1
|
Idiiatullina E, Al-Azab M, Lin M, Hrovat-Schaale K, Liu Z, Li X, Guo C, Chen X, Li Y, Gao S, Cui J, Zhou W, Liu L, Zhang Y, Masters SL. Heterozygous de novo dominant negative mutation of REXO2 results in interferonopathy. Nat Commun 2024; 15:6685. [PMID: 39107301 PMCID: PMC11303720 DOI: 10.1038/s41467-024-50878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Mitochondrial RNA (mtRNA) in the cytosol can trigger the innate immune sensor MDA5, and autoinflammatory disease due to type I IFN. Here, we show that a dominant negative mutation in the gene encoding the mitochondrial exonuclease REXO2 may cause interferonopathy by triggering the MDA5 pathway. A patient characterized by this heterozygous de novo mutation (p.T132A) presented with persistent skin rash featuring hyperkeratosis, parakeratosis and acanthosis, with infiltration of lymphocytes and eosinophils around small blood vessels. In addition, circulating IgE levels and inflammatory cytokines, including IFNα, are found consistently elevated. Transcriptional analysis highlights a type I IFN gene signature in PBMC. Mechanistically, REXO2 (T132A) lacks the ability to cleave RNA and inhibits the activity of wild-type REXO2. This leads to an accumulation of mitochondrial dsRNA in the cytosol, which is recognized by MDA5, leading to the associated type I IFN gene signature. These results demonstrate that in the absence of appropriate regulation by REXO2, aberrant cellular nucleic acids may accumulate and continuously trigger innate sensors, resulting in an inborn error of immunity.
Collapse
Affiliation(s)
- Elina Idiiatullina
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- Department of Therapy and Nursing, Bashkir State Medical University, Ufa, Russia
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, USA
| | - Mahmoud Al-Azab
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- Department of Medical Microbiology, Faculty of Medicine, University of Science and Technology, Aden, Yemen
| | - Meng Lin
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Katja Hrovat-Schaale
- Department of Therapy and Nursing, Bashkir State Medical University, Ufa, Russia
- Department of Medical Microbiology, Faculty of Medicine, University of Science and Technology, Aden, Yemen
| | - Ziyang Liu
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiaotian Li
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Caiqin Guo
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xixi Chen
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Yaoying Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Cui
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Zhou
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.
| | - Yuxia Zhang
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.
| | - Seth L Masters
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Australia.
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
2
|
Di Salvatore V, Crispino E, Maleki A, Nicotra G, Russo G, Pappalardo F. Computational identification of differentially-expressed genes as suggested novel COVID-19 biomarkers: A bioinformatics analysis of expression profiles. Comput Struct Biotechnol J 2023; 21:3339-3354. [PMID: 37347079 PMCID: PMC10259169 DOI: 10.1016/j.csbj.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
COVID-19 was declared a pandemic in March 2020, and since then, it has not stopped spreading like wildfire in almost every corner of the world, despite the many efforts made to stem its spread. SARS-CoV-2 has one of the biggest genomes among RNA viruses and presents unique characteristics that differentiate it from other coronaviruses, making it even more challenging to find a cure or vaccine that is efficient enough. This work aims, using RNA sequencing (RNA-Seq) data, to evaluate whether the expression of specific human genes in the host can vary in different grades of disease severity and to determine the molecular origins of the differences in response to SARS-CoV-2 infection in different patients. In addition to quantifying gene expression, data coming from RNA-Seq allow for the discovery of new transcripts, the identification of alternative splicing events, the detection of allele-specific expression, and the detection of post-transcriptional alterations. For this reason, we performed differential expression analysis on different expression profiles of COVID-19 patients, using RNA-Seq data coming from NCBI public repository, and we obtained the lists of all differentially expressed genes (DEGs) emerging from 7 experimental conditions. We performed a Gene Set Enrichment Analysis (GSEA) on these genes to find possible correlations between DEGs and known disease phenotypes. We mainly focused on DEGs coming out from the analysis of the contrasts involving severe conditions to infer any possible relation between a worsening of the clinical picture and an over-representation of specific genes. Based on the obtained results, this study indicates a small group of genes that result up-regulated in the severe form of the disease. EXOSC5, MESD, REXO2, and TRMT2A genes are not differentially expressed or not present in the other conditions, being for that reason, good biomarkers candidates for the severe form of COVID-19 disease. The use of specific over-expressed genes, whether up-regulated or down-regulated, which have an individual role in each different condition of COVID-19 as a biomarker, can assist in early diagnosis.
Collapse
Affiliation(s)
| | - Elena Crispino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Avisa Maleki
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | - Giulia Nicotra
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Giulia Russo
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Mimesis SRL, Catania, Italy
| | | |
Collapse
|
4
|
Hua X, Ge S, Chen J, Zhang L, Tai S, Liang C. Effects of RNA Binding Proteins on the Prognosis and Malignant Progression in Prostate Cancer. Front Genet 2020; 11:591667. [PMID: 33193734 PMCID: PMC7606971 DOI: 10.3389/fgene.2020.591667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is a common lethal malignancy in men. RNA binding proteins (RBPs) have been proven to regulate the biological processes of various tumors, but their roles in PCa remain less defined. In the present study, we used bioinformatics analysis to identify RBP genes with prognostic and diagnostic values. A total of 59 differentially expressed RBPs in PCa were obtained, comprising 28 upregulated and 31 downregulated RBP genes, which may play important roles in PCa. Functional enrichment analyses showed that these RBPs were mainly involved in mRNA processing, RNA splicing, and regulation of RNA splicing. Additionally, we identified nine RBP genes (EXO1, PABPC1L, REXO2, MBNL2, MSI1, CTU1, MAEL, YBX2, and ESRP2) and their prognostic values by a protein-protein interaction network and Cox regression analyses. The expression of these nine RBPs was validated using immunohistochemical staining between the tumor and normal samples. Further, the associations between the expression of these nine RBPs and pathological T staging, Gleason score, and lymph node metastasis were evaluated. Moreover, these nine RBP genes showed good diagnostic values and could categorize the PCa patients into two clusters with different malignant phenotypes. Finally, we constructed a prognostic model based on these nine RBP genes and validated them using three external datasets. The model showed good efficiency in predicting patient survival and was independent of other clinical factors. Therefore, our model could be used as a supplement for clinical factors to predict patient prognosis and thereby improve patient survival.
Collapse
Affiliation(s)
- Xiaoliang Hua
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Shengdong Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Juan Chen
- The Ministry of Education Key Laboratory of Clinical Diagnostics, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Sheng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- The Institute of Urology, Anhui Medical University, Hefei, China
| |
Collapse
|