1
|
Prajapati MR, Kumar P, Pratap Singh R, Shanker R, Singh J, Kumar Bharti M, Singh R, Verma H, Gangwar LK, Singh Gaurav S, Kapoor N, Prakash S, Dixit R. De novo transcriptome assembly, annotation and SSR mining data of Hellula undalis (Fabr.) (Lepidoptera: Pyralidae), the cabbage webworm. J Genet Eng Biotechnol 2024; 22:100393. [PMID: 39179316 PMCID: PMC11179078 DOI: 10.1016/j.jgeb.2024.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND The cabbage webworm, Hellula undalis (Fabricius) (Lepidoptera: Pyralidae), is a significant pest of brassicas and other cruciferous plants in warm regions worldwide. Transcriptome analysis is valuable for investigation of molecular mechanisms underlying the insect development and reproduction. De novo assembly is particularly useful for acquiring complete transcriptome information of insect species when there is no reference genome available. In case of Hellula undalis, only 17 nucleotide records are currently available throughout NCBI nucleotide database. Genes associated with metabolic processes, general development, reproduction, defense and functional genomics were not previously predicted in the Hellula undalis at the genomic level. METHODS & RESULTS To address this issue, we constructed Hellula undalis transcriptome using Illumina NovaSeq6000 technology. Approximately 48 million 150 bp paired-end reads were obtained from sequencing. A total of 30,451 contigs were generated by de novo assembly of sample and were compared with the sequences in the NCBI non-redundant protein database (Nr). In total, 71 % of contigs were matched to known proteins in public databases including Nr, Gene Ontology (GO), and Cluster Orthologous Gene Database (COG), and then, contigs were mapped to 123 via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG). In addition, we compared the ortholog gene family of the Hullula undalis, transcriptome to Spodoptera frugiperda, spodotera litura and spodoptera littoralis and found that 391 orthologous gene families are specific to Hullula undalis. A total of 1,913 potential SSRs was discovered in Hullula undalis contigs. CONCLUSIONS This study is the first transcriptome data for Hullula undalis. Additionally, it serves as a valuable resource for identifying target genes and developing effective and environmentally friendly strategies for pest control.
Collapse
Affiliation(s)
- Malyaj R Prajapati
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Pankaj Kumar
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India.
| | - Reetesh Pratap Singh
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Ravi Shanker
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Jitender Singh
- Chaudhary Charan Singh University, Meerut, Uttar Pradesh 250001, India.
| | - Mahesh Kumar Bharti
- College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Rajendra Singh
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Harshit Verma
- College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - L K Gangwar
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | | | - Neelesh Kapoor
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Satya Prakash
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Rekha Dixit
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| |
Collapse
|
2
|
Mahalle RM, Bosamia TC, Chakravarty S, Srivastava K, Meena RS, Kadam US, Srivastava CP. De Novo Mining and Validating Novel Microsatellite Markers to Assess Genetic Diversity in Maruca vitrata (F.), a Legume Pod Borer. Genes (Basel) 2023; 14:1433. [PMID: 37510337 PMCID: PMC10379186 DOI: 10.3390/genes14071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Maruca vitrata (Fabricius) is an invasive insect pest capable of causing enormous economic losses to a broad spectrum of leguminous crops. Microsatellites are valuable molecular markers for population genetic studies; however, an inadequate number of M. vitrata microsatellite loci are available to carry out population association studies. Thus, we utilized this insect's public domain databases for mining expressed sequence tags (EST)-derived microsatellite markers. In total, 234 microsatellite markers were identified from 10053 unigenes. We discovered that trinucleotide repeats were the most predominant microsatellite motifs (61.53%), followed by dinucleotide repeats (23.50%) and tetranucleotide repeats (14.95%). Based on the analysis, twenty-five markers were selected for validation in M. vitrata populations collected from various regions of India. The number of alleles (Na), observed heterozygosity (Ho), and expected heterozygosity (He) ranged from 2 to 5; 0.00 to 0.80; and 0.10 to 0.69, respectively. The polymorphic loci showed polymorphism information content (PIC), ranging from 0.09 to 0.72. Based on the genetic distance matrix, the unrooted neighbor-joining dendrogram differentiated the selected populations into two discrete groups. The SSR markers developed and validated in this study will be helpful in population-level investigations of M. vitrata to understand the gene flow, demography, dispersal patterns, biotype differentiation, and host dynamics.
Collapse
Affiliation(s)
- Rashmi Manohar Mahalle
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tejas C Bosamia
- Plant Omics Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | - Snehel Chakravarty
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Kartikeya Srivastava
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Radhe S Meena
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ulhas Sopanrao Kadam
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Division of Life Science and Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chandra P Srivastava
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Botha A, Kunert KJ, Maling’a J, Foyer CH. Defining biotechnological solutions for insect control in sub‐Saharan Africa. Food Energy Secur 2020. [DOI: 10.1002/fes3.191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Anna‐Maria Botha
- Department of Genetics Stellenbosch University Stellenbosch South Africa
| | - Karl J. Kunert
- Department of Plant Sciences FABI University of Pretoria Pretoria South Africa
| | - Joyce Maling’a
- Kenya Agriculture and Livestock Organization (KALRO) Food Crops Research Institute Kitale Kenya
| | - Christine H. Foyer
- School of Biosciences College of Life and Environmental Sciences University of Birmingham, Edgbaston Birmingham UK
| |
Collapse
|
4
|
Wang YZ, Li BY, Hoffmann AA, Cao LJ, Gong YJ, Song W, Zhu JY, Wei SJ. Patterns of genetic variation among geographic and host-plant associated populations of the peach fruit moth Carposina sasakii (Lepidoptera: Carposinidae). BMC Evol Biol 2017; 17:265. [PMID: 29262770 PMCID: PMC5738824 DOI: 10.1186/s12862-017-1116-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 12/14/2017] [Indexed: 11/29/2022] Open
Abstract
Background Populations of herbivorous insects may become genetically differentiated because of local adaptation to different hosts and climates as well as historical processes, and further genetic divergence may occur following the development of reproductive isolation among populations. Here we investigate the population genetic structure of the orchard pest peach fruit moth (PFM) Carposina sasakii (Lepidoptera: Carposinidae) in China, which shows distinct biological differences when characterized from different host plants. Genetic diversity and genetic structure were assessed among populations from seven plant hosts and nine regions using 19 microsatellite loci and a mitochondrial sequence. Results Strong genetic differentiation was found among geographical populations representing distinct geographical regions, but not in host-associated populations collected from the same area. Mantel tests based on microsatellite loci indicated an association between genetic differentiation and geographical distance, and to a lesser extent environmental differentiation. Approximate Bayesian Computation analyses supported the scenario that PFM likely originated from a southern area and dispersed northwards before the last glacial maximum during the Quaternary. Conclusions Our analyses suggested a strong impact of geographical barriers and historical events rather than host plants on the genetic structure of the PFM; however, uncharacterized environmental factors and host plants may also play a role. Studies on adaptive shifts in this moth should take into account geographical and historical factors. Electronic supplementary material The online version of this article (10.1186/s12862-017-1116-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- You-Zhu Wang
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China.,Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming, 650224, China
| | - Bing-Yan Li
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China.,Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming, 650224, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Li-Jun Cao
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
| | - Ya-Jun Gong
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
| | - Wei Song
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming, 650224, China
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China.
| |
Collapse
|
5
|
Nam HY, Coates B, Kim KS, Park M, Lee JH. Characterization of 12 Novel Microsatellite Markers of Sogatella furcifera (Hemiptera: Delphacidae) Identified From Next-Generation Sequence Data. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev069. [PMID: 26163593 PMCID: PMC4535569 DOI: 10.1093/jisesa/iev069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/10/2015] [Indexed: 06/04/2023]
Abstract
The white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), is a major pest of rice and has long-range migratory behavior in Asia. Microsatellite markers (simple sequence repeats) have been widely used to determine the origins and genetic diversity of insect pests. We identified novel microsatellite loci for S. furcifera samples collected from Laos, Vietnam, and three localities in Bangladesh from next-generation Roche 454 pyrosequencing data. Size polymorphism at 12 microsatellite loci was verified for 40 adult individuals collected from Shinan, South Korea. The average number of alleles per locus was 7.92. The mean values of observed (H(o)) and expected heterozygosities (H(E)) were 0.615 and 0.757, respectively. These new microsatellite markers will be a resource for future ecological genetic studies of S. furcifera samples across more broad geographic regions in Asia and may assist in estimations of genetic differentiation and gene flow among populations for implementation of more effective management strategies to control this serious rice pest.
Collapse
Affiliation(s)
- Hwa Yeun Nam
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Brad Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, 113 Genetics Laboratory, Iowa State University, Ames, IA 50011
| | - Kyung Seok Kim
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, 113 Genetics Laboratory, Iowa State University, Ames, IA 50011
| | - Marana Park
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Joon-Ho Lee
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
6
|
Agunbiade TA, Coates BS, Datinon B, Djouaka R, Sun W, Tamò M, Pittendrigh BR. Genetic differentiation among Maruca vitrata F. (Lepidoptera: Crambidae) populations on cultivated cowpea and wild host plants: implications for insect resistance management and biological control strategies. PLoS One 2014; 9:e92072. [PMID: 24647356 PMCID: PMC3960178 DOI: 10.1371/journal.pone.0092072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/17/2014] [Indexed: 01/04/2023] Open
Abstract
Maruca vitrata Fabricius (Lepidoptera: Crambidae) is a polyphagous insect pest that feeds on a variety of leguminous plants in the tropics and subtropics. The contribution of host-associated genetic variation on population structure was investigated using analysis of mitochondrial cytochrome oxidase 1 (cox1) sequence and microsatellite marker data from M. vitrata collected from cultivated cowpea (Vigna unguiculata L. Walp.), and alternative host plants Pueraria phaseoloides (Roxb.) Benth. var. javanica (Benth.) Baker, Loncocarpus sericeus (Poir), and Tephrosia candida (Roxb.). Analyses of microsatellite data revealed a significant global FST estimate of 0.05 (P≤0.001). The program STRUCTURE estimated 2 genotypic clusters (co-ancestries) on the four host plants across 3 geographic locations, but little geographic variation was predicted among genotypes from different geographic locations using analysis of molecular variance (AMOVA; among group variation -0.68%) or F-statistics (FSTLoc = -0.01; P = 0.62). These results were corroborated by mitochondrial haplotype data (φSTLoc = 0.05; P = 0.92). In contrast, genotypes obtained from different host plants showed low but significant levels of genetic variation (FSTHost = 0.04; P = 0.01), which accounted for 4.08% of the total genetic variation, but was not congruent with mitochondrial haplotype analyses (φSTHost = 0.06; P = 0.27). Variation among host plants at a location and host plants among locations showed no consistent evidence for M. vitrata population subdivision. These results suggest that host plants do not significantly influence the genetic structure of M. vitrata, and this has implications for biocontrol agent releases as well as insecticide resistance management (IRM) for M. vitrata in West Africa.
Collapse
Affiliation(s)
- Tolulope A. Agunbiade
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| | - Brad S. Coates
- USDA–ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa, United States of America
| | | | | | - Weilin Sun
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Manuele Tamò
- International Institute of Tropical Agriculture, Cotonou, Benin
| | - Barry R. Pittendrigh
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
7
|
Agunbiade TA, Sun W, Coates BS, Djouaka R, Tamò M, Ba MN, Binso-Dabire C, Baoua I, Olds BP, Pittendrigh BR. Development of reference transcriptomes for the major field insect pests of cowpea: a toolbox for insect pest management approaches in west Africa. PLoS One 2013; 8:e79929. [PMID: 24278221 PMCID: PMC3838393 DOI: 10.1371/journal.pone.0079929] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
Cowpea is a widely cultivated and major nutritional source of protein for many people that live in West Africa. Annual yields and longevity of grain storage is greatly reduced by feeding damage caused by a complex of insect pests that include the pod sucking bugs, Anoplocnemis curvipes Fabricius (Hemiptera: Coreidae) and Clavigralla tomentosicollis Stål (Hemiptera: Coreidae); as well as phloem-feeding cowpea aphids, Aphis craccivora Koch (Hemiptera: Aphididae) and flower thrips, Megalurothrips sjostedti Trybom (Thysanoptera: Thripidae). Efforts to control these pests remain a challenge and there is a need to understand the structure and movement of these pest populations in order to facilitate the development of integrated pest management strategies (IPM). Molecular tools have the potential to help facilitate a better understanding of pest populations. Towards this goal, we used 454 pyrosequencing technology to generate 319,126, 176,262, 320,722 and 227,882 raw reads from A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti, respectively. The reads were de novo assembled into 11,687, 7,647, 10,652 and 7,348 transcripts for A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti, respectively. Functional annotation of the resulting transcripts identified genes putatively involved in insecticide resistance, pathogen defense and immunity. Additionally, sequences that matched the primary aphid endosymbiont, Buchnera aphidicola, were identified among A. craccivora transcripts. Furthermore, 742, 97, 607 and 180 single nucleotide polymorphisms (SNPs) were respectively predicted among A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti transcripts, and will likely be valuable tools for future molecular genetic marker development. These results demonstrate that Roche 454-based transcriptome sequencing could be useful for the development of genomic resources for cowpea pest insects in West Africa.
Collapse
Affiliation(s)
- Tolulope A. Agunbiade
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| | - Weilin Sun
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brad S. Coates
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | | | - Manuele Tamò
- International Institute of Tropical Agriculture, Cotonou, Benin
| | - Malick N. Ba
- Institut de l’Environnement et de Recherches Agricoles, Ouagadougou, Burkina Faso
| | | | - Ibrahim Baoua
- Institut National de la Recherche Agronomique du Niger, Maradi, Niger
| | - Brett P. Olds
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Barry R. Pittendrigh
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|