1
|
Li X, Cheng J, Han H, Kirk WDJ, O'Brien M, Wang L, Chen L, Zhang H, Zhang Z, Ullah F, Desneux N, Lu Y. Identification of Aggregation Pheromone as an Attractant for Odontothrips loti, A Serious Thrips Pest on Alfalfa. J Chem Ecol 2024; 50:894-903. [PMID: 39133432 PMCID: PMC11717801 DOI: 10.1007/s10886-024-01532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Odontothrips loti (Haliday) (Thysanoptera: Thripidae) is one of the most serious pests on alfalfa, causing direct damage by feeding and indirect damage by transmitting plant viruses. This damage causes significant loss in alfalfa production. Semiochemicals offer opportunities to develop new approaches to thrips management. In this study, behavioral responses of female and male adults of O. loti to headspace volatiles from live female and male conspecifics were tested in a Y-tube olfactometer. The results showed that both male and female adults of O. loti were attracted to the odors released by conspecific males but not those released by females. Headspace volatiles released by female and male adults were collected using headspace solid-phase microextraction (HS-SPME). The active compound in the volatiles was identified by gas chromatography-mass spectrometry (GC-MS). The analysis showed that there was one major compound, (R)-lavandulyl (R)-2-methylbutanoate. The attractive activity of the synthetic aggregation pheromone compound was tested under laboratory and field conditions. In an olfactometer, both male and female adults showed significant preference for synthetic (R)-lavandulyl (R)-2-methylbutanoate at certain doses. Lures with synthetic (R)-lavandulyl (R)-2-methylbutanoate significantly increased the trap catches of sticky white traps at doses of 40-80 µg in the field. This study confirmed the production of aggregation pheromone by O. loti male adults and identified its active compound as (R)-lavandulyl (R)-2-methylbutanoate, providing a basis for population monitoring and mass trapping of this pest.
Collapse
Affiliation(s)
- Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianghui Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haibin Han
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Huhhot, 010010, China.
| | - William D J Kirk
- School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| | - Matthew O'Brien
- School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Likun Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haixia Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, Nice, 06000, France
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Institute of Bio-Interaction, Xianghu Laboratory, Hangzhou, 311258, China.
| |
Collapse
|
2
|
Khan F, Kim K, Sung J, Lim H, Kim SG, Choi MY, Kim Y. A novel physiological function of pheromone biosynthesis-activating neuropeptide in production of aggregation pheromone. Sci Rep 2023; 13:5551. [PMID: 37019976 PMCID: PMC10076286 DOI: 10.1038/s41598-023-32833-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
The western flower thrips, Frankliniella occidentalis, is an insect pest, and its aggregation pheromone (AP) plays a crucial role in the recruitment of both sexes. A novel pheromone biosynthesis-activating neuropeptide (PBAN)-like gene is encoded in F. occidentalis genome, but its physiological function has yet to be elucidated. This study hypothesized the physiological role played by PBAN in mediating AP production. AP has been known to be produced only by male adults in F. occidentalis. Surprisingly, our extraction of headspace volatiles contained two AP components in females as well as in males with similar composition. PBAN injection elevated the AP production whereas RNA interference (RNAi) of the gene expression suppressed the AP production in both sexes. A biosynthetic pathway to produce AP components were predicted and the enzymes catalyzing the main steps were confirmed in their expressions. Individual RNAi treatments of these genes significantly suppressed AP production. RNAi of PBAN gene downregulated the expressions of these biosynthesis-associated genes in both sexes. These results suggest that the novel neuropeptide acts as PBAN mediating AP production through stimulating its biosynthetic machinery in F. occidentalis.
Collapse
Affiliation(s)
- Falguni Khan
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36720, Korea
| | - Keono Kim
- Department of Food Life Science, College of Life Sciences, Andong National University, Andong, 36720, Korea
| | - Jeehye Sung
- Department of Food Life Science, College of Life Sciences, Andong National University, Andong, 36720, Korea
| | - Hangah Lim
- Department of Biological Sciences, KAIST, Daejon, 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, KAIST, Daejon, 34141, Korea
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USADA-ARS, Corvalis, OR, 97330, USA
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36720, Korea.
| |
Collapse
|
3
|
Akhoundi M, Chebbah D, Elissa N, Brun S, Jan J, Lacaze I, Izri A. Volatile Organic Compounds: A Promising Tool for Bed Bug Detection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5214. [PMID: 36982123 PMCID: PMC10048870 DOI: 10.3390/ijerph20065214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The recent decades' resurgence of bed bugs as a public health concern in industrialized countries has driven an increased interest on new sustainable insecticide-free methods to monitor and control these ectoparasites. Current methods of detection rely mainly on visual inspection or canine scent detection, which are methods that are time-consuming, require experience, are non-specific or require costly mission repetitions. Volatile organic compounds (VOCs) are considered an environmentally friendly alternative and a promising approach for bed bug detection. An overview of the released literature on VOCs, their chemical characteristics and their role in bed bugs' intra- and inter-species communications allowed us to highlight the identification of 49 VOCs in Cimex lectularius (23 molecules) and C. hemipterus (26), which are emitted by both sexes during diverse compartments including aggregation (46), mating (11), defense (4), etc., and all life stages including exuviae or dead bed bugs as a principal indicator of infestation. The latter has a great importance for application of these semiochemicals in successful detection and control management of bed bugs and to prevent their further dispersion. This approach has the advantage of more reliability compared to conventional detection methods with no need for repeated inspections, household furniture moving or resident rehousing for bed bugs' VOC detection, which are commonly performed by active or passive sampling with absorbing tubes and analyzed by gas chromatography-based analytical platforms.
Collapse
Affiliation(s)
- Mohammad Akhoundi
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Dahlia Chebbah
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Sorbonne Paris Nord University, 93000 Bobigny, France
- Service Parisien de Santé Environnementale (SPSE), Sous-Direction de la Santé Environnementale et de la Prévention (SDSEP), Direction de la Santé Publique (DSP)—Mairie de Paris, 75019 Paris, France
| | - Nohal Elissa
- Service Parisien de Santé Environnementale (SPSE), Sous-Direction de la Santé Environnementale et de la Prévention (SDSEP), Direction de la Santé Publique (DSP)—Mairie de Paris, 75019 Paris, France
| | - Sophie Brun
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Julie Jan
- Agence Régionale de Santé (ARS) Île-de-France, 35, Rue de la Gare, CEDEX 19, 75935 Paris, France
| | - Isabelle Lacaze
- Centre Scientifique et Technique du Bâtiment (CSTB), Direction Santé Confort, Division Qualité Sanitaire des Ouvrages, 84, Avenue Jean Jaurès, CEDEX F-77447, 77420 Marne-la-Vallée, France
| | - Arezki Izri
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Sorbonne Paris Nord University, 93000 Bobigny, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), 13000 Marseille, France
| |
Collapse
|
4
|
A push-pull strategy to control the western flower thrips, Frankliniella occidentalis, using alarm and aggregation pheromones. PLoS One 2023; 18:e0279646. [PMID: 36827422 PMCID: PMC9956899 DOI: 10.1371/journal.pone.0279646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/12/2022] [Indexed: 02/26/2023] Open
Abstract
Since the first report in 1993 in Korea, the western flower thrips, Frankliniella occidentalis, has been found in various crops throughout the country. Although more than 20 different chemical insecticides are registered to control this insect pest, its outbreaks seriously damage crop yields, especially in greenhouses. This study developed a non-chemical technique to control F. occidentalis infesting hot peppers cultivated in greenhouses. The method was based on behavioral control using an alarm pheromone ("Push") to prevent the entry of the thrips into greenhouses and an aggregation pheromone ("Pull") for mass trapping inside the greenhouses. The greenhouse fences were treated with a wax formulation of the alarm pheromone and a yellow CAN trap covered with sticky material containing the aggregation pheromone was constructed and deployed inside the greenhouses. Field assay demonstrated the efficacy of the push-pull tactics by reducing thrips density in flowers of the hot peppers as well as in the monitoring traps. Especially, the enhanced mass trapping to the CAN trap compared to the conventional yellow sticky trap led to significant reduction in the thrips population. This novel push-pull technique would be applicable to effectively control F. occidentalis in field conditions.
Collapse
|
5
|
Comparison and Functional Analysis of Odorant-Binding Proteins and Chemosensory Proteins in Two Closely Related Thrips Species, Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) Based on Antennal Transcriptome Analysis. Int J Mol Sci 2022; 23:ijms232213900. [PMID: 36430376 PMCID: PMC9692942 DOI: 10.3390/ijms232213900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Two closely related thrips species, Frankliniella occidentalis and Frankliniella intonsa, are important pests on agricultural and horticultural crops. They have several similarities, including occurrence patterns, host range, and aggregation pheromone compounds. However, there are very few reports about the chemosensory genes and olfactory mechanisms in these two species. To expand our knowledge of the thrips chemosensory system, we conducted antennal transcriptome analysis of two thrips species, and identified seven odorant-binding proteins (OBPs) and eight chemosensory proteins (CSPs) in F. occidentalis, as well as six OBPs and six CSPs in F. intonsa. OBPs and CSPs showed high sequence identity between the two thrips species. The RT-qPCR results showed that the orthologous genes FoccOBP1/3/4/5/6, FintOBP1/3/4/6, FoccCSP1/2/3, and FintCSP1/2 were highly expressed in male adults. Molecular docking results suggested that orthologous pairs FoccOBP4/FintOBP4, FoccOBP6/FintOBP6, and FoccCSP2/FintCSP2 might be involved in transporting the major aggregation pheromone compound neryl (S)-2-methylbutanoate, while orthologous pairs FoccOBP6/FintOBP6, FoccCSP2/FintCSP2, and FoccCSP3/FintCSP3 might be involved in transporting the minor aggregation pheromone compound (R)-lavandulyl acetate. These results will provide a fundamental basis for understanding the molecular mechanisms of pheromone reception in the two thrips species.
Collapse
|
6
|
Fu B, Tao M, Xue H, Jin H, Liu K, Qiu H, Yang S, Yang X, Gui L, Zhang Y, Gao Y. Spinetoram resistance drives interspecific competition between Megalurothrips usitatus and Frankliniella intonsa. PEST MANAGEMENT SCIENCE 2022; 78:2129-2140. [PMID: 35170208 DOI: 10.1002/ps.6839] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Species displacement by the outcome of interspecific competition is of particular importance to pest management. Over the past decade, spinetoram has been extensively applied in control of the two closely related thrips Megalurothrips usitatus and Frankliniella intonsa worldwide, while whether its resistance is implicated in mediating interspecific interplay of the two thrips remains elusive to date. RESULTS Field population dynamics (from 2017 to 2019) demonstrated a trend toward displacement of F. intonsa by M. usitatus on cowpea crops, supporting an existing interspecific competition. Following exposure to spinetoram, M. usitatus became the predominate species, which suggests the use of spinetoram appears to be responsible for mediating interspecific interactions of the two thrips. Further annual and seasonal analysis (from 2016 to 2020) of field-evolved resistance dynamics revealed that M. usitatus developed remarkably higher resistance to spinetoram compared to that of F. intonsa, implying a close relationship between evolution of spinetoram resistance and their competitive interactions. After 12 generations of laboratory selection, resistance to spinetoram in M. usitatus and F. intonsa increased up to 64.50-fold and 28.33-fold, and the average realized heritability (h2 ) of resistance was calculated as 0.2550 and 0.1602, respectively. Interestingly, two-sex life table analysis showed that the spinetoram-resistant strain of F. intonsa exhibited existing fitness costs, but not the M. usitatus. These indicate that a rapid development of spinetoram resistance and the lack of associated fitness costs may be the mechanism underlying recent dominance of M. usitatus over F. intonsa. CONCLUSION Collectively, our results uncover the involvement of insecticide resistance in conferring displacement mechanism behind interspecific competition, providing a framework for understanding the significance of the evolutionary relationships among insects under ongoing changing environments. These findings also can be invaluable in proposing the most appropriate strategies for sustainable thrips control programs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Buli Fu
- Hubei Engineering Technology for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hu Xue
- Hubei Engineering Technology for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Kui Liu
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haiyan Qiu
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lianyou Gui
- Hubei Engineering Technology for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
| | - Youjun Zhang
- Hubei Engineering Technology for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Yu C, Huang J, Ren X, Fernández-Grandon GM, Li X, Hafeez M, Lu Y. The predatory bug Orius strigicollis shows a preference for egg-laying sites based on plant topography. PeerJ 2021; 9:e11818. [PMID: 34327062 PMCID: PMC8308616 DOI: 10.7717/peerj.11818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022] Open
Abstract
Background Oviposition site selection is an important factor in determining the success of insect populations. Orius spp. are widely used in the biological control of a wide range of soft-bodied insect pests such as thrips, aphids, and mites. Orius strigicollis (Heteroptera: Anthocoridae) is the dominant Orius species in southern China; however, what factor drives its selection of an oviposition site after mating currently remains unknown. Methods Here, kidney bean pods (KBPs) were chosen as the oviposition substrate, and choice and nonchoice experiments were conducted to determine the preferences concerning oviposition sites on the KBPs of O. strigicollis. The mechanism of oviposition behavior was revealed through observation and measurement of oviposition action, the egg hatching rate, and the oviposition time. Results We found that O. strigicollis preferred the seams of the pods for oviposition, especially the seams at the tips of the KBPs. Choice and nonchoice experiments showed that females did not lay eggs when the KBP tail parts were unavailable. The rates of egg hatching on different KBP parts were not significantly different, but the time required for females to lay eggs on the tip seam was significantly lower. Decreased oviposition time is achieved on the tip seam because the insect can exploit support points found there and gain leverage for insertion of the ovipositor. Discussion The preferences for oviposition sites of O. strigicollis are significantly influenced by the topography of the KBP surface. Revealing such behavior and mechanisms will provide an important scientific basis for the mass rearing of predatory bugs.
Collapse
Affiliation(s)
- Chendi Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaoyun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | | | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Kirk WDJ, de Kogel WJ, Koschier EH, Teulon DAJ. Semiochemicals for Thrips and Their Use in Pest Management. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:101-119. [PMID: 33417819 DOI: 10.1146/annurev-ento-022020-081531] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thrips (Thysanoptera) are small insects that can cause huge problems in agriculture, horticulture, and forestry through feeding and the transmission of plant viruses. They produce a rich chemical diversity of pheromones and allomones and also respond to a broad range of semiochemicals from plants. These semiochemicals offer many opportunities to develop new approaches to pest management. Aggregation pheromones and plant-derived semiochemicals are already available in commercial products. We review these semiochemicals and consider how we can move away from using them mainly for monitoring to using them for control. We still know very little about the behavioral responses of thrips to semiochemicals, and we show that research in this area is needed to improve the use of semiochemicals in pest management. We also propose that thrips should be used as a model system for semiochemically mediated behaviors of small insects that have limited ability to fly upwind.
Collapse
Affiliation(s)
- William D J Kirk
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, United Kingdom;
| | | | - Elisabeth H Koschier
- Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria;
| | - David A J Teulon
- New Zealand Institute for Plant & Food Research, Ltd., Christchurch 8140, New Zealand;
| |
Collapse
|
9
|
Niassy S, Tamiru A, Hamilton JGC, Kirk WDJ, Mumm R, Sims C, de Kogel WJ, Ekesi S, Maniania NK, Bandi K, Mitchell F, Subramanian S. Characterization of Male-Produced Aggregation Pheromone of the Bean Flower Thrips Megalurothrips sjostedti (Thysanoptera: Thripidae). J Chem Ecol 2019; 45:348-355. [PMID: 30788655 PMCID: PMC6476851 DOI: 10.1007/s10886-019-01054-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 11/26/2022]
Abstract
Aggregation of the bean flower thrips, Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), has been observed on cowpea, Vigna unguiculata (L.) Walp. To understand the mechanism underpinning this behavior, we studied the responses of M. sjostedti to headspace volatiles from conspecifics in a four-arm olfactometer. Both male and female M. sjostedti were attracted to male, but not to female odor. Gas chromatography/mass spectrometry (GC/MS) analyses revealed the presence of two distinct compounds in male M. sjostedti headspace, namely (R)-lavandulyl 3-methylbutanoate (major compound) and (R)-lavandulol (minor compound); by contrast, both compounds were only present in trace amounts in female headspace collections. A behavioral assay using synthetic compounds showed that male M. sjostedti was attracted to both (R)-lavandulyl 3-methylbutanoate and (R)-lavandulol, while females responded only to (R)-lavandulyl 3-methylbutanoate. This is the first report of a male-produced aggregation pheromone in the genus Megalurothrips. The bean flower thrips is the primary pest of cowpea, which is widely grown in sub-Saharan Africa. The attraction of male and female M. sjostedti to these compounds offers an opportunity to develop ecologically sustainable management methods for M. sjostedti in Africa.
Collapse
Affiliation(s)
- Saliou Niassy
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Amanuel Tamiru
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - James G. C. Hamilton
- School of Life Sciences, Keele University, Huxley Building, Staffordshire, ST5 5BG UK
- Infectious Disease Transmission and Biology Group, Department of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG UK
| | - William D. J. Kirk
- School of Life Sciences, Keele University, Huxley Building, Staffordshire, ST5 5BG UK
| | - Roland Mumm
- Wageningen University & Research, P. O. Box 16, 6700AA Wageningen, The Netherlands
| | - Cassie Sims
- School of Life Sciences, Keele University, Huxley Building, Staffordshire, ST5 5BG UK
| | - Willem Jan de Kogel
- Wageningen University & Research, P. O. Box 16, 6700AA Wageningen, The Netherlands
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Nguya K. Maniania
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Krishnakumari Bandi
- School of Life Sciences, Keele University, Huxley Building, Staffordshire, ST5 5BG UK
| | - Fraser Mitchell
- School of Life Sciences, Keele University, Huxley Building, Staffordshire, ST5 5BG UK
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|