1
|
Lewis JI, Mbabazi J, Mutumba R, Ritz C, Filteau S, Briend A, Michaelsen KF, Mølgaard C, Wells JC, Mupere E, Friis H, Grenov B. Correlates of Body Composition in Children with Stunting: A Cross-sectional Study in Uganda. J Nutr 2024; 154:3105-3115. [PMID: 39111553 DOI: 10.1016/j.tjnut.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Development of body composition (BC) may be disrupted in children with stunting. Such disruption may affect the later risk of excess adiposity and metabolic health, yet few studies have investigated correlates of BC in children with stunting. OBJECTIVES We aimed to investigate nutritional status, infection and inflammation, breastfeeding behaviors, and other factors as correlates of BC in children with stunting. METHODS Among Ugandan children with a height-for-age z-score <-2, BC was estimated using bioelectrical impedance analysis and compared with United Kingdom references. We used multiple linear regression analysis to identify correlates of fat mass (FM), fat-free mass (FFM), FM-index (FMI), and FFM index (FFMI) and height, adjusting for gender and age. RESULTS In 750 children aged 1-5 y, FMI was 0.46 (95% confidence interval [CI]: 0.38, 0.54] and FFMI 0.18 [95% CI: 0.11, 0.26) z-scores lower than United Kingdom references. Elevated serum α1-acid glycoprotein was associated with 1.14 [0.76, 1.52] cm lower height, 0.50 [0.35, 0.65] kg/m2 less FFMI, and 0.48 [0.31, 0.66] kg/m2 greater FMI. Similar, weaker, associations for elevated serum C-reactive protein were detected. A positive malaria rapid test was associated with 0.64 [0.25, 1.02] cm shorter height, but 0.36 [0.18, 0.54] kg/m2 greater FMI. Anemia (according to hemoglobin) was associated with 0.20 [0.07, 0.33] kg less FFM in proportion to shorter height. Longer breastfeeding duration was associated with 0.03 [0.02, 0.04] kg greater FFM per month, in proportion to greater height. CONCLUSIONS These children exhibited deficits in FM and FFM, proportionally to their stunted height, compared with United Kingdom references. Systemic inflammation correlated inversely with linear growth and FFM but positively with fatness, making it a possible target for intervention where fat-free tissue accretion is desirable. Longer breastfeeding may offer protection to lean linear growth, but findings for micronutrients were less clear. Longitudinal studies are warranted to support these findings. The study was registered at www.isrctn.com (Ref. ISRCTN13093195).
Collapse
Affiliation(s)
- Jack I Lewis
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Mbabazi
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics and Child Health, School of Medicine College of Health Sciences, Makerere University, Kampala, Uganda
| | - Rolland Mutumba
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics and Child Health, School of Medicine College of Health Sciences, Makerere University, Kampala, Uganda
| | - Christian Ritz
- The National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Suzanne Filteau
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - André Briend
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Tampere Centre for Child Health Research, Tampere University, Tampere, Finland
| | - Kim F Michaelsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Christian Mølgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan C Wells
- Childhood Nutrition Research Centre, Population, Policy, and Practice Research and Teaching Department, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ezekiel Mupere
- Department of Pediatrics and Child Health, School of Medicine College of Health Sciences, Makerere University, Kampala, Uganda
| | - Henrik Friis
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Benedikte Grenov
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Thind MK, Miraglia E, Ling C, Khan MA, Glembocki A, Bourdon C, ChenMi Y, Palaniyar N, Glogauer M, Bandsma RHJ, Farooqui A. Mitochondrial perturbations in low-protein-diet-fed mice are associated with altered neutrophil development and effector functions. Cell Rep 2024; 43:114493. [PMID: 39028622 PMCID: PMC11372442 DOI: 10.1016/j.celrep.2024.114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
Severe malnutrition is associated with infections, namely lower respiratory tract infections (LRTIs), diarrhea, and sepsis, and underlies the high risk of morbidity and mortality in children under 5 years of age. Dysregulations in neutrophil responses in the acute phase of infection are speculated to underlie these severe adverse outcomes; however, very little is known about their biology in this context. Here, in a lipopolysaccharide-challenged low-protein diet (LPD) mouse model, as a model of malnutrition, we show that protein deficiency disrupts neutrophil mitochondrial dynamics and ATP generation to obstruct the neutrophil differentiation cascade. This promotes the accumulation of atypical immature neutrophils that are incapable of optimal antimicrobial response and, in turn, exacerbate systemic pathogen spread and the permeability of the alveolocapillary membrane with the resultant lung damage. Thus, this perturbed response may contribute to higher mortality risk in malnutrition. We also offer a nutritional therapeutic strategy, nicotinamide, to boost neutrophil-mediated immunity in LPD-fed mice.
Collapse
Affiliation(s)
- Mehakpreet K Thind
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Emiliano Miraglia
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Catriona Ling
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Meraj A Khan
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aida Glembocki
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Celine Bourdon
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - YueYing ChenMi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert H J Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya.
| | - Amber Farooqui
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya.
| |
Collapse
|
3
|
Knappett M, Nguyen V, Chaudhry M, Trawin J, Kabakyenga J, Kumbakumba E, Jacob ST, Ansermino JM, Kissoon N, Mugisha NK, Wiens MO. Pediatric post-discharge mortality in resource-poor countries: a systematic review and meta-analysis. EClinicalMedicine 2024; 67:102380. [PMID: 38204490 PMCID: PMC10776442 DOI: 10.1016/j.eclinm.2023.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Background Under-five mortality remains concentrated in resource-poor countries. Post-discharge mortality is becoming increasingly recognized as a significant contributor to overall child mortality. With a substantial recent expansion of research and novel data synthesis methods, this study aims to update the current evidence base by providing a more nuanced understanding of the burden and associated risk factors of pediatric post-discharge mortality after acute illness. Methods Eligible studies published between January 1, 2017 and January 31, 2023, were retrieved using MEDLINE, Embase, and CINAHL databases. Studies published before 2017 were identified in a previous review and added to the total pool of studies. Only studies from countries with low or low-middle Socio-Demographic Index with a post-discharge observation period greater than seven days were included. Risk of bias was assessed using a modified version of the Joanna Briggs Institute critical appraisal tool for prevalence studies. Studies were grouped by patient population, and 6-month post-discharge mortality rates were quantified by random-effects meta-analysis. Secondary outcomes included post-discharge mortality relative to in-hospital mortality, pooled risk factor estimates, and pooled post-discharge Kaplan-Meier survival curves. PROSPERO study registration: #CRD42022350975. Findings Of 1963 articles screened, 42 eligible articles were identified and combined with 22 articles identified in the previous review, resulting in 64 total articles. These articles represented 46 unique patient cohorts and included a total of 105,560 children. For children admitted with a general acute illness, the pooled risk of mortality six months post-discharge was 4.4% (95% CI: 3.5%-5.4%, I2 = 94.2%, n = 11 studies, 34,457 children), and the pooled in-hospital mortality rate was 5.9% (95% CI: 4.2%-7.7%, I2 = 98.7%, n = 12 studies, 63,307 children). Among disease subgroups, severe malnutrition (12.2%, 95% CI: 6.2%-19.7%, I2 = 98.2%, n = 10 studies, 7760 children) and severe anemia (6.4%, 95% CI: 4.2%-9.1%, I2 = 93.3%, n = 9 studies, 7806 children) demonstrated the highest 6-month post-discharge mortality estimates. Diarrhea demonstrated the shortest median time to death (3.3 weeks) and anemia the longest (8.9 weeks). Most significant risk factors for post-discharge mortality included unplanned discharges, severe malnutrition, and HIV seropositivity. Interpretation Pediatric post-discharge mortality rates remain high in resource-poor settings, especially among children admitted with malnutrition or anemia. Global health strategies must prioritize this health issue by dedicating resources to research and policy innovation. Funding No specific funding was received.
Collapse
Affiliation(s)
- Martina Knappett
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
| | - Vuong Nguyen
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
| | - Maryum Chaudhry
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
| | - Jessica Trawin
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
| | - Jerome Kabakyenga
- Maternal Newborn & Child Health Institute, Mbarara University of Science and Technology, Mbarara, Uganda
- Faculty of Medicine, Dept of Community Health, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Elias Kumbakumba
- Dept of Paediatrics and Child Health, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Shevin T. Jacob
- Walimu, Plot 5-7, Coral Crescent, Kololo, P.O. Box 9924, Kampala, Uganda
- Dept of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - J. Mark Ansermino
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
- Dept of Anesthesia, Pharmacology & Therapeutics, University of British Columbia, 217-2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Niranjan Kissoon
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
- BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Dept of Pediatrics, BC Children’s Hospital, University of British Columbia, Rm 2D19, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | | | - Matthew O. Wiens
- Institute for Global Health, BC Children’s Hospital and BC Women’s Hospital + Health Centre, 305-4088 Cambie Street, Vancouver, BC V5Z 2X8, Canada
- Walimu, Plot 5-7, Coral Crescent, Kololo, P.O. Box 9924, Kampala, Uganda
- Dept of Anesthesia, Pharmacology & Therapeutics, University of British Columbia, 217-2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
4
|
Phiri TN, Mutasa K, Rukobo S, Govha M, Mushayanembwa P, Mwakamui S, Haider T, Zyambo K, Dumbura C, Tome J, Runodamoto T, Chidamba L, Majo FD, Ngosa D, Chandwe K, Kapoma C, Mwapenya B, Mufukari W, Sturgeon JP, Robertson RC, Smuk M, Ntozini R, Nathoo K, Amadi B, Kelly P, Bwakura-Dangarembizi M, Prendergast AJ, Bourke CD. Severe acute malnutrition promotes bacterial binding over proinflammatory cytokine secretion by circulating innate immune cells. SCIENCE ADVANCES 2023; 9:eadh2284. [PMID: 37910623 PMCID: PMC10619937 DOI: 10.1126/sciadv.adh2284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Children with severe acute malnutrition (SAM) have high infectious mortality and morbidity, implicating defects in their immune defenses. We hypothesized that circulating innate immune cells from children (0 to 59 months) hospitalized with SAM in Zambia and Zimbabwe (n = 141) have distinct capacity to respond to bacteria relative to adequately nourished healthy controls (n = 92). SAM inpatients had higher neutrophil and monocyte Escherichia coli binding capacity but lower monocyte activation and proinflammatory mediator secretion in response to lipopolysaccharide or heat-killed Salmonella typhimurium than controls. Among SAM cases, wasting severity was negatively associated with cytokine secretion, children with HIV had lower monocyte activation, and the youngest children released the least myeloperoxidase upon stimulation. Inpatient bacterial binding capacity and monocyte activation were associated with higher odds of persistent SAM at discharge, a risk factor for subsequent mortality. Thus, SAM shifts innate immune cell function, favoring bacterial containment over proinflammatory activation, which may contribute to health deficits after discharge.
Collapse
Affiliation(s)
- Tracy N. Phiri
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Sandra Rukobo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Margaret Govha
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Simutanyi Mwakamui
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
| | - Tafhima Haider
- Blizard Institute, Queen Mary University of London, London, UK
| | - Kanekwa Zyambo
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
| | - Cherlynn Dumbura
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Joice Tome
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Leah Chidamba
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Florence D. Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Deophine Ngosa
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
| | - Kanta Chandwe
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
| | - Chanda Kapoma
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
| | - Benjamin Mwapenya
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Wadzanai Mufukari
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Jonathan P. Sturgeon
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | | | - Melanie Smuk
- Blizard Institute, Queen Mary University of London, London, UK
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Kusum Nathoo
- Department of Paediatrics and Child Health, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Beatrice Amadi
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
| | - Paul Kelly
- Tropical Gastroenterology and Nutrition group (TROPGAN), University of Zambia School of Medicine, Lusaka, Zambia
- Blizard Institute, Queen Mary University of London, London, UK
| | - Mutsa Bwakura-Dangarembizi
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Department of Paediatrics and Child Health, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Andrew J. Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Claire D. Bourke
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|