C.Y.); (H.Z.)
| |
Collapse
|