1
|
Abstract
Advances in genomics have led to an appreciation that introgression is common, but its evolutionary consequences are poorly understood. In recent species radiations the sharing of genetic variation across porous species boundaries can facilitate adaptation to new environments and generate novel phenotypes, which may contribute to further diversification. Most Anopheles mosquito species that are of major importance as human malaria vectors have evolved within recent and rapid radiations of largely nonvector species. Here, we focus on one of the most medically important yet understudied anopheline radiations, the Afrotropical Anopheles funestus complex (AFC), to investigate the role of introgression in its diversification and the possible link between introgression and vector potential. The AFC comprises at least seven morphologically similar species, yet only An. funestus sensu stricto is a highly efficient malaria vector with a pan-African distribution. Based on de novo genome assemblies and additional whole-genome resequencing, we use phylogenomic and population genomic analyses to establish species relationships. We show that extensive interspecific gene flow involving multiple species pairs has shaped the evolutionary history of the AFC since its diversification. The most recent introgression event involved a massive and asymmetrical movement of genes from a distantly related AFC lineage into An. funestus, an event that predated and plausibly facilitated its subsequent dramatic geographic range expansion across most of tropical Africa. We propose that introgression may be a common mechanism facilitating adaptation to new environments and enhancing vectorial capacity in Anopheles mosquitoes.
Collapse
|
2
|
Mouatcho J, Cornel AJ, Dahan-Moss Y, Koekemoer LL, Coetzee M, Braack L. Detection of Anopheles rivulorum-like, a member of the Anopheles funestus group, in South Africa. Malar J 2018; 17:195. [PMID: 29764433 PMCID: PMC5952852 DOI: 10.1186/s12936-018-2353-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
Background The Anopheles gambiae sensu lato (s.l.) and Anopheles funestus s.l. species complexes contain the most important malaria vectors in Africa. Within the An. funestus group of at least 11 African species, the vector status of all but the nominal species An. funestus appears poorly investigated, although evidence exists that Anopheles rivulorum and Anopheles vaneedeni may play minor roles. A new species, An. rivulorum-like, was described from Burkina Faso in 2000 and subsequently also found in Cameroon and Zambia. This is the first paper reporting the presence of this species in South Africa, thereby significantly extending its known range. Methods Mosquitoes were collected using dry-ice baited net traps and CDC light traps in the Kruger National Park, South Africa. Sixty-four An. funestus s.l. among an overall 844 mosquitoes were captured and identified to species level using the polymerase chain reaction assay. All samples were also analysed for the presence of Plasmodium falciparum circumsporozoite protein using the enzyme-linked-immunosorbent assay. Results Four members of the An. funestus group were identified: An. rivulorum-like (n = 49), An. rivulorum (n = 11), Anopheles parensis (n = 2) and Anopheles leesoni (n = 1). One mosquito could not be identified. No evidence of P. falciparum was detected in any of the specimens. Conclusion This is the first report of An. rivulorum-like south of Zambia, and essentially extends the range of this species from West Africa down to South Africa. Given the continental-scale drive towards malaria elimination and the challenges faced by countries in the elimination phase to understand and resolve residual transmission, efforts should be directed towards determining the largely unknown malaria vector potential of members of the An. funestus group and other potential secondary vectors.
Collapse
Affiliation(s)
- Joel Mouatcho
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, University of Pretoria, Pretoria, South Africa
| | - Anthony J Cornel
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, University of Pretoria, Pretoria, South Africa.,Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
| | - Yael Dahan-Moss
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Leo Braack
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
3
|
Erlank E, Koekemoer LL, Coetzee M. The importance of morphological identification of African anopheline mosquitoes (Diptera: Culicidae) for malaria control programmes. Malar J 2018; 17:43. [PMID: 29357873 PMCID: PMC5778787 DOI: 10.1186/s12936-018-2189-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/15/2018] [Indexed: 01/03/2023] Open
Abstract
Background The correct identification of disease vectors is the first step towards implementing an effective control programme. Traditionally, for malaria control, this was based on the morphological differences observed in the adults and larvae between different mosquito species. However, the discovery of species complexes meant that genetic tools were needed to separate the sibling species and today there are standard molecular techniques that are used to identify the two major malaria vector groups of mosquitoes. On the assumption that species-diagnostic DNA polymerase chain reaction (PCR) assays are highly species-specific, experiments were conducted to investigate what would happen if non-vector species were randomly included in the molecular assays. Methods Morphological keys for the Afrotropical Anophelinae were used to provide the a priori identifications. All mosquito specimens were then subjected to the standard PCR assays for members of the Anopheles gambiae complex and Anopheles funestus group. Results One hundred and fifty mosquitoes belonging to 11 morphological species were processed. Three species (Anopheles pretoriensis, Anopheles rufipes and Anopheles rhodesiensis) amplified members of the An. funestus group and four species (An. pretoriensis, An. rufipes, Anopheles listeri and Anopheles squamosus) amplified members of the An. gambiae complex. Conclusions Morphological identification of mosquitoes prior to PCR assays not only saves time and money in the laboratory, but also ensures that data received by malaria vector control programmes are useful for targeting the major vectors.
Collapse
Affiliation(s)
- Erica Erlank
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multidisciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multidisciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multidisciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa.
| |
Collapse
|
4
|
Stevenson JC, Norris DE. Implicating Cryptic and Novel Anophelines as Malaria Vectors in Africa. INSECTS 2016; 8:E1. [PMID: 28025486 PMCID: PMC5371929 DOI: 10.3390/insects8010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022]
Abstract
Entomological indices and bionomic descriptions of malaria vectors are essential to accurately describe and understand malaria transmission and for the design and evaluation of appropriate control interventions. In order to correctly assign spatio-temporal distributions, behaviors and responses to interventions to particular anopheline species, identification of mosquitoes must be accurately made. This paper reviews the current methods and their limitations in correctly identifying anopheline mosquitoes in sub-Saharan Africa, and highlights the importance of molecular methods to discriminate cryptic species and identify lesser known anophelines. The increasing number of reports of Plasmodium infections in assumed "minor", non-vector, and cryptic and novel species is reviewed. Their importance in terms of evading current control and elimination strategies and therefore maintaining malaria transmission is emphasized.
Collapse
Affiliation(s)
- Jennifer C Stevenson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Macha Research Trust, Choma P.O. Box 630166, Southern Province, Zambia.
| | - Douglas E Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Lobo NF, St Laurent B, Sikaala CH, Hamainza B, Chanda J, Chinula D, Krishnankutty SM, Mueller JD, Deason NA, Hoang QT, Boldt HL, Thumloup J, Stevenson J, Seyoum A, Collins FH. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools. Sci Rep 2015; 5:17952. [PMID: 26648001 PMCID: PMC4673690 DOI: 10.1038/srep17952] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/09/2015] [Indexed: 11/21/2022] Open
Abstract
The understanding of malaria vector species in association with their bionomic traits is vital for targeting malaria interventions and measuring effectiveness. Many entomological studies rely on morphological identification of mosquitoes, limiting recognition to visually distinct species/species groups. Anopheles species assignments based on ribosomal DNA ITS2 and mitochondrial DNA COI were compared to morphological identifications from Luangwa and Nyimba districts in Zambia. The comparison of morphological and molecular identifications determined that interpretations of species compositions, insecticide resistance assays, host preference studies, trap efficacy, and Plasmodium infections were incorrect when using morphological identification alone. Morphological identifications recognized eight Anopheles species while 18 distinct sequence groups or species were identified from molecular analyses. Of these 18, seven could not be identified through comparison to published sequences. Twelve of 18 molecularly identified species (including unidentifiable species and species not thought to be vectors) were found by PCR to carry Plasmodium sporozoites - compared to four of eight morphological species. Up to 15% of morphologically identified Anopheles funestus mosquitoes in insecticide resistance tests were found to be other species molecularly. The comprehension of primary and secondary malaria vectors and bionomic characteristics that impact malaria transmission and intervention effectiveness are fundamental in achieving malaria elimination.
Collapse
Affiliation(s)
- Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Brandyce St Laurent
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Chadwick H Sikaala
- National Malaria Control Centre, Chainama Hospital College Grounds, Off Great East road, P.O. Box 32509, Lusaka, Zambia
| | - Busiku Hamainza
- National Malaria Control Centre, Chainama Hospital College Grounds, Off Great East road, P.O. Box 32509, Lusaka, Zambia
| | - Javan Chanda
- National Malaria Control Centre, Chainama Hospital College Grounds, Off Great East road, P.O. Box 32509, Lusaka, Zambia
| | - Dingani Chinula
- National Malaria Control Centre, Chainama Hospital College Grounds, Off Great East road, P.O. Box 32509, Lusaka, Zambia
| | | | - Jonathan D Mueller
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Nicholas A Deason
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Quynh T Hoang
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Heather L Boldt
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Julie Thumloup
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Jennifer Stevenson
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.; and Macha Research Trust, Choma, Zambia
| | - Aklilu Seyoum
- Abt Associates, Africa Indoor Residual Spraying Project Ghana office, Accra, Ghana
| | - Frank H Collins
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA 46556
| |
Collapse
|
6
|
Norris LC, Norris DE. Phylogeny of anopheline (Diptera: Culicidae) species in southern Africa, based on nuclear and mitochondrial genes. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2015; 40:16-27. [PMID: 26047180 PMCID: PMC4882763 DOI: 10.1111/jvec.12128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/25/2014] [Indexed: 05/21/2023]
Abstract
A phylogeny of anthropophilic and zoophilic anopheline mosquito species was constructed, using the nuclear internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome oxidase subunit I (COI) genes. The ITS2 alignment, typically difficult due to its noncoding nature and large size variations, was aided by using predicted secondary structure, making this phylogenetically useful gene more amenable to investigation. This phylogeny is unique in explicitly including zoophilic, non-vector anopheline species in order to illustrate their relationships to malaria vectors. Two new, cryptic species, Anopheles funestus-like and Anopheles rivulorum-like, were found to be present in Zambia for the first time. Sequences from the D3 region of the 28S rDNA suggest that the Zambian An. funestus-like may be a hybrid or geographical variant of An. funestus-like, previously reported in Malawi. This is the first report of An. rivulorum-like sympatric with An. rivulorum (Leeson), suggesting that these are separate species rather than geographic variants.
Collapse
Affiliation(s)
- Laura C Norris
- Pathology, Microbiology, and Immunology Department, University of California, Davis, Davis, CA 95616, U.S.A..
| | - Douglas E Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, U.S.A
| |
Collapse
|
7
|
Guelbeogo WM, Sagnon N, Liu F, Besansky NJ, Costantini C. Behavioural divergence of sympatric Anopheles funestus populations in Burkina Faso. Malar J 2014; 13:65. [PMID: 24559382 PMCID: PMC3937823 DOI: 10.1186/1475-2875-13-65] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/20/2014] [Indexed: 12/13/2022] Open
Abstract
Background In Burkina Faso, two chromosomal forms of the malaria vector Anopheles funestus, Folonzo and Kiribina, are distinguished by contrasting frequencies of shared polymorphic chromosomal inversions. Sympatric and synchronous populations of Folonzo and Kiribina mate assortatively, as indicated by a significant deficit of heterokaryotypes, and genetic associations among inversions on independently segregating chromosome arms. The present study aimed to assess, by intensive longitudinal sampling, whether sympatric Folonzo and Kiribina populations are characterized by behavioural differences in key malaria vectorial parameters. Methods The study was conducted in two adjacent villages near Ouagadougou, in the dry savanna of central Burkina Faso. Mosquito adult resting behaviour of both forms was compared based on parallel indoor/outdoor collections across six breeding seasons; 8,235 fully karyotyped samples of half-gravid females were analysed in total. Additionally, indoor/outdoor human biting behaviour, host selection, and Plasmodium falciparum sporozoite rate was assessed and compared between chromosomal forms. Results The Kiribina form was numerically predominant in the area. However, the Folonzo form was significantly over-represented in indoor resting collections and showed stronger post-prandial endophily, while Kiribina predominated outdoors. Neither form was statistically distinguishable in human biting behaviour, and both were more likely to seek human blood meals indoors than outside. The human blood index and sporozoite rate were comparably high in both chromosomal forms in indoor collections (>89% and >8%, respectively). Conclusions Both Kiribina and Folonzo chromosomal forms are formidable malaria vectors in Burkina Faso. However, the significantly greater tendency for the Kiribina form to rest outdoors despite its pronounced anthropophily suggests that uniform exposure of the overall An. funestus population to indoor-based vector control tools cannot be expected; Kiribina is more likely to evade indoor interventions and escape unharmed outdoors, reducing the efficacy of malaria control. Accordingly, more efficient methods to detect Kiribina and Folonzo, and a more complete understanding of their distribution and behaviour in Africa are advocated.
Collapse
Affiliation(s)
- Wamdaogo M Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou 01 BP 2208, Burkina Faso.
| | | | | | | | | |
Collapse
|
8
|
Choi KS, Coetzee M, Koekemoer LL. Simultaneous identification of the Anopheles funestus group and Anopheles longipalpis type C by PCR-RFLP. Malar J 2010; 9:316. [PMID: 21054905 PMCID: PMC2994890 DOI: 10.1186/1475-2875-9-316] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background Anopheles longipalpis is morphologically similar to the major African malaria vector Anopheles funestus at the adult stage although it is very different at the larval stage. Despite the development of the species-specific multiplex PCR assay for the An. funestus group, the genomic DNA of Anopheles longipalpis type C specimens can be amplified with the Anopheles vaneedeni and Anopheles parensis primers from this assay. The standard, species-specific An. funestus group PCR, results in the amplification of two fragments when An. longipalpis type C specimens are included in the analysis. This result can easily be misinterpreted as being a hybrid between An. vaneedeni and An. parensis. Anopheles longipalpis type C can be identified using a species-specific PCR assay but this assay is not reliable if other members of the An. funestus group, such as An. funestus, An. funestus-like and An. parensis, are included. The present study provides a multiplex assay that will identify An. longipalpis along with other common members of the African An. funestus group, including Anopheles leesoni. Methods A total of 70 specimens from six species (An. funestus, An. funestus-like, An. parensis, Anopheles rivulorum, An. vaneedeni and An. leesoni) in the An. funestus group and An. longipalpis type C from Malawi, Mozambique, South Africa and Zambia were used for the study. A restriction fragment length polymorphism (RFLP) assay was designed based on the DNA sequence information in the GenBank database. Results The enzyme, EcoRI digested only An. longipalpis type C and An. funestus-like after the species-specific An. funestus group PCR assay. The An. longipalpis and An. funestus-like digestion profiles were characterized by three fragments, 376 bp, 252 bp and 211 bp for An. longipalpis type C and two fragments, 375 bp and 15 bp for An. funestus-like. Conclusions An RFLP method for the group was developed that is more accurate and efficient than those used before. Hence, this assay would be useful for field-collected adult specimens to be identified routinely in malaria vector research and control studies.
Collapse
Affiliation(s)
- Kwang Shik Choi
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | | | | |
Collapse
|
9
|
Bertin S, Picciau L, Acs Z, Alma A, Bosco D. Molecular differentiation of four Reptalus species (Hemiptera: Cixiidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2010; 100:551-558. [PMID: 20158925 DOI: 10.1017/s0007485309990605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The cixiid species Reptalus quinquecostatus, R. cuspidatus, R. panzeri and R. melanochaetus are widely distributed in Europe and are receiving growing attention because of their potential role as phytoplasma vectors. Identifying the Reptalus species is restricted to a few specialist entomologists and relies on the morphology of the male genitalia, hampering the identification of juveniles and females. This study provides the tools for species discrimination by integrating the morphological description, which is primarily for the genus identification, with new molecular assays, based on both ribosomal and mitochondrial DNA. PCR-RFLP assays carried out on the mitochondrial cytochrome oxidase I gene (COI) with AluI provided species-specific profiles for the four Reptalus species. Amplification of a ribosomal internal transcribed spacer (ITS2) region produced species-specific fragments of different sizes for R. quinquecostatus, R. melanochaetus, R. cuspidatus and R. panzeri. The digestion of the ITS2 PCR product with TaqI allowed the discrimination of these latter two species. This molecular identification key ensures reliable results and can be successfully applied not only to adults, but also to the nymphs feeding on the roots. The identification of the nymphs (i) extends the collection period of these monovoltine species to the whole year (adults are present for a short summer period) and (ii) allows the unambiguous identification of their actual host plants because nymphs are steady on the root system while adults tend to disperse onto other plants. Fast and reliable identification of the Reptalus species provides useful help in monitoring activities and, therefore, in designing rational control strategies to protect crops from phytoplasma infection.
Collapse
Affiliation(s)
- S Bertin
- DIVAPRA - Entomologia e Zoologia applicate all'Ambiente 'Carlo Vidano', Università di Torino, Via L. da Vinci 44, 10095 Grugliasco (TO), Italy
| | | | | | | | | |
Collapse
|
10
|
Munhenga G, Masendu HT, Brooke BD, Hunt RH, Koekemoer LK. Pyrethroid resistance in the major malaria vector Anopheles arabiensis from Gwave, a malaria-endemic area in Zimbabwe. Malar J 2008; 7:247. [PMID: 19038063 PMCID: PMC2613911 DOI: 10.1186/1475-2875-7-247] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 11/28/2008] [Indexed: 11/15/2022] Open
Abstract
Background Insecticide resistance can present a major obstacle to malaria control programmes. Following the recent detection of DDT resistance in Anopheles arabiensis in Gokwe, Zimbabwe, the underlying resistance mechanisms in this population were studied. Methods Standard WHO bioassays, using 0.75% permethrin, 4% DDT, 5% malathion, 0.1% bendiocarb and 4% dieldrin were performed on wild-collected adult anopheline mosquitoes and F1 progeny of An. arabiensis reared from wild-caught females. Molecular techniques were used for species identification as well as to identify knockdown resistance (kdr) and ace-1 mutations in individual mosquitoes. Biochemical assays were used to determine the relative levels of detoxifying enzyme systems including non-specific esterases, monooxygenases and glutathione-S-transferases as well as to detect the presence of an altered acetylcholine esterase (AChE). Results Anopheles arabiensis was the predominant member of the Anopheles gambiae complex. Of the 436 An. arabiensis females, 0.5% were positive for Plasmodium falciparum infection. WHO diagnostic tests on wild populations showed resistance to the pyrethroid insecticide permethrin at a mean mortality of 47% during February 2006 and a mean mortality of 68.2% in January 2008. DDT resistance (68.4% mean mortality) was present in February 2006; however, two years later the mean mortality was 96%. Insecticide susceptibility tests on F1 An. arabiensis families reared from material from two separate collections showed an average mean mortality of 87% (n = 758) after exposure to 4% DDT and 65% (n = 587) after exposure to 0.75% permethrin. Eight families were resistant to both DDT and permethrin. Biochemical analysis of F1 families reared from collections done in 2006 revealed high activity levels of monooxygenase (48.5% of families tested, n = 33, p < 0.05), glutathione S-transferase (25.8% of families tested, n = 31, p < 0.05) and general esterase activity compared to a reference susceptible An. arabiensis colony. Knockdown resistance (kdr) and ace-IR mutations were not detected. Conclusion This study confirmed the presence of permethrin resistance in An. arabiensis populations from Gwave and emphasizes the importance of periodic and ongoing insecticide susceptibility testing of malaria vector populations whose responses to insecticide exposure may undergo rapid change over time.
Collapse
Affiliation(s)
- Givemore Munhenga
- Department of Biological Sciences, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe.
| | | | | | | | | |
Collapse
|