1
|
Abstract
The year 2015 sees the fiftieth anniversary of the publication of a research paper that underpins much of our understanding of fungal prion biology, namely "ψ, a cytoplasmic suppressor of super-suppressor in yeast" by Brian Cox. Here we show how our understanding of the molecular nature of the [PSI(+)] determinant evolved from an 'occult' determinant to a transmissible amyloid form of a translation termination factor. We also consider the impact studies on [PSI] have had--and continue to have--on prion research. To demonstrate this, leading investigators in the yeast prion field who have made extensive use of the [PSI(+)] trait in their research, provide their own commentaries on the discovery and significance of [PSI].
Collapse
Affiliation(s)
- Mick F Tuite
- a Kent Fungal Group; School of Biosciences; University of Kent ; Canterbury , Kent , UK
| | - Gemma L Staniforth
- a Kent Fungal Group; School of Biosciences; University of Kent ; Canterbury , Kent , UK
| | - Brian S Cox
- a Kent Fungal Group; School of Biosciences; University of Kent ; Canterbury , Kent , UK
| |
Collapse
|
2
|
Nizhnikov AA, Antonets KS, Inge-Vechtomov SG, Derkatch IL. Modulation of efficiency of translation termination in Saccharomyces cerevisiae. Prion 2014; 8:247-60. [PMID: 25486049 DOI: 10.4161/pri.29851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nonsense suppression is a readthrough of premature termination codons. It typically occurs either due to the recognition of stop codons by tRNAs with mutant anticodons, or due to a decrease in the fidelity of translation termination. In the latter case, suppressors usually promote the readthrough of different types of nonsense codons and are thus called omnipotent nonsense suppressors. Omnipotent nonsense suppressors were identified in yeast Saccharomyces cerevisiae in 1960s, and most of subsequent studies were performed in this model organism. Initially, omnipotent suppressors were localized by genetic analysis to different protein- and RNA-encoding genes, mostly the components of translational machinery. Later, nonsense suppression was found to be caused not only by genomic mutations, but also by epigenetic elements, prions. Prions are self-perpetuating protein conformations usually manifested by infectious protein aggregates. Modulation of translational accuracy by prions reflects changes in the activity of their structural proteins involved in different aspects of protein synthesis. Overall, nonsense suppression can be seen as a "phenotypic mirror" of events affecting the accuracy of the translational machine. However, the range of proteins participating in the modulation of translation termination fidelity is not fully elucidated. Recently, the list has been expanded significantly by findings that revealed a number of weak genetic and epigenetic nonsense suppressors, the effect of which can be detected only in specific genetic backgrounds. This review summarizes the data on the nonsense suppressors decreasing the fidelity of translation termination in S. cerevisiae, and discusses the functional significance of the modulation of translational accuracy.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Department of Genetics and Biotechnology ; St. Petersburg State University ; St. Petersburg , Russia
| | | | | | | |
Collapse
|
3
|
Tuite MF, Cox BS. The genetic control of the formation and propagation of the [PSI+] prion of yeast. Prion 2007; 1:101-9. [PMID: 19164924 DOI: 10.4161/pri.1.2.4665] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It is over 40 years since it was first reported that the yeast Saccahromyces cerevisiae contains two unusual cytoplasmic 'genetic' elements: [PSI(+)] and [URE3]. Remarkably the underlying determinants are protein-based rather than nucleic acid-based, i.e., that they are prions, and we have already learnt much about their inheritance and phenotypic effects from the application of 'classical' genetic studies alongside the more modern molecular, cellular and biochemical approaches. Of particular value has been the exploitation of chemical mutagens and 'antagonistic' mutants which directly affect the replication and/or transmission of yeast prions. In this Chapter we describe what has emerged from the application of classical and molecular genetic studies, to the most intensively studied of the three native yeast prions, the [PSI(+)] prion.
Collapse
Affiliation(s)
- Mick F Tuite
- Department of Biosciences, University of Kent, Canterbury, Kent, UK.
| | | |
Collapse
|
4
|
Tuite MF, Cox BS. The [PSI+] prion of yeast: A problem of inheritance. Methods 2006; 39:9-22. [PMID: 16757178 DOI: 10.1016/j.ymeth.2006.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022] Open
Abstract
The [PSI(+)] prion of the yeast Saccharomyces cerevisiae was first identified by Brian Cox some 40 years ago as a non-Mendelian genetic element that modulated the efficiency of nonsense suppression. Following the suggestion by Reed Wickner in 1994 that such elements might be accounted for by invoking a prion-based model, it was subsequently established that the [PSI(+)] determinant was the prion form of the Sup35p protein. In this article, we review how a combination of classical genetic approaches and modern molecular and biochemical methods has provided conclusive evidence of the prion basis of the [PSI(+)] determinant. In so doing we have tried to provide a historical context, but also describe the results of more recent experiments aimed at elucidating the mechanism by which the [PSI(+)] (and other yeast prions) are efficiently propagated in dividing cells. While understanding of the [PSI(+)] prion and its mode of propagation has, and will continue to have, an impact on mammalian prion biology nevertheless the very existence of a protein-based mechanism that can have a beneficial impact on a cell's fitness provides equally sound justification to fully explore yeast prions.
Collapse
Affiliation(s)
- Mick F Tuite
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | | |
Collapse
|
5
|
Volkov KV, Aksenova AY, Soom MJ, Osipov KV, Svitin AV, Kurischko C, Shkundina IS, Ter-Avanesyan MD, Inge-Vechtomov SG, Mironova LN. Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae. Genetics 2002; 160:25-36. [PMID: 11805042 PMCID: PMC1461950 DOI: 10.1093/genetics/160.1.25] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two cytoplasmically inherited determinants related by their manifestation to the control of translation accuracy were previously described in yeast. Cells carrying one of them, [PSI(+)], display a nonsense suppressor phenotype and contain a prion form of the Sup35 protein. Another element, [PIN(+)], determines the probability of de novo generation of [PSI(+)] and results from a prion form of several proteins, which can be functionally unrelated to Sup35p. Here we describe a novel nonchromosomal determinant related to the SUP35 gene. This determinant, designated [ISP(+)], was identified as an antisuppressor of certain sup35 mutations. We observed its loss upon growth on guanidine hydrochloride and subsequent spontaneous reappearance with high frequency. The reversible curability of [ISP(+)] resembles the behavior of yeast prions. However, in contrast to known prions, [ISP(+)] does not depend on the chaperone protein Hsp104. Though manifestation of both [ISP(+)] and [PSI(+)] is related to the SUP35 gene, the maintenance of [ISP(+)] does not depend on the prionogenic N-terminal domain of Sup35p and Sup35p is not aggregated in [ISP(+)] cells, thus ruling out the possibility that [ISP(+)] is a specific form of [PSI(+)]. We hypothesize that [ISP(+)] is a novel prion involved in the control of translation accuracy in yeast.
Collapse
Affiliation(s)
- Kirill V Volkov
- Department of Genetics, St. Petersburg State University, St. Petersburg 199034, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Basu J, Williams BC, Li Z, Williams EV, Goldberg ML. Depletion of a Drosophila homolog of yeast Sup35p disrupts spindle assembly, chromosome segregation, and cytokinesis during male meiosis. CELL MOTILITY AND THE CYTOSKELETON 2000; 39:286-302. [PMID: 9556329 DOI: 10.1002/(sici)1097-0169(1998)39:4<286::aid-cm4>3.0.co;2-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the course of a genetic screen for male-sterile mutations in Drosophila affecting chromosome segregation during the meiotic divisions in spermatocytes, we identified the mutation dsup35(63D). Examination of mutant testes showed that chromosome misbehavior was a consequence of major disruptions in meiotic spindle assembly. These perturbations included problems in aster formation, separation, and migration around the nuclear envelope; aberrations in spindle organization and integrity; and disappearance of the ana/telophase central spindle, which in turn disrupts cytokinesis. The dsup35(63D) mutation is caused by a P element insertion that affects, specifically in the testis, the expression of a gene (dsup35) encoding the Drosophila homolog of the yeast Sup35p and Xenopus eRF3 proteins. These proteins are involved in the termination of polypeptide synthesis on ribosomes, but previous studies have suggested that Sup35p and closely related proteins of the same family also interact directly with microtubules. An affinity-purified antibody directed against the product of the dsup35 gene was prepared; interestingly, this antibody specifically labels primary spermatocytes in one or two discrete foci of unknown structure within the nucleoplasm. We discuss how depletion of the dsup35 gene product in spermatocytes might lead to the global disruptions in meiotic spindle assembly seen in mutant spermatocytes.
Collapse
Affiliation(s)
- J Basu
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | | | |
Collapse
|
7
|
Abstract
The [PSI+] factor of the yeast Saccharomyces cerevisiae is an epigenetic regulator of translation termination. More than three decades ago, genetic analysis of the transmission of [PSI+] revealed a complex and often contradictory series of observations. However, many of these discrepancies may now be reconciled by a revolutionary hypothesis: protein conformation-based inheritance (the prion hypothesis). This model predicts that a single protein can stably exist in at least two distinct physical states, each associated with a different phenotype. Propagation of one of these traits is achieved by a self-perpetuating change in the protein from one form to the other. Mounting genetic and biochemical evidence suggests that the determinant of [PSI+] is the nuclear encoded Sup35p, a component of the translation termination complex. Here we review the series of experiments supporting the yeast prion hypothesis and provide another look at the 30 years of work preceding this theory in light of our current state of knowledge.
Collapse
Affiliation(s)
- T R Serio
- University of Chicago, Department of Molecular Genetics and Cell Biology, Illinois 60637, USA.
| | | |
Collapse
|
8
|
Eurwilaichitr L, Graves FM, Stansfield I, Tuite MF. The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol Microbiol 1999; 32:485-96. [PMID: 10320572 DOI: 10.1046/j.1365-2958.1999.01346.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Translation termination in eukaryotes is mediated by two release factors, eRF1 and eRF3, which interact to form a heterodimer that mediates termination at all three stop codons. By C-terminal deletion analysis of eRF1 from the yeast Saccharomyces cerevisiae, we show that the extreme C-terminus of this 437-amino-acid protein defines a functionally important domain for translation termination. A strain encoding eRF1 lacking the C-terminal 32 amino acids is not viable, whereas deletion of the C-terminal 19 amino acids is viable but shows a termination defect in vivo causing an enhancement of nonsense suppression. Using a combination of two-hybrid analysis and in vitro binding studies, we demonstrate that deletions encompassing the C-terminus of eRF1 cause a significant reduction in eRF3 binding to eRF1. All of the C-terminally truncated eRF1 still bind the ribosome, suggesting that the C-terminus does not constitute a ribosome-binding domain and eRF1 does not need to form a stable complex with eRF3 in order to bind the ribosome. These data, together with previously published data, suggest that the region between amino acids 411 and 418 of yeast eRF1 defines an essential functional domain that is part of the major site of interaction with eRF3. However, a stable eRF1:eRF3 complex does not have to be formed to maintain viability or efficient translation termination. Alignment of the seven known eukaryotic eRF1 sequences indicates that a highly conserved motif, GFGGIGG/A is present within the region of the C-terminus, although our deletion studies suggest that it is sequences C-terminal to this region that are functionally important.
Collapse
Affiliation(s)
- L Eurwilaichitr
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ
| | | | | | | |
Collapse
|
9
|
Derkatch IL, Bradley ME, Liebman SW. Overexpression of the SUP45 gene encoding a Sup35p-binding protein inhibits the induction of the de novo appearance of the [PSI+] prion. Proc Natl Acad Sci U S A 1998; 95:2400-5. [PMID: 9482897 PMCID: PMC19355 DOI: 10.1073/pnas.95.5.2400] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1997] [Accepted: 12/16/1997] [Indexed: 02/06/2023] Open
Abstract
[PSI+], a non-Mendelian element found in some strains of Saccharomyces cerevisiae, is presumed to be the manifestation of a self-propagating prion conformation of eRF3 (Sup35p). Translation termination factor eRF3 enhances the activity of release factor eRF1 (Sup45p). As predicted by the prion model, overproduction of Sup35p induces the de novo appearance of [PSI+]. However, another non-Mendelian determinant, [PIN+], is required for this induction. We now show that SUP45 overexpression inhibits the induction of [PSI+] by Sup35p overproduction in [PIN+] strains, but has no effect on the propagation of [PSI+] or on the [PIN] status of the cells. We also show that SUP45 overexpression counteracts the growth inhibition usually associated with overexpression of SUP35 in [PSI+] strains. We argue that excess Sup45p inhibits [PSI+] seed formation. Because Sup45p complexes with Sup35p, we hypothesize that excess Sup45p may sequester Sup35p, thereby reducing the opportunity for Sup35p conformational flips and/or self-interactions leading to prion formation. This in vivo yeast result is reminiscent of the in vitro finding by investigators of Alzheimer disease that apolipoprotein E inhibits amyloid nucleation, but does not reduce seeded growth of amyloid.
Collapse
Affiliation(s)
- I L Derkatch
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
10
|
Studying Protein Synthesis Factors in Yeast: Structure, Function and Regulation. Mol Microbiol 1998. [DOI: 10.1007/978-3-642-72071-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
19 Identifying Genes Encoding Components of the Protein Synthesis Machinery of the Yeast Saccharomyces cerevisiae. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
12
|
Stansfield I, Kushnirov VV, Jones KM, Tuite MF. A conditional-lethal translation termination defect in a sup45 mutant of the yeast Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:557-63. [PMID: 9182990 DOI: 10.1111/j.1432-1033.1997.00557.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic studies have indicated that the product of the yeast SUP45 gene encodes a component of the translational-termination machinery. In higher eukaryotes, genes similar to SUP45 encode eukaryote release factor 1 (eRF1), which has a stop-codon-dependent peptidyl-release activity. Using a conditional-lethal mutant allele of SUP45 (sup45-2) and a combination of in vivo and in vitro approaches, we demonstrate that the product of the SUP45 gene (Sup45p or eRF1) is a factor required for translation termination in yeast. A homologous in vitro assay based on suppressor-tRNA-mediated readthrough of stop codons is used to show that a translating lysate from a sup45-2 mutant strain exhibits a termination defect when heated for short periods to greater than the non-permissive temperature (37 degrees C). This defect can be complemented with a purified preparation of Sup45p (eRF1) expressed in Eschericha coli. The termination defect in this strain appears to be due to an inability of the Sup45p protein to bind the ribosome, resulting in vivo in a reduced ability of Sup45p to release nascent polypeptides from the ribosome at the non-permissive temperature. Cell-free translation lysates from the sup45-2 strain do not show a defect in sense-codon translation at the non-permissive temperature. These data demonstrate that yeast eRF1 plays a role in translation termination and is functionally equivalent to its higher eukaryotic homologues.
Collapse
Affiliation(s)
- I Stansfield
- Research School of Biosciences, University of Kent, Canterbury, UK
| | | | | | | |
Collapse
|
13
|
Stansfield I, Eurwilaichitr L, Tuite MF. Depletion in the levels of the release factor eRF1 causes a reduction in the efficiency of translation termination in yeast. Mol Microbiol 1996; 20:1135-43. [PMID: 8809766 DOI: 10.1111/j.1365-2958.1996.tb02634.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In Saccharomyces cerevisiae, translation termination is mediated by a complex of two proteins, eRF1 and eRF3, encoded by the SUP45 and SUP35 genes, respectively. Mutations in the SUP45 gene were selected which enhanced suppression by the weak ochre (UAA) suppressor tRNA(Ser) SUQ5. In each of four such allosuppressor alleles examined, an in-frame ochre (TAA) mutation was present in the SUP45 coding region; therefore each allele encoded both a truncated eRF1 protein and a full-length eRF1 polypeptide containing a serine missense substitution at the premature UAA codon. The full-length eRF1 generated by UAA read-through was present at sub-wild-type levels. In an suq5+ (i.e. non-suppressor) background none of the truncated eRF1 polypeptides were able to support cell viability, with the loss of only 27 amino acids from the C-terminus being lethal. The reduced eRF1 levels in these sup45 mutants did not lead to a proportional reduction in the levels of ribosome-bound eRF3, indicating that eRF3 can bind the ribosome independently of eRF1. A serine codon inserted in place of the premature stop codon at codon 46 in the sup45-22 allele did not generate an allosuppressor phenotype, thereby ruling out this "missense' mutation as the cause of the allosuppressor phenotype. These data indicate that the cellular levels of eRF1 are important for ensuring efficient translation termination in yeast.
Collapse
Affiliation(s)
- I Stansfield
- Research School of Biosciences, University of Kent, Canterbury, UK
| | | | | |
Collapse
|
14
|
Nakamura Y, Ito K, Matsumura K, Kawazu Y, Ebihara K. Regulation of translation termination: conserved structural motifs in bacterial and eukaryotic polypeptide release factors. Biochem Cell Biol 1995; 73:1113-22. [PMID: 8722028 DOI: 10.1139/o95-120] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Translation termination requires codon-dependent polypeptide release factors. The mechanism of stop codon recognition by release factors is unknown and holds considerable interest since it entails protein-RNA recognition rather than the well-understood mRNA-tRNA interaction in codon-anticodon pairing. Bacteria have two codon-specific release factors and our picture of prokaryotic translation is changing because a third factor, which stimulates the other two, has now been found. Moreover, a highly conserved eukaryotic protein family possessing properties of polypeptide release factor has now been sought. This review summarizes our current understanding of the structural and functional organization of release factors as well as our recent findings of highly conserved structural motifs in bacterial and eukaryotic polypeptide release factors.
Collapse
Affiliation(s)
- Y Nakamura
- Department of Tumor Biology, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
15
|
Stansfield I, Tuite MF. A mutant allele of the SUP45 (SAL4) gene of Saccharomyces cerevisiae shows temperature-dependent allosuppressor and omnipotent suppressor phenotypes. Curr Genet 1995; 27:417-26. [PMID: 7586027 DOI: 10.1007/bf00311210] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using a plasmid-based termination-read-through assay, the sal4-2 conditional-lethal (temperature-sensitive) allele of the SUP45 (SAL4) gene was shown to enhance the efficiency of the weak ochre suppressor tRNA SUQ5 some 10-fold at 30 degrees C. Additionally, this allele increased the suppressor efficiency of SRM2-2, a weak tRNA(Gln) ochre suppressor, indicating that the allosuppressor phenotype is not SUQ5-specific. A sup+ sal4-2 strain also showed a temperature-dependent omnipotent suppressor phenotype, enhancing readthrough of all three termination codons. Combining the sal4-2 allele with an efficient tRNA nonsense suppressor (SUP4) increased the temperature-sensitivity of that strain, indicating that enhanced nonsense suppressor levels contribute to the conditional-lethality conferred by the sal4-2 allele. However, UGA suppression levels in a sup+ sal4-2 strain following a shift to the non-permissive temperature reached a maximum significantly below that exhibited by a non-temperature sensitive SUP4 suppressor strain. Enhanced nonsense suppression may not therefore be the primary cause of the conditional-lethality of this allele. These data indicate a role for Sup45p in translation termination, and possibly in an additional, as yet unidentified, cellular process.
Collapse
Affiliation(s)
- I Stansfield
- Research School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
16
|
|
17
|
Abstract
The study of translational termination in yeast has been approached largely through the identification of a range of mutations which either increase or decrease the efficiency of stop-codon recognition. Subsequent cloning of the genes encoding these factors has identified a number of proteins important for maintaining the fidelity of termination, including at least three ribosomal proteins (S5, S13, S28). Other non-ribosomal proteins have been identified by mutations which produce gross termination-accuracy defects, namely the SUP35 and SUP45 gene products which have closely-related higher eukaryote homologues (GST1-h and SUP45-h respectively) and which can complement the corresponding defective yeast proteins, implying that the yeast ribosome may be a good model for the termination apparatus existing in higher translation systems. While the yeast mitochondrial release factor has been cloned (Pel et al. 1992), the corresponding cytosolic RF has not yet been identified. It seems likely, however, that the identification of the gene encoding eRF could be achieved using a multicopy antisuppressor screen such as that employed to clone the E. coli prfA gene (Weiss et al. 1984). Identification of the yeast eRF and an investigation of its interaction with other components of the yeast translational machinery will no doubt further the definition of the translational termination process. While a large number of mutations have been isolated in which the efficiency of termination-codon recognition is impaired, it seems probable that a proportion of mutations within this class will comprise those where the accuracy of 'A' site codon-anticodon interaction is compromised: such defects would also have an effect on termination-codon suppression, allowing mis- or non-cognate tRNAs to bind stop-codons, causing nonsense suppression. The remainder of mutations affecting termination fidelity should represent mutations in genes coding for components of the termination apparatus, including the eRF: these mutations reduce the efficiency of termination, allowing nonsense suppression by low-efficiency natural suppressor tRNAs. Elucidation of the mechanism of termination in yeast will require discrimination between these two classes of mutations, thus allowing definition of termination-specific gene products.
Collapse
Affiliation(s)
- I Stansfield
- Research School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
18
|
Abstract
One of three mRNA codons--UAA, UAG and UGA--is used to signal to the elongating ribosome that translation should be terminated at this point. Upon the arrival of the stop codon at the ribosomal acceptor(A)-site, a protein release factor (RF) binds to the ribosome resulting in the peptidyl transferase centre of the ribosome switching to a hydrolytic function to remove the completed polypeptide chain from the peptidyl-tRNA bound at the adjacent ribosomal peptidyl(P)-site. In this review recent advances in our understanding of the mechanism of termination in the bacterium Escherichia coli will be summarised, paying particular attention to the roles of 16S ribosomal RNA and the release factors RF-1, RF-2 and RF-3 in stop codon recognition. Our understanding of the translation termination process in eukaryotes is much more rudimentary with the identity of the single eukaryotic release factor (eRF) still remaining elusive. Finally, several examples of how the termination mechanism can be subverted either to expand the genetic code (e.g. selenocysteine insertion at UGA codons) or to regulate the expression of mammalian retroviral or plant viral genomes will be discussed.
Collapse
Affiliation(s)
- M F Tuite
- Research School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
19
|
Atkin AL, Riazi MA, Greer CL, Roy KL, Bell JB. The functional analysis of nonsense suppressors derived from in vitro engineered Saccharomyces cerevisiae tRNA(Trp) genes. Gene 1993; 134:57-65. [PMID: 8244031 DOI: 10.1016/0378-1119(93)90174-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nonsense suppressors derived from Saccharomyces cerevisiae tRNA(Trp) genes have not been identified by classical genetic screens, although one can construct efficient amber (am) suppressors from them by making the appropriate anticodon mutation in vitro. Herein, a series of in vitro constructed putative suppressor genes was produced to test if pre-tRNA(Trp) processing difficulties could help to explain the lack of classical tRNA(Trp)-based suppressors. It is clear that inefficient processing of introns from precursor tRNA(Trp), or inaccurate overall processing, may explain why some of these constructs fail to promote nonsense suppression in vivo. However, deficient processing must be only one of the reasons why classical tRNA(Trp)-based suppressors have not been characterized, as suppression may still be extremely weak or absent in instances where the in vitro construct can lead to an accumulation of mature tRNA(Trp). Furthermore, suppression is also very weak in strains transformed with an intronless derivative of a putative tRNA(Trp) ochre (oc) suppressor gene, wherein intron removal cannot pose a problem.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Genes, Fungal
- Genes, Suppressor
- Introns
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phenotype
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Trp/chemistry
- RNA, Transfer, Trp/genetics
- Saccharomyces cerevisiae/genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- A L Atkin
- Department of Genetics, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
20
|
Knowland J, McKenzie EA, McHugh PJ, Cridland NA. Sunlight-induced mutagenicity of a common sunscreen ingredient. FEBS Lett 1993; 324:309-13. [PMID: 8405372 DOI: 10.1016/0014-5793(93)80141-g] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have tested the mutagenicity of a UV-B sunscreen ingredient called Padimate-O or octyl dimethyl PABA, which, chemically speaking, is identical to an industrial chemical that generates free radicals when illuminated. It is harmless in the dark but mutagenic in sunlight, attacking DNA directly. A commercial sunscreen containing Padimate-O behaves in the same way. UV-A in sunlight also excites Padimate-O, although less than UV-B. Some related compounds, including a known carcinogen, behave similarly. As mutagens may be carcinogenic, our results suggest that some sunscreens could, while preventing sunburn, contribute to sunlight-related cancers.
Collapse
Affiliation(s)
- J Knowland
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
21
|
Stansfield I, Grant GM, Akhmaloka, Tuite MF. Ribosomal association of the yeast SAL4 (SUP45) gene product: implications for its role in translation fidelity and termination. Mol Microbiol 1992; 6:3469-78. [PMID: 1474892 DOI: 10.1111/j.1365-2958.1992.tb01782.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The SAL4 gene of the yeast Saccharomyces cerevisiae encodes a novel translation factor (Sal4p) involved in maintaining translational fidelity. Using a polyclonal antibody raised against a Sal4p-beta-galactosidase fusion protein, Sal4p was shown to be almost exclusively associated with the ribosomal fraction. Even when the ribosomes were treated with 0.8 M KCl, only low levels of Sal4p were detected in the post-ribosomal supernatant, suggesting a very strong affinity between Sal4p and the ribosome. Analysis of the distribution of Sal4p in the ribosomal population revealed that it was principally associated with 40S subunits, monosomes and polysomes. Incubation in high salt concentrations (0.8 M KCl) suggested that the affinity of Sal4p for the 40S subunit was lower than that for monosomes or polysomes. The Sal4p:ribosome association was only maintained when ribosomes were prepared in the presence of the translation elongation inhibitor cycloheximide; in uninhibited cells much lower levels of Sal4p were detectable in the 'run-off' polysomes. In view of these data, and given the stoichiometry of Sal4p to individual ribosomal proteins (estimated at less than 1:20), we suggest that Sal4p plays an ancillary role in translation termination.
Collapse
Affiliation(s)
- I Stansfield
- Biological Laboratory, University of Kent, Canterbury, UK
| | | | | | | |
Collapse
|
22
|
Chernoff YO, Ptyushkina MV, Samsonova MG, Sizonencko GI, Pavlov YI, Ter-Avanesyan MD, Inge-Vechtomov SG. Conservative system for dosage-dependent modulation of translational fidelity in eukaryotes. Biochimie 1992; 74:455-61. [PMID: 1637871 DOI: 10.1016/0300-9084(92)90086-t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Variations in dosage of some genes can alter the level of translational fidelity. The Saccharomyces cerevisiae genes that act as dosage-dependent suppressors and/or modulators of suppression, are the following: some tRNA genes (for example, tRNA(Gln)) inducing readthrough by mispairing; genes coding for either translational elongation factor or other proteins taking part in translation; and some genes of unknown function. We suggest that the SUP35 protein is a factor which may play a major role in balance-dependent regulation of translational fidelity. Homologues of this genes have been identified in other yeast genera (Pichia), green algae (Chlamydomonas) and various animals including man. No homologies have been found in the polychaeta (Nereis) or in insects (Drosophila). Rates of evolution differ for two separate parts of the genes; the N-terminal part, which is important for ambiguous translation in Saccharomyces, is markedly variable in the organisms tested. However, the C-terminal part which is required for yeast viability has a common origin but a separate evolution from that of the EF-Tu protein family.
Collapse
Affiliation(s)
- Y O Chernoff
- Department of Genetics, Leningrad University, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
23
|
Hampsey M, Na JG, Pinto I, Ware DE, Berroteran RW. Extragenic suppressors of a translation initiation defect in the cyc1 gene of Saccharomyces cerevisiae. Biochimie 1991; 73:1445-55. [PMID: 1666843 DOI: 10.1016/0300-9084(91)90177-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cycl-362 allele contains a point mutation that generates an aberrant AUG codon upstream of the normal CYC1 translation initiation codon. Mutants containing this allele express only about 2% of normal iso-1-cytochrome c, presumably due to translation initiation at the upstream AUG, termination at a UAA sequence six codons downstream, and failure to reinitiate at the normal AUG codon two nucleotides later. Both intragenic and extragenic revertants of cycl-362, expressing elevated levels of iso-1-cytochrome c, have been isolated simply by selecting for growth on lactate medium. Here we describe an improved method for isolating and readily distinguishing cis- from trans-acting suppressors of the upstream AUG. Eight different genes, designated sua1-sua8, are represented in our current collection of extragenic suppressors; all are recessive and enhance iso-1-cytochrome c levels to 10-60% of normal. None of the sua genes is allelic to SUI2 or sui3, which encode eIF-2 alpha and eIF-2 beta, respectively, or to SUI1. Many of the suppressors exhibit pleiotropic phenotypes, including slow growth, cold (16 degrees C) and heat (37 degrees C) sensitivity. These phenotypes have been exploited to clone the SUA5, SUA7 and SUA8 genes, which are presently being characterized. The structure of cyc1-362 and the number of sua genes already uncovered suggest that the SUA genes are likely to encode factors affecting several different cellular processes, including translation initiation, mRNA stability and possibly transcription start site selection.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | | | | | | | |
Collapse
|
24
|
Ono B, Chernoff YO, Ishino-Arao Y, Yamagishi N, Shinoda S, Inge-Vechtomov SG. Interactions between chromosomal omnipotent suppressors and extrachromosomal effectors in Saccharomyces cerevisiae. Curr Genet 1991; 19:243-8. [PMID: 1868573 DOI: 10.1007/bf00355049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chromosomal omnipotent suppressor mutations recovered in psi+ strains of Saccharomyces cerevisiae were brought into psi- cytoplasm. SUP46, SUP138 and SUP139 acted as dominant omnipotent suppressors in the psi- cytoplasm though their suppressor activity was substantially reduced. SUP46 and SUP138 conferred recessive thermosensitivity and antibiotic sensitivity in psi- cytoplasm as in psi+ cytoplasm. On the other hand, sup111 through sup115, which acted as recessive omnipotent suppressors in the psi+ cytoplasm, manifested no, or very low, suppressor activity in the psi- cytoplasm. They, however, still enhanced the efficiency of the SUP29 tRNA suppressor in psi- cytoplasm. A multicopy plasmid carrying the wild-type SUP35 gene enhanced the efficiency of sup111 in psi- cytoplasm.
Collapse
Affiliation(s)
- B Ono
- Laboratory of Environmental Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Samsonova MG, Inge-Vechtomov SG, Taylor P. Structure comparison and evolutionary relations between elongation factors EF-Tu (EF-1 alpha) and SUP 2 proteins. Genetica 1991; 85:35-44. [PMID: 1778473 DOI: 10.1007/bf00056104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
On the basis of high homology and structural similarity, three genes, SUP2 Saccharomyces cerevisiae, SUP2 Pichia pinus and GST1 Homo sapiens, might be considered as members of one family named SUP2. Comparison of the primary structure of SUP2 proteins and elongation factors EF-Tu(EF-1 alpha) from 19 different species was performed. It was found that SUP2 proteins bear more homology to eukaryotic elongation factor than to procaryotic EF-Tu, though the degree of sequence conservation in SUP2 proteins is smaller than in EF-1 alpha factors. The extensive phylogenetic analysis of SUP2 and EF-Tu(EF-1 alpha) genes was performed by means of 3 methods, 2 phenetic and one cladystic (maximal parsimony). The data support the close relation of SUP2 genes to other elongation factor genes.
Collapse
|
26
|
Kushnirov VV, Ter-Avanesyan MD, Didichenko SA, Smirnov VN, Chernoff YO, Derkach IL, Novikova ON, Inge-Vechtomov SG, Neistat MA, Tolstorukov II. Divergence and conservation of SUP2 (SUP35) gene of yeast Pichia pinus and Saccharomyces cerevisiae. Yeast 1990; 6:461-72. [PMID: 2080663 DOI: 10.1002/yea.320060603] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
SUP2 (SUP35) is an omnipotent suppressor gene, coding for an EF-1 alpha-like protein factor, intimately involved in the control of translational accuracy in yeast Saccharomyces cerevisiae. In the present study a SUP2 gene analogue from yeast Pichia pinus was isolated by complementation of the temperature-sensitive sup2 mutation of S. cerevisiae. The nucleotide sequence of the SUP2 gene of P. pinus codes for a protein of 82.4 kDa, exceeding the Sup2 protein of S. cerevisiae by 6 kDa. Like the SUP2 gene product of S. cerevisiae, the Sup2 protein of P. pinus represents a fusion of a unique N-terminal part and a region homologous to EF-1 alpha. The comparison of amino acid sequences of the Sup2 proteins reveals high conservation (76%) of the C-terminal region and low conservation (36%) of the N-terminal part where, in addition, the homologous correspondence is ambiguous. Proteins related to the Sup2 of S. cerevisiae were found in P. pinus and some other yeast species by the immunoblotting technique. The relation between the evolutionary conservation of different regions of the Sup2 protein and their functional significance is discussed.
Collapse
Affiliation(s)
- V V Kushnirov
- Institute of Experimental Cardiology, U.S.S.R. Cardiology Research Center, Moscow
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ono B, Tanaka M, Awano I, Okamoto F, Satoh R, Yamagishi N, Ishino-Arao Y. Two new loci that give rise to dominant omnipotent suppressors in Saccharomyces cerevisiae. Curr Genet 1989; 16:323-30. [PMID: 2692850 DOI: 10.1007/bf00340710] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ten dominant omnipotent suppressors of Saccharomyces cerevisiae, which were previously shown to be different from SUP46, have been examined. Nine are mapped in a region between lys5 and cyh2 on the left arm of chromosome VII. These suppressors, like SUP46, manifest sensitivity to increased temperature and the antibiotics paromomycin and hygromycin B. In addition, they have an identical action spectrum. These results strongly suggest that they are allelic to each other and they are designated SUP138. The tenth is mapped to a position between his1 and arg6 on the right arm of chromosome V. This suppressor, named SUP139, does not manifest temperature sensitivity nor antibiotic sensitivity. SUP139 and SUP138, which are clearly distinguished by means of action spectrum, act on much fewer nonsense mutations than SUP46. It is now clear that dominant omnipotent suppressors arising at a single locus are homogeneous and that their efficiency is locus-dependent. The order of efficiency is SUP46 greater than SUP138 greater than SUP139.
Collapse
Affiliation(s)
- B Ono
- Laboratory of Environmental Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Crouzet M, Izgu F, Grant CM, Tuite MF. The allosuppressor gene SAL4 encodes a protein important for maintaining translational fidelity in Saccharomyces cerevisiae. Curr Genet 1988; 14:537-43. [PMID: 3072098 DOI: 10.1007/bf00434078] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Allosuppressor (sal) mutations enhance the efficiency of the yeast ochre suppressor SUQ5 and define five unlinked loci, SAL1-SAL5. A number of sal4 mutants were isolated and found to have pleiotropic, allele;specific phenotypes, including hypersensitivity in vivo to paromomycin and other antibiotics that stimulate translational errors in yeast. To examine further the nature of the SAL4 gene product, the wild type SAL4 gene was isolated by complementation of a conditional lethal allele sal4-2, and demonstrated to be a single copy gene encoding a single 1.6 kb transcript. Restriction mapping and DNA hybridisation analysis were used to demonstrate that the SAL4 gene is identical to the previously identified omnipotent suppressor gene SUP45 (SUP1). Our results implicate the SAL4 gene product as playing a major role in maintaining translational accuracy in yeast.
Collapse
Affiliation(s)
- M Crouzet
- Biological Laboratory, University of Canterbury, Kent, UK
| | | | | | | |
Collapse
|
29
|
Modifiers of ochre suppressors in Saccharomyces cerevisiae that exhibit ochre suppressor-dependent amber suppression. Curr Genet 1988. [DOI: 10.1007/bf00419992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Affiliation(s)
- B S Cox
- Plant Sciences Department, Oxford, U.K
| | | | | |
Collapse
|
31
|
Crouzet M, Tuite MF. Genetic control of translational fidelity in yeast: molecular cloning and analysis of the allosuppressor gene SAL3. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:581-3. [PMID: 3323850 DOI: 10.1007/bf00327216] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The fidelity of translation in the yeast Saccharomyces cerevisiae is controlled by a number of gene products. We have begun a molecular analysis of such genes and here describe the cloning and analysis of one of these genes, SAL3. Mutations at this locus, and at least four other unlinked loci (designated SAL1-SAL5), increase the efficiency of the tRNA ochre suppressor SUQ5, and are thus termed allosuppressors. We have cloned the SAL3 gene from a yeast genomic library by complementation of a sal3 mutation. Integration of the cloned sequence into the yeast chromosome was used to confirm that the SAL3 gene had been cloned. SAL3 gene is present in a single copy in the yeast genome, is transcribed into a 2.3-kb polyadenylated mRNA and encodes a protein of Mr 80,000. The size of the SAL3 gene product strongly suggests that it is not a ribosomal protein.
Collapse
Affiliation(s)
- M Crouzet
- Biological Laboratory, University of Kent, Canterbury, UK
| | | |
Collapse
|
32
|
A non-Mendelian factor, [eta+], causes lethality of yeast omnipotent-suppressor strains. Curr Genet 1984; 8:567-73. [DOI: 10.1007/bf00395701] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/1984] [Indexed: 11/26/2022]
|
33
|
Temperature sensitive allosuppressor mutants of the fission yeast S. pombe influence cell cycle control over mitosis. ACTA ACUST UNITED AC 1984. [DOI: 10.1007/bf00328067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
|
35
|
|
36
|
Ono BI, Stewart JW, Sherman F. Yeast UAA suppressors effective in psi+ strains serine-inserting suppressors. J Mol Biol 1979; 128:81-100. [PMID: 372549 DOI: 10.1016/0022-2836(79)90309-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Waldron C, Cox BS. Ribosomal proteins of yeast strains carrying mutations which affect the efficiency of nonsense suppression. MOLECULAR & GENERAL GENETICS : MGG 1978; 159:223-5. [PMID: 345095 DOI: 10.1007/bf00270898] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have examined the ribosomal proteins of strains of Saccharomyces cerevisiae which differ in the efficiency with which ochre nonsense mutations are suppressed. The strains in which ochre suppression is poor were [psi]- or carried antisuppressor mutations; those in which suppression was highly efficient were [psi]+ or carried allosuppressor mutations. The ribosomal proteins of these strains, as judged by two-dimensional polyacrylamide gel electrophoresis, were indistinguishable from those of wild-type.
Collapse
|