1
|
Sharma P, Khetarpal P. Genetic Determinants of Selenium Availability, Selenium-Response, and Risk of Polycystic Ovary Syndrome. Biol Trace Elem Res 2024; 202:4843-4857. [PMID: 38227265 DOI: 10.1007/s12011-023-04052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Selenium is a trace element and its deficiency has been associated with the risk of PCOS, a multifactorial syndrome that affects a large number of women worldwide. Several databases and literature were searched to find out genetic variants of the genes involved in selenium uptake, metabolism, and regulation which may be significantly associated with the risk of PCOS through Se-related pathways. Genes that require selenium for their biological actions to perform were also shortlisted. A total of eighteen significantly associated genes with forty-four variants were identified as candidate variants that could play a potential role in the modulation of PCOS risk among the study population. The genetic variant distribution data was available in-house and was obtained through a GWAS study of the North India population. In silico tools were applied to understand the functional impact of these variants. Three variants namely LDLR (rs2228671), TNF (rs1041981), and SAA2 (rs2468844) are strongly associated with PCOS risk and have a functional impact on encoded protein. Certain variants of Se uptake genes such as DIO1, GPX2, TXNRD1, DIO2 and GPX3 are also significantly associated with the risk of PCOS development. "C" allele of the Se transporter gene SELENOP (rs9686343) significantly increases PCOS risk. Other potential genes require selenium for their biological actions and are involved in the inflammatory, antioxidant response, and energy homeostasis signaling pathways. Thus, genetic variants of the population may affect the Se availability in the body. Also, deficiency of Se effects may get modulated due to underlying genetic polymorphism of Se-associated genes. This information may be helpful in dosage adjustment of Se supplementation for a population in order to get maximum benefits.
Collapse
Affiliation(s)
- Priya Sharma
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Preeti Khetarpal
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
2
|
Leite JMRS, Pereira JL, Alves de Souza C, Pavan Soler JM, Mingroni-Netto RC, Fisberg RM, Rogero MM, Sarti FM. Novel loci linked to serum lipid traits are identified in a genome-wide association study of a highly admixed Brazilian population - the 2015 ISA Nutrition. Lipids Health Dis 2024; 23:229. [PMID: 39060932 PMCID: PMC11282745 DOI: 10.1186/s12944-024-02085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) comprise major causes of death worldwide, leading to extensive burden on populations and societies. Alterations in normal lipid profiles, i.e., dyslipidemia, comprise important risk factors for CVDs. However, there is lack of comprehensive evidence on the genetic contribution to dyslipidemia in highly admixed populations. The identification of single nucleotide polymorphisms (SNPs) linked to blood lipid traits in the Brazilian population was based on genome-wide associations using data from the São Paulo Health Survey with Focus on Nutrition (ISA-Nutrition). METHODS A total of 667 unrelated individuals had genetic information on 330,656 SNPs available, and were genotyped with Axiom™ 2.0 Precision Medicine Research Array. Genetic associations were tested at the 10- 5 significance level for the following phenotypes: low-density lipoprotein cholesterol (LDL-c), very low-density lipoprotein cholesterol (VLDL-c), high-density lipoprotein cholesterol (HDL-c), HDL-c/LDL-c ratio, triglycerides (TGL), total cholesterol, and non-HDL-c. RESULTS There were 19 significantly different SNPs associated with lipid traits, the majority of which corresponding to intron variants, especially in the genes FAM81A, ZFHX3, PTPRD, and POMC. Three variants (rs1562012, rs16972039, and rs73401081) and two variants (rs8025871 and rs2161683) were associated with two and three phenotypes, respectively. Among the subtypes, non-HDL-c had the highest proportion of associated variants. CONCLUSIONS The results of the present genome-wide association study offer new insights into the genetic structure underlying lipid traits in underrepresented populations with high ancestry admixture. The associations were robust across multiple lipid phenotypes, and some of the phenotypes were associated with two or three variants. In addition, some variants were present in genes that encode ncRNAs, raising important questions regarding their role in lipid metabolism.
Collapse
Affiliation(s)
| | | | | | - Júlia M Pavan Soler
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | | | - Regina M Fisberg
- School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo M Rogero
- School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Flavia M Sarti
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Zhao J, Zou H, Huo Y, Wei X, Li Y. Emerging roles of selenium on metabolism and type 2 diabetes. Front Nutr 2022; 9:1027629. [PMID: 36438755 PMCID: PMC9686347 DOI: 10.3389/fnut.2022.1027629] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 07/22/2023] Open
Abstract
Selenium is recognized as an essential element for human health and enters human body mainly via diet. Selenium is a key constituent in selenoproteins, which exert essential biological functions, including antioxidant and anti-inflammatory effects. Several selenoproteins including glutathione peroxidases, selenoprotein P and selenoprotein S are known to play roles in the regulation of type 2 diabetes. Although there is a close association between certain selenoproteins with glucose metabolism or insulin resistance, the relationship between selenium and type 2 diabetes is complex and remains uncertain. Here we review recent advances in the field with an emphasis on roles of selenium on metabolism and type 2 diabetes. Understanding the association between selenium and type 2 diabetes is important for developing clinical practice guidelines, establishing and implementing effective public health policies, and ultimately combating relative health issues.
Collapse
|
4
|
Effects of Regular Brazil Nut ( Bertholletia excelsa H.B.K.) Consumption on Health: A Systematic Review of Clinical Trials. Foods 2022; 11:foods11182925. [PMID: 36141050 PMCID: PMC9498495 DOI: 10.3390/foods11182925] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The Brazil nut (BN) is a promising food due to its numerous health benefits, but it is still necessary to systematically review the scientific evidence on these benefits. Thus, we examined the effects of regular BN consumption on health markers in humans according to the health state (with specific diseases or not) of the subjects. PubMed, Embase®, and Scielo databases were used to search for clinical trials. The PRISMA guideline was used to report the review, and the risk of bias for all studies was assessed. Twenty-four studies were included in the present review, of which fifteen were non-randomized. BNs were consumed in the context of a habitual free-living diet in all studies. Improvement in antioxidant status through increased levels of selenium and/or glutathione peroxidase activity in plasma, serum, whole blood, and/or erythrocytes was observed in all studies that evaluated antioxidant status, regardless of the health state of the sample. In addition, healthy subjects improved lipid markers and fasting glucose. Subjects with obesity had improvement in markers of lipid metabolism. Subjects with type 2 diabetes mellitus or dyslipidemia improved oxidative stress or DNA damage. Subjects undergoing hemodialysis benefited greatly from BN consumption, as they improved lipid profile markers, oxidative stress, inflammation, and thyroid function. Older adults with mild cognitive impairment improved verbal fluency and constructional praxis, and controversial results regarding the change in a marker of lipid peroxidation were observed in subjects with coronary artery disease. In conclusion, the benefits of BN consumption were found in different pathways of action and study populations.
Collapse
|
5
|
Yu R, Wang Z, Ma M, Xu P, Liu L, Tinkov AA, Lei XG, Zhou JC. Associations between Circulating SELENOP Level and Disorders of Glucose and Lipid Metabolism: A Meta-Analysis. Antioxidants (Basel) 2022; 11:1263. [PMID: 35883754 PMCID: PMC9311835 DOI: 10.3390/antiox11071263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Selenoprotein P (SELENOP) is an extracellular antioxidant, selenium transporter, and hepatokine interfering with glucose and lipid metabolism. To study the association between the circulating SELENOP concentration and glucose and lipid metabolic diseases (GLMDs), including gestational diabetes (GD), metabolic syndrome (MetS), non-alcoholic fatty liver disease, obesity, and type 2 diabetes, as well as the individual markers, a meta-analysis was conducted by searching multiple databases from their establishment through March 2022 and including 27 articles published between October 2010 and May 2021, involving 4033 participants. Participants with GLMDs had higher levels of SELENOP than those without GLMDs (standardized mean difference = 0.84, 95% CI: 0.16 to 1.51), and the SELENOP levels were positively correlated with the markers of GLMDs (pooled effect size = 0.09, 95% CI: 0.02 to 0.15). Subgroup analyses showed that the SELENOP concentrations were higher in women with GD and lower in individuals with MetS than their counterparts, respectively. Moreover, SELENOP was positively correlated with low-density lipoprotein cholesterol, but not with the other markers of GLMDs. Thus, the heterogenicity derived from diseases or disease markers should be carefully considered while interpreting the overall positive association between SELENOP and GLMDs. Studies with a larger sample size and advanced design are warranted to confirm these findings.
Collapse
Affiliation(s)
- Ruirui Yu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Zhoutian Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Miaomiao Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Ping Xu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China;
| | - Longjian Liu
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA;
| | - Alexey A. Tinkov
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA;
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou 510080, China
| |
Collapse
|
6
|
Coutinho-Wolino KS, da Cruz BO, Cardozo LFMDF, Fernandes IA, Mesquita CT, Stenvinkel P, Bergman P, Mafra D, Stockler-Pinto MB. Brazil nut supplementation does not affect trimethylamine-n-oxide plasma levels in patients with coronary artery disease. J Food Biochem 2022; 46:e14201. [PMID: 35467017 DOI: 10.1111/jfbc.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/26/2022]
Abstract
The purposes of this study were to assess the effect of Brazil nut supplementation on trimethylamine N-oxide (TMAO) levels and glutathione peroxidase (GPx) activity in patients with coronary artery disease (CAD). Patients with CAD were randomly assigned to two groups, Brazil nut group (23 patients, 48% male, 62.7 ± 6.8 years, 29.4 ± 5.8 kg/m2 ), which received one Brazil nut per day for 3 months, and the control group (14 patients, 43% male, 63.7 ± 8.7 years, 28.4 ± 4.2 kg/m2 ) who did not receive any supplementation. After 3 months, TMAO levels and their precursors did not change in either group. Although not significant, GPx activity increased by 41% in the Brazil nut group. TMAO levels were negatively associated with total fiber intake (r = -0.385 and p = .02). A 3-month Brazil nut supplementation did not change TMAO levels and GPx activity in CAD patients. PRACTICAL APPLICATIONS: Trimethylamine N-oxide (TMAO) has been associated with oxidative stress and cardiovascular disease risk. Thus, the increase in antioxidants enzymes production could be a promising strategy to reduce TMAO-mediated oxidative stress. In this context, nutritional strategies are well-known as activators of cellular antioxidant responses. As Brazil nuts have a known role in reducing oxidative stress by increasing glutathione peroxidase (GPx) activity (a selenium-dependent antioxidant enzyme), this study hypothesized that Brazil nuts could be a strategy that, via antioxidant capacity, would reduce TMAO plasma levels. Although no changes in TMAO levels and GPx activity can be observed in this study, it is believed that other results can be obtained depending on the dosage used. Thus, this study can open new paths and direct other studies with different doses and treatment times to evaluate the effects of Brazil Nuts on TMAO levels.
Collapse
Affiliation(s)
- Karen Salve Coutinho-Wolino
- Postgraduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil.,Postgraduate Program in Cardiovascular Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Beatriz Oliveira da Cruz
- Postgraduate Program in Cardiovascular Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Ludmila F M De F Cardozo
- Postgraduate Program in Cardiovascular Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Igor Alexandre Fernandes
- Postgraduate Program in Biomedical Sciences (Physiology and Pharmacology), Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - Claudio Tinoco Mesquita
- Postgraduate Program in Cardiovascular Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Peter Stenvinkel
- Renal Medicine and Baxter Novum, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Denise Mafra
- Postgraduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil.,Postgraduate Program in Cardiovascular Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil.,Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Milena Barcza Stockler-Pinto
- Postgraduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil.,Postgraduate Program in Cardiovascular Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
7
|
Zazueta C, Jimenez-Uribe AP, Pedraza-Chaverri J, Buelna-Chontal M. Genetic Variations on Redox Control in Cardiometabolic Diseases: The Role of Nrf2. Antioxidants (Basel) 2022; 11:antiox11030507. [PMID: 35326157 PMCID: PMC8944632 DOI: 10.3390/antiox11030507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
The transcription factor Nrf2 is a master regulator of multiple cytoprotective genes that maintain redox homeostasis and exert anti-inflammatory functions. The Nrf2-Keap1 signaling pathway is a paramount target of many cardioprotective strategies, because redox homeostasis is essential in cardiovascular health. Nrf2 gene variations, including single nucleotide polymorphisms (SNPs), are correlated with cardiometabolic diseases and drug responses. SNPs of Nrf2, KEAP1, and other related genes can impair the transcriptional activation or the activity of the resulting protein, exerting differential susceptibility to cardiometabolic disease progression and prevalence. Further understanding of the implications of Nrf2 polymorphisms on basic cellular processes involved in cardiometabolic diseases progression and prevalence will be helpful to establish more accurate protective strategies. This review provides insight into the association between the polymorphisms of Nrf2-related genes with cardiometabolic diseases. We also briefly describe that SNPs of Nrf2-related genes are potential modifiers of the pharmacokinetics that contribute to the inter-individual variability.
Collapse
Affiliation(s)
- Cecilia Zazueta
- Departmento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, I.Ch., Mexico City 14080, Mexico;
| | - Alexis Paulina Jimenez-Uribe
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.P.J.-U.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.P.J.-U.); (J.P.-C.)
| | - Mabel Buelna-Chontal
- Departmento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, I.Ch., Mexico City 14080, Mexico;
- Correspondence:
| |
Collapse
|
8
|
Pharmacogenomics of statins: lipid response and other outcomes in Brazilian cohorts. Pharmacol Rep 2021; 74:47-66. [PMID: 34403130 DOI: 10.1007/s43440-021-00319-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 01/20/2023]
Abstract
Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in cholesterol biosynthesis, that are highly effective in reducing plasma low-density lipoprotein (LDL) cholesterol and decreasing the risk of cardiovascular events. In recent years, a multitude of variants in genes involved in pharmacokinetics (PK) and pharmacodynamics (PD) have been suggested to influence the cholesterol-lowering response. However, the vast majority of studies have analyzed the pharmacogenetic associations in populations in Europe and the USA, whereas data in other populations, including Brazil, are mostly lacking. This narrative review provides an update of clinical studies on statin pharmacogenomics in Brazilian cohorts exploring lipid-lowering response, adverse events and pleiotropic effects. We find that variants in drug transporter genes (SLCO1B1 and ABCB1) positively impacted atorvastatin and simvastatin response, whereas variants in genes of drug metabolizing enzymes (CYP3A5) decreased response. Furthermore, multiple associations of variants in PD genes (HMGCR, LDLR and APOB) with statin response were identified. Few studies have explored statin-related adverse events, and only ABCB1 but not SLCO1B1 variants were robustly associated with increased risk in Brazil. Statin-related pleiotropic effects were shown to be influenced by variants in PD (LDLR, NR1H2) and antioxidant enzyme (NOS3, SOD2, MTHFR, SELENOP) genes. The findings of these studies indicate that statin pharmacogenomic associations are distinctly different in Brazil compared to other populations. This review also discusses the clinical implications of pharmacogenetic studies and the rising importance of investigating rare variants to explore their association with statin response.
Collapse
|
9
|
Watanabe LM, Navarro AM, Seale LA. Intersection between Obesity, Dietary Selenium, and Statin Therapy in Brazil. Nutrients 2021; 13:2027. [PMID: 34204631 PMCID: PMC8231251 DOI: 10.3390/nu13062027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/14/2023] Open
Abstract
Obesity is among the most alarming health concerns, impacting public health and causing a socioeconomic challenge, especially in developing countries like Brazil, where approximately one quart of the population presents obesity. As an established risk factor for numerous comorbidities with a multifactorial etiology, obesity is a consequence of energy-dense overfeeding, however with significant undernourishment, leading to excessive adipose tissue accumulation and dysfunction, dyslipidemia, and micronutrient deficiencies. About 60% of patients with obesity take statins, a cholesterol-lowering medication, to curb dyslipidemia, with ~10% of these patients presenting various myopathies as side effects. Statins act upon the rate-limiting enzyme of cholesterol biosynthesis in the liver, which is a pathway providing intermediates to the synthesis of selenoproteins, i.e., enzymes containing the micronutrient selenium. Statins have been postulated to negatively impact selenoprotein synthesis, particularly in conditions of selenium deficiency, and potentially implicated in the myopathies occurring as side effects of statins. The Brazilian population is prone to selenium deficiency, hence could be considered more susceptible to statin side effects. This review examines the specific consequences to the Brazilian population of the harmful intersection between obesity development and concomitant micronutrient deficiencies, particularly selenium, combined with statin treatment in the context of nutrition in Brazil.
Collapse
Affiliation(s)
- Ligia M. Watanabe
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, University of São Paulo—FMRP/USP, Ribeirão Preto 14040-900, SP, Brazil; (L.M.W.); (A.M.N.)
| | - Anderson M. Navarro
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, University of São Paulo—FMRP/USP, Ribeirão Preto 14040-900, SP, Brazil; (L.M.W.); (A.M.N.)
| | - Lucia A. Seale
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|