1
|
Liu L, Chen J, Jiang J, Liang J, Song Y, Chen Q, Yan F, Bai Z, Song Z, Liu J. Detection of Candidatus Liberibacter asiaticus and five viruses in individual Asian citrus psyllid in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1357163. [PMID: 38379950 PMCID: PMC10877018 DOI: 10.3389/fpls.2024.1357163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
Introduction Asian citrus psyllid (ACP, Diaphorina citri) is an important transmission vector of "Candidatus Liberibacter asiaticus" (CLas), the causal agent of Huanglongbing (HLB), the most destructive citrus disease in the world. As there are currently no HLB-resistant rootstocks or varieties, the control of ACP is an important way to prevent HLB. Some viruses of insect vectors can be used as genetically engineered materials to control insect vectors. Methods To gain knowledge on viruses in ACP in China, the prevalence of five RNA and DNA viruses was successfully determined by optimizing reverse transcription polymerase chain reaction (RT-PCR) in individual adult ACPs. The five ACP-associated viruses were identified as follows: diaphorina citri bunyavirus 2, which was newly identified by high-throughput sequencing in our lab, diaphorina citri reovirus (DcRV), diaphorina citri picorna-like virus (DcPLV), diaphorina citri bunyavirus (DcBV), and diaphorina citri densovirus-like virus (DcDV). Results DcPLV was the most prevalent and widespread ACP-associated virus, followed by DcBV, and it was detected in more than 50% of all samples tested. DcPLV was also demonstrated to propagate vertically and found more in salivary glands among different tissues. Approximately 60% of all adult insect samples were co-infected with more than one insect pathogen, including the five ACP-associated viruses and CLas. Discussion This is the first time these viruses, including the newly identified ACP-associated virus, have been detected in individual adult ACPs from natural populations in China's five major citrus-producing provinces. These results provide valuable information about the prevalence of ACP-associated viruses in China, some of which have the potential to be used as biocontrol agents. In addition, analysis of the change in prevalence of pathogens in a single insect vector is the basis for understanding the interactions between CLas, ACP, and insect viruses.
Collapse
Affiliation(s)
- Luqin Liu
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jing Chen
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Junyao Jiang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jiamei Liang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Yaqin Song
- Guangxi Academy of Specialty Crops, Guangxi Citrus Breeding and Cultivation Research Center of Engineering Technology, Guangxi, China
| | - Qi Chen
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Fuling Yan
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Ziqin Bai
- Fruit Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guizhou, China
| | - Zhen Song
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jinxiang Liu
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| |
Collapse
|
2
|
Chen L, Liu Y, Wu F, Zhang J, Cui X, Wu S, Deng X, Xu M. Citrus tristeza virus Promotes the Acquisition and Transmission of ‘Candidatus Liberibacter Asiaticus’ by Diaphorina citri. Viruses 2023; 15:v15040918. [PMID: 37112898 PMCID: PMC10143984 DOI: 10.3390/v15040918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Diaphorina citri Kuwayama (D. citri) is an insect vector of phloem-limited ‘Candidatus Liberibacter asiatus’ (CLas), the presumed pathogen of citrus Huanglongbing (HLB). Recently, our lab has preliminarily found it acquired and transmitted Citrus tristeza virus (CTV), which was previously suggested to be vectored by species of aphids. However, the influences of one of the pathogens on the acquisition and transmission efficiency of the other pathogen remain unknown. In this study, CLas and CTV acquisition and transmission by D. citri at different development stages under field and laboratory conditions were determined. CTV could be detected from the nymphs, adults, and honeydew of D. citri but not from the eggs and exuviates of them. CLas in plants might inhibit CTV acquisition by D. citri as lower CTV–positive rates and CTV titers were detected in D. citri collected from HLB-affected trees compared to those from CLas–free trees. D. citri were more likely to obtain CTV than CLas from host plants co-infected with the two pathogens. Intriguingly, CTV in D. citri facilitated the acquisition and transmission of CLas, but CLas carried by D. citri had no significant effect on the transmission of CTV by the same vector. Molecular detection and microscopy methods confirmed the enrichment of CTV in the midgut after a 72-h acquisition access period. Collectively, these results raise essential scientific questions for further research on the molecular mechanism of pathogen transmission by D. citri and provide new ideas for the comprehensive prevention and control of HLB and CTV.
Collapse
Affiliation(s)
- Longtong Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Yangyang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Fengnian Wu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Jingtian Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Cui
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Shitong Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoling Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Meirong Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Jia D, Luo G, Shi W, Liu Y, Liu H, Zhang X, Wei T. Rice Gall Dwarf Virus Promotes the Propagation and Transmission of Rice Stripe Mosaic Virus by Co-infected Insect Vectors. Front Microbiol 2022; 13:834712. [PMID: 35222343 PMCID: PMC8874222 DOI: 10.3389/fmicb.2022.834712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Rice stripe mosaic virus (RSMV), a newly discovered plant cytorhabdovirus, and rice gall dwarf virus (RGDV), a plant reovirus, are transmitted by leafhopper Recilia dorsalis in a persistent-propagative manner. In this study, field surveys in Luoding city, Guangdong province of southern China, showed that RSMV and RGDV frequently co-infected rice plants. Furthermore, this co-infection had a synergistic effect on viral replication potential and pathogenicity in rice plants. Meanwhile, RSMV and RGDV also co-infected R. dorsalis vectors, and RGDV significantly promoted the propagation of RSMV in co-infected vectors. Accordingly, co-infection significantly promoted the acquisition and transmission efficiencies of RSMV by R. dorsalis. However, such co-infection did not significantly affect the propagation of RGDV in vectors. More importantly, we also observed that non-viruliferous R. dorsalis preferred to feed on co-infected rice plants, and this process further affected the feeding behavior of R. dorsalis to enhance viral release into rice phloem. These results provided the clues as to why RSMV had been a gradually expanding problem, creating an increasing risk of damage to rice production. Our findings revealed that synergism between RSMV and RGDV in their host and vector enhanced the propagation and transmission of RSMV, which will help guide the formulation of viral control strategies.
Collapse
|
4
|
Llauger G, Monti D, Adúriz M, Romão E, Dumón AD, Mattio MF, Wigdorovitz A, Muyldermans S, Vincke C, Parreño V, Del Vas M. Development of Nanobodies against Mal de Río Cuarto virus major viroplasm protein P9-1 for diagnostic sandwich ELISA and immunodetection. Sci Rep 2021; 11:20013. [PMID: 34625580 PMCID: PMC8501053 DOI: 10.1038/s41598-021-99275-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
Mal de Río Cuarto virus (MRCV) is a member of the genus Fijivirus of the family Reoviridae that causes a devastating disease in maize and is persistently and propagatively transmitted by planthopper vectors. Virus replication and assembly occur within viroplasms formed by viral and host proteins. This work describes the isolation and characterization of llama-derived Nanobodies (Nbs) recognizing the major viral viroplasm component, P9-1. Specific Nbs were selected against recombinant P9-1, with affinities in the nanomolar range as measured by surface plasmon resonance. Three selected Nbs were fused to alkaline phosphatase and eGFP to develop a sandwich ELISA test which showed a high diagnostic sensitivity (99.12%, 95% CI 95.21-99.98) and specificity (100%, 95% CI 96.31-100) and a detection limit of 0.236 ng/ml. Interestingly, these Nanobodies recognized different P9-1 conformations and were successfully employed to detect P9-1 in pull-down assays of infected maize extracts. Finally, we demonstrated that fusions of the Nbs to eGFP and RFP allowed the immunodetection of virus present in phloem cells of leaf thin sections. The Nbs developed in this work will aid the study of MRCV epidemiology, assist maize breeding programs, and be valuable tools to boost fundamental research on viroplasm structure and maturation.
Collapse
Affiliation(s)
- Gabriela Llauger
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Demián Monti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Matías Adúriz
- INCUINTA, Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Ema Romão
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Analía Delina Dumón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Córdoba, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Córdoba, Argentina
| | - María Fernanda Mattio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Córdoba, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Córdoba, Argentina
| | - Andrés Wigdorovitz
- INCUINTA, Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Serge Muyldermans
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Cécile Vincke
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Viviana Parreño
- INCUINTA, Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Mariana Del Vas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Moya Fernández MB, Liu W, Zhang L, Hajano JUD, Wang X. Interplay of Rice Stripe Virus and Rice Black Streaked Dwarf Virus during Their Acquisition and Accumulation in Insect Vector. Viruses 2021; 13:v13061121. [PMID: 34200968 PMCID: PMC8230606 DOI: 10.3390/v13061121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Plant viruses transmitted by hemipteran vectors commonly cause losses to crop production. Rice stripe virus (RSV) and rice black streaked dwarf virus (RBSDV) are transmitted to rice plants by the same vector, the small brown planthopper (SBPH), Laodelphax striatellus Fallén, in a persistent propagative manner. However, rarely do the respective diseases they cause occur simultaneously in a field. Here, we determined the acquisition efficiency of RSV and RBSDV when acquired in succession or simultaneously by SBPH. When RBSDV was acquired first, RSV acquisition efficiency was significantly lower than when only acquiring RSV. However, RBSDV acquisition efficiency from insects that acquired RSV first was not significantly different between the insects only acquiring RBSDV. Immunofluorescence assays showed that the acquisition of RBSDV first might inhibit RSV entry into midgut epithelial cells, but RSV did not affect RBSDV entry. SBPHs were more likely to acquire RBSDV when they were feeding on plants coinfected with the two viruses. When RBSDV was acquired before RSV, RBSDV titer was significantly higher and RSV titer first declined, then increased compared to when only acquiring RBSDV or RSV. Only 5% of the SBPHs acquired both viruses when feeding on plants coinfected with RSV and RBSDV. These results provide a better understanding of the interaction between two persistent viruses when present in the same vector insect and explain why RSV and RBSDV occur in intermittent epidemics.
Collapse
Affiliation(s)
- Marcia Beatriz Moya Fernández
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.M.F.); (L.Z.); (X.W.)
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.M.F.); (L.Z.); (X.W.)
- Correspondence: author:
| | - Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.M.F.); (L.Z.); (X.W.)
| | - Jamal-U-Ddin Hajano
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan;
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.M.F.); (L.Z.); (X.W.)
| |
Collapse
|
6
|
Zhang L, Wu N, Ren Y, Wang X. Insights Into Insect Vector Transmission and Epidemiology of Plant-Infecting Fijiviruses. Front Microbiol 2021; 12:628262. [PMID: 33717017 PMCID: PMC7943461 DOI: 10.3389/fmicb.2021.628262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Viruses in genus Fijivirus (family Reoviridae) have caused serious damage to rice, maize and sugarcane in American, Asian, European and Oceanian countries, where seven plant-infecting and two insect-specific viruses have been reported. Because the planthopper vectors are the only means of virus spread in nature, their migration and efficient transmission of these viruses among different crops or gramineous weeds in a persistent propagative manner are obligatory for virus epidemics. Understanding the mechanisms of virus transmission by these insect vectors is thus key for managing the spread of virus. This review describes current understandings of main fijiviruses and their insect vectors, transmission characteristics, effects of viruses on the behavior and physiology of vector insects, molecular transmission mechanisms. The relationships among transmission, virus epidemics and management are also discussed. To better understand fijivirus-plant disease system, research needs to focus on the complex interactions among the virus, insect vector, insect microbes, and plants.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingdang Ren
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|