1
|
Kuikman MA, McKay AKA, Minahan C, Harris R, Elliott-Sale KJ, Stellingwerff T, Smith ES, McCormick R, Tee N, Skinner J, Ackerman KE, Burke LM. Effect of Menstrual Cycle Phase and Hormonal Contraceptives on Resting Metabolic Rate and Body Composition. Int J Sport Nutr Exerc Metab 2024; 34:207-217. [PMID: 38653456 DOI: 10.1123/ijsnem.2023-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 04/25/2024]
Abstract
The cyclical changes in sex hormones across the menstrual cycle (MC) are associated with various biological changes that may alter resting metabolic rate (RMR) and body composition estimates. Hormonal contraceptive (HC) use must also be considered given their impact on endogenous sex hormone concentrations and synchronous exogenous profiles. The purpose of this study was to determine if RMR and dual-energy X-ray absorptiometry body composition estimates change across the MC and differ compared with HC users. This was accomplished during a 5-week training camp involving naturally cycling athletes (n = 11) and HC users (n = 7 subdermal progestin implant, n = 4 combined monophasic oral contraceptive pill, n = 1 injection) from the National Rugby League Indigenous Women's Academy. MC phase was retrospectively confirmed via serum estradiol and progesterone concentrations and a positive ovulation test. HC users had serum estradiol and progesterone concentrations assessed at the time point of testing. Results were analyzed using general linear mixed model. There was no effect of MC phase on absolute RMR (p = .877), relative RMR (p = .957), or dual-energy X-ray absorptiometry body composition estimates (p > .05). There was no effect of HC use on absolute RMR (p = .069), relative RMR (p = .679), or fat mass estimates (p = .766), but HC users had a greater fat-free mass and lean body mass than naturally cycling athletes (p = .028). Our findings suggest that RMR and dual-energy X-ray absorptiometry body composition estimates do not significantly differ due to changes in sex hormones in a group of athletes, and measurements can be compared between MC phases or with HC usage without variations in sex hormones causing additional noise.
Collapse
Affiliation(s)
- Megan A Kuikman
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Alannah K A McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Clare Minahan
- Griffith Sports Science, Griffith University, Gold Coast, QLD, Australia
- Female Performance and Health Initiative, Australian Institute of Sport, Canberra, ACT, Australia
| | - Rachel Harris
- Female Performance and Health Initiative, Australian Institute of Sport, Canberra, ACT, Australia
- Perth Orthopaedic and Sports Medicine Research Institute, West Perth, WA, Australia
| | - Kirsty J Elliott-Sale
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Trent Stellingwerff
- Canadian Sport Institute-Pacific, Pacific Institute for Sport Excellence, Victoria, BC, Canada
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Ella S Smith
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Rachel McCormick
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Nicolin Tee
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | | | - Kathryn E Ackerman
- Female Athlete Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Reho JJ, Muskus PC, Bennett DM, Grobe CC, Burnett CML, Nakagawa P, Segar JL, Sigmund CD, Grobe JL. Modulatory effects of estrous cycle on ingestive behaviors and energy balance in young adult C57BL/6J mice maintained on a phytoestrogen-free diet. Am J Physiol Regul Integr Comp Physiol 2024; 326:R242-R253. [PMID: 38284128 PMCID: PMC11213288 DOI: 10.1152/ajpregu.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The estrous cycle is known to modify food, fluid, and electrolyte intake behaviors and energy homeostasis in various species, in part through fluctuations in estrogen levels. Simultaneously, commonly commercially available rodent dietary formulations greatly vary in soy protein content, and thereby the delivery of biologically active phytoestrogens. To explore the interactions among the estrous cycle, sodium, fluid, and caloric seeking behaviors, and energy homeostasis, young adult C57BL/6J female mice were maintained on a soy protein-free 2920x diet and provided water, or a choice between water and 0.15 mol/L NaCl drink solution. Comprehensive metabolic phenotyping was performed using a multiplexed Promethion (Sable Systems International) system, and estrous stages were determined via daily vaginal cytology. When provided food and water, estrous cycling had no major modulatory effects on intake behaviors or energy balance. When provided a saline solution drink choice, significant modulatory effects of the transition from diestrus to proestrus were observed upon fluid intake patterning, locomotion, and total energy expenditure. Access to saline increased total daily sodium consumption and aspects of energy expenditure, but these effects were not modified by the estrous stage. Collectively, these results indicate that when supplied a phytoestrogen-free diet, the estrous cycle has minor modulatory effects on ingestive behaviors and energy balance in C57BL/6J mice that are sensitive to sodium supply.NEW & NOTEWORTHY When provided a phytoestrogen-free diet, the estrous cycle had very little effect on food and water intake, physical activity, or energy expenditure in C57BL/6J mice. In contrast, when provided an NaCl drink in addition to food and water, the estrous cycle was associated with changes in intake behaviors and energy expenditure. These findings highlight the complex interactions among estrous cycling, dietary formulation, and nutrient presentation upon ingestive behaviors and energy homeostasis in mice.
Collapse
Affiliation(s)
- John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Patricia C Muskus
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Darby M Bennett
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Connie C Grobe
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Colin M L Burnett
- Department of Medicine/Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|