1
|
Türk Z, Leiber F, Schlittenlacher T, Hamburger M, Walkenhorst M. Multiple benefits of herbs: Polygonaceae species in veterinary pharmacology and livestock nutrition. Vet Anim Sci 2025; 27:100416. [PMID: 39720831 PMCID: PMC11667078 DOI: 10.1016/j.vas.2024.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Herbs rich in secondary metabolites may possess beneficial properties in livestock nutrition and health. 49 Polygonaceae species of European mountain regions were included in a qualitative systematic review based on the methodological framework of the PRISMA statement. 174 relevant publications were identified. They comprised 231 in vitro and 163 in vivo experiments with cattle, sheep, goats, poultry, pigs, and rodents. For 16 Polygonaceae species no reports were found. Fagopyrum esculentum and Fagopyrum tataricum showed potential as anti-inflammatory, antioxidative and metabolic modifying herbs and feeds improving intake and nitrogen conversion in broiler as well as milk quality and ruminal biotransformation in dairy cows. Polygonum aviculare was promising as an antimicrobial and anti-inflammatory drug or feed, improving performance and affecting ruminal biotransformation in sheep, and Polygonum bistorta as an anti-inflammatory drug or feed, improving performance in broiler and mitigating methane emissions in ruminants. Rumex obtusifolius showed potential as an antibacterial drug or feed improving ruminal biotransformation and preventing bloating in cows, while Rumex acetosa and Rumex acetosella had antimicrobial and anti-inflammatory properties. Furthermore, Polygonum minus, Polygonum persicaria, Rumex crispus and Rumex patientia possess interesting anti-inflammatory and antimicrobial activities. In conclusion, some Polygonaceae species show relevant properties that might be useful to prevent and treat livestock diseases, combined with nutritional benefits in performance, product quality, lowering ruminal methane and ammonia formation and transferring omega-3 fatty-acids from feed to tissue. The potential of such multifunctional plants for a holistic integration of veterinary, nutritional and ecological perspectives under a one-health approach of livestock management is discussed.
Collapse
Affiliation(s)
- Zafide Türk
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
- University of Basel, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Florian Leiber
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| | - Theresa Schlittenlacher
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| | - Matthias Hamburger
- University of Basel, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Michael Walkenhorst
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070, Frick, Switzerland
| |
Collapse
|
2
|
Lan X, Qi D, Ren H, Liu T, Shao H, Zhang J. Chicoric acid ameliorates LPS-induced inflammatory injury in bovine lamellar keratinocytes by modulating the TLR4/MAPK/NF-κB signaling pathway. Sci Rep 2023; 13:21963. [PMID: 38082032 PMCID: PMC10713547 DOI: 10.1038/s41598-023-49169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Damage to lamellar keratinocytes, an essential cellular component of the epidermal layer of hoof tissue, can have a detrimental effect on hoof health and the overall production value of dairy cows. We isolated and cultured cow lamellar keratinocytes using the Dispase II and collagenase methods. We purified them by differential digestion and differential velocity adherent methods at each passaging and identified them by keratin 14 immunofluorescence. We established an in vitro model of inflammation in laminar keratinocytes using LPS and investigated whether chicoric acid protects against inflammatory responses by inhibiting the activation of the TLR4/MAPK/NF-κB signaling pathway. The results showed that cow lamellar keratinocytes were successfully isolated and cultured by Dispase II combined with the collagenase method. In the in vitro inflammation model established by LPS, the Chicoric acid decreased the concentration of inflammatory mediators (TNF-α, IL-1β, and IL-6), down-regulated the mRNA expression of TLR4 and MyD88 (P < 0.01), down-regulated the expression of TLR4, MyD88, p-ERK, p-p38, IKKβ, p-p65, p-p50 (P < 0.05), and increased the IκBα protein expression (P < 0.05). In conclusion, Chicoric acid successfully protected cow lamellar keratinocytes from LPS-induced inflammatory responses by modulating the TLR4/MAPK/NF-κB signaling pathway and downregulating inflammatory mediators.
Collapse
Affiliation(s)
- Xiang Lan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Dongdong Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hao Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hong Shao
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
3
|
Olsen MA, Ferneborg S, Vhile SG, Kidane A, Skeie SB. Different protein sources in concentrate feed for dairy cows affect cheese-making properties and yield. J Dairy Sci 2023; 106:5328-5337. [PMID: 37268587 DOI: 10.3168/jds.2022-22662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/24/2023] [Indexed: 06/04/2023]
Abstract
Soybean meal (SBM) is a commonly used protein source in feed. Yeast microbial protein could be used as a substitute for SBM, but its effect on cheese-making properties and yield is not known. Norwegian Red dairy cows (n = 48) in early or mid lactation were divided in 3 groups and fed a ration consisting of grass silage and concentrate, where the concentrates were barley based but with different additional protein sources. These were: completely barley based with no additional protein source (BAR), additional protein from SBM, or additional protein from yeast (Cyberlindnera jadinii; YEA). The SBM and YEA concentrates had a higher protein content than the barley concentrate. Four batches of cheese were made from pooled milk from each of the 3 groups of dairy cows. Milk samples were collected 5 times during the experiment. Milk from cows fed BAR concentrate showed inferior cheese-making properties (lower casein content, longer renneting time, lower content of phosphorus, and lower cheese yield) compared with SBM and YEA concentrates. Overall, SBM or YEA bulk milk had similar cheese-making properties, but when investigating individual milk samples, YEA milk showed better coagulation properties.
Collapse
Affiliation(s)
- M A Olsen
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), 5003, N-1432 Ås, Norway.
| | - S Ferneborg
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (NMBU), 5003, N-1432 Ås, Norway
| | - S G Vhile
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (NMBU), 5003, N-1432 Ås, Norway
| | - A Kidane
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (NMBU), 5003, N-1432 Ås, Norway
| | - S B Skeie
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), 5003, N-1432 Ås, Norway
| |
Collapse
|
4
|
Effect of dietary tannin supplementation on cow milk quality in two different grazing seasons. Sci Rep 2021; 11:19654. [PMID: 34608216 PMCID: PMC8490380 DOI: 10.1038/s41598-021-99109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/17/2021] [Indexed: 01/12/2023] Open
Abstract
Extensive farming systems are characterized by seasons with different diet quality along the year, as pasture availability is strictly depending on climatic conditions. A number of problems for cattle may occur in each season. Tannins are natural polyphenolic compounds that can be integrated in cows’ diet to overcome these seasonal problems, but little is known about their effect on milk quality according to the season. This study was designed to assess the effects of 150 g/head × day of tannin extract supplementation on proximate composition, urea, colour, cheesemaking aptitude, antioxidant capacity, and fatty acid (FA) profile of cow milk, measured during the wet season (WS) and the dry season (DS) of Mediterranean climate. In WS, dietary tannins had marginal effect on milk quality. Conversely, in DS, the milk from cows eating tannins showed 10% lower urea and slight improvement in antioxidant capacity, measured with FRAP and TEAC assays. Also, tannin extract supplementation in DS reduced branched-chain FA concentration, C18:1 t10 to C18:1 t11 ratio and rumenic to linoleic acid ratio. Tannins effect on rumen metabolism was enhanced in the season in which green herbage was not available, probably because of the low protein content, and high acid detergent fibre and lignin contents in diet. Thus, the integration of tannin in the diet should be adapted to the season. This could have practical implications for a more conscious use of tannin-rich extracts, and other tannin sources such as agro-industrial by-products and forages.
Collapse
|
5
|
Menci R, Natalello A, Luciano G, Priolo A, Valenti B, Difalco A, Rapisarda T, Caccamo M, Constant I, Niderkorn V, Coppa M. Cheese quality from cows given a tannin extract in 2 different grazing seasons. J Dairy Sci 2021; 104:9543-9555. [PMID: 34127270 DOI: 10.3168/jds.2021-20292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to compare the effect of dietary tannins on cow cheese quality in 2 different grazing seasons in the Mediterranean. Two experiments were performed on 14 dairy cows reared in an extensive system. The first experiment took place in the wet season (WS), and the second experiment took place in the dry season (DS). In the WS and DS experiments, cows freely grazed green pasture or dry stubbles, respectively, and the diet was supplemented with pelleted concentrate and hay. In both experiments, the cows were divided into 2 balanced groups: a control group and a group (TAN) receiving 150 g of tannin extract/head per day. After 23 d of dietary treatment, individual milk was collected, processed into individual cheeses, and aged 25 d. Milk was analyzed for chemical composition, color parameters, and cheesemaking aptitude (laboratory cheese yield and milk coagulation properties). Cheese was analyzed for chemical composition, proteolysis, color parameters, rheological parameters, fatty acid profile, and odor-active volatile compounds. Data from the WS and DS experiments were statistically analyzed separately with an analysis of covariance model. In the WS experiment, dietary tannin supplementation had no effect on milk and cheese parameters except for a reduced concentration of 2-heptanone in cheese. In the DS experiment, TAN milk showed lower urea N, and TAN cheese had lower C18:1 trans-10 concentration and n-6:n-3 polyunsaturated fatty acid ratio compared with the control group. These differences are likely due to the effect of tannins on rumen N metabolism and fatty acid biohydrogenation. Dietary tannins may differently affect the quality of cheese from Mediterranean grazing cows according to the grazing season. Indeed, tannin bioactivity on rumen metabolism seems to be enhanced during the dry season, when diet is low in protein and rich in acid detergent fiber and lignin. The supplementation dose used in this study (1% of estimated dry matter intake) had no detrimental effects on cheese yield or cheesemaking parameters. Also, it is unlikely that sensorial characteristics would be affected by this kind of dietary tannin supplementation.
Collapse
Affiliation(s)
- R Menci
- Department Di3A, University of Catania, via Valdisavoia 5, 95123 Catania, Italy
| | - A Natalello
- Department Di3A, University of Catania, via Valdisavoia 5, 95123 Catania, Italy.
| | - G Luciano
- Department Di3A, University of Catania, via Valdisavoia 5, 95123 Catania, Italy
| | - A Priolo
- Department Di3A, University of Catania, via Valdisavoia 5, 95123 Catania, Italy
| | - B Valenti
- Department DSA3, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - A Difalco
- Consorzio per la Ricerca nel settore della Filiera Lattiero-Casearia e dell'agroalimentare (CoRFiLaC), Regione Siciliana, 97100 Ragusa, Italy
| | - T Rapisarda
- Consorzio per la Ricerca nel settore della Filiera Lattiero-Casearia e dell'agroalimentare (CoRFiLaC), Regione Siciliana, 97100 Ragusa, Italy
| | - M Caccamo
- Consorzio per la Ricerca nel settore della Filiera Lattiero-Casearia e dell'agroalimentare (CoRFiLaC), Regione Siciliana, 97100 Ragusa, Italy
| | - I Constant
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122, Saint-Genès-Champanelle, France
| | - V Niderkorn
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122, Saint-Genès-Champanelle, France
| | - M Coppa
- Independent researcher at INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122, Saint-Genès-Champanelle, France
| |
Collapse
|
6
|
Sainfoin ( Onobrychis viciifolia) silage in dairy cow rations reduces ruminal biohydrogenation and increases transfer efficiencies of unsaturated fatty acids from feed to milk. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:333-341. [PMID: 33005767 PMCID: PMC7503786 DOI: 10.1016/j.aninu.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/16/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022]
Abstract
The effects of replacing grass silage by sainfoin silage in a total mixed ration (TMR) based diet on fatty acid (FA) reticular inflow and milk FA profile of dairy cows was investigated. The experiment followed a crossover design with 2 dietary treatments. The control diet consisted of grass silage, corn silage, concentrate and linseed. In the sainfoin diet, half of the grass silage was replaced by a sainfoin silage. Six rumen cannulated lactating multiparous dairy cows with a metabolic body weight of 132.5 ± 3.6 kg BW0.75, 214 ± 72 d in milk and an average milk production of 23.1 ± 2.8 kg/d were used in the experiment. Cows were paired based on parity and milk production. Within pairs, cows were randomly assigned to either the control diet or the sainfoin diet for 2 experimental periods (29 d per period). In each period, the first 21 d, cows were housed individually in tie-stalls for adaptation, then next 4 d cows were housed individually in climate-controlled respiration chambers to measure CH4. During the last 4 d, cows were housed individually in tie stalls to measure milk FA profile and determine FA reticular inflow using the reticular sampling technique with Cr-ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) and Yb-acetate used as digesta flow markers. Although the dietary C18:3n-3 intake was lower (P = 0.025) in the sainfoin diet group, the mono-unsaturated FA reticular inflow was greater (P = 0.042) in cows fed the sainfoin diet. The reticular inflow of trans-9, trans-12-C18:2 and cis-12, trans-10 C18:2 was greater (P ≤ 0.024) in the sainfoin diet group. The cows fed sainfoin diet had a lower (P ≤ 0.038) apparent ruminal biohydrogenation of cis-9-C18:1 and C18:3n-3, compared to the cows fed the control diet. The sainfoin diet group had greater (P ≤ 0.018) C18:3n-3 and cis-9, cis-12-C18:2 proportions in the milk FA profile compared to the control diet group. Transfer efficiencies from feed to milk of C18:2, C18:3n-3 and unsaturated FA were greater (P ≤ 0.0179) for the sainfoin diet. Based on the results, it could be concluded that replacing grass silage by sainfoin silage in dairy cow rations reduces ruminal C18:3n-3 biohydrogenation and improves milk FA profile.
Collapse
|
7
|
|
8
|
Peña-Espinoza M, Valente AH, Thamsborg SM, Simonsen HT, Boas U, Enemark HL, López-Muñoz R, Williams AR. Antiparasitic activity of chicory (Cichorium intybus) and its natural bioactive compounds in livestock: a review. Parasit Vectors 2018; 11:475. [PMID: 30134991 PMCID: PMC6106872 DOI: 10.1186/s13071-018-3012-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022] Open
Abstract
Increasing drug resistance in gastrointestinal (GI) parasites of livestock and concerns about chemical residues in animal products and the environment are driving the development of alternative control strategies that are less reliant on the use of synthetic drugs. An increasingly investigated approach is the use of bioactive forages with antiparasitic properties as part of the animal's diet (nutraceuticals) or as potential sources of novel, natural parasiticides. Chicory (Cichorium intybus) is a multi-purpose crop and one of the most promising bioactive forages in temperate regions, and numerous in vivo trials have explored its potential against parasitic nematodes in livestock. However, it is unclear whether chicory can induce a direct and broad activity against various GI parasites in different livestock species, and the levels of chicory in the diet that are required to exert an efficient antiparasitic effect. Moreover, the mechanisms leading to the reported parasiticidal activity of chicory are still largely unknown, and its bioactive phytochemicals have only recently been investigated. In this review, we summarise the progress in the study of the antiparasitic activity of chicory and its natural bioactive compounds against GI parasites in livestock, through examination of the published literature. The available evidence indicates that feeding chicory can reduce faecal egg counts and/or worm burdens of abomasal nematodes, but not infections with intestinal worms, in ruminants. Highly chicory-rich diets (≥ 70% of chicory dry matter in the diet) may be necessary to directly affect abomasal parasitism. Chicory is known to synthesise several bioactive compounds with potential antiparasitic activity, but most research has been devoted to the role of sesquiterpene lactones (SL). Recent in vitro studies have confirmed direct and potent activity of SL-rich extracts from chicory against different GI helminths of livestock. Chicory SL have also been reported to exhibit antimalarial properties and its potential antiprotozoal activity in livestock remains to be evaluated. Furthermore, the detailed identification of the main antiparasitic metabolites of chicory and their pharmacokinetics need further confirmation. Research gaps and perspectives on the potential use of chicory as a nutraceutical forage and a source of bioactive compounds for parasite control in livestock are discussed.
Collapse
Affiliation(s)
- Miguel Peña-Espinoza
- Instituto de Farmacologia y Morfofisiologia, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Angela H. Valente
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, 1870 Frederiksberg C, Denmark
| | - Stig M. Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, 1870 Frederiksberg C, Denmark
| | - Henrik T. Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Ulrik Boas
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Heidi L. Enemark
- Norwegian Veterinary Institute, Ullevålsveien 68, P.O. Box 750, N-0106 Oslo, Sentrum Norway
| | - Rodrigo López-Muñoz
- Instituto de Farmacologia y Morfofisiologia, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, 1870 Frederiksberg C, Denmark
| |
Collapse
|
9
|
Stoldt AK, Derno M, Das G, Weitzel JM, Wolffram S, Metges CC. Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows. J Dairy Sci 2016; 99:2161-2168. [PMID: 26805964 DOI: 10.3168/jds.2015-10143] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/01/2015] [Indexed: 12/16/2022]
Abstract
Flavonoids are secondary plant metabolites with several health promoting effects. As dairy cows often suffer from metabolic imbalance and health problems, interest is growing in health improvements by plant substances such as flavonoids. Our group has recently shown that the flavonoids quercetin and rutin (a glucorhamnoside of quercetin) are bioavailable in cows when given via a duodenal fistula or orally, respectively, affect glucose metabolism, and have beneficial effects on liver health. Furthermore, flavonoids may reduce rumen methane production in vitro through their antibacterial properties. To test the hypothesis that rutin has effects on energy metabolism, methane production, and production performance in dairy cows, we fed rutin trihydrate at a dose of 100mg/kg of body weight to a group of 7 lactating dairy cows for 2 wk in a crossover design. In a second experiment, 2 cows were fed the same ration but were supplemented with buckwheat seeds (Fagopyrum tartaricum), providing rutin at a dose comparable to the first experiment. Two other cows receiving barley supplements were used as controls in a change-over mode. Blood samples were taken weekly and respiration measurements were performed at the end of each treatment. Supplementation of pure rutin, but not of rutin contained in buckwheat seeds, increased the plasma quercetin content. Methane production and milk yield and composition were not affected by rutin treatment in either form. Plasma glucose, β-hydroxybutyrate, and albumin were increased by pure rutin treatment, indicating a possible metabolic effect of rutin on energy metabolism of dairy cows. In addition, we did not show that in vivo ruminal methane production was reduced by rutin. In conclusion, we could not confirm earlier reports on in vitro methane reduction by rutin supplementation in dairy cows in established lactation.
Collapse
Affiliation(s)
- Ann-Kathrin Stoldt
- Institute of Nutritional Physiology "Oskar Kellner," all of Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Michael Derno
- Institute of Nutritional Physiology "Oskar Kellner," all of Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Gürbüz Das
- Institute of Nutritional Physiology "Oskar Kellner," all of Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Joachim M Weitzel
- Institute of Reproductive Biology, all of Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Siegfried Wolffram
- Institute of Animal Nutrition and Physiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Cornelia C Metges
- Institute of Nutritional Physiology "Oskar Kellner," all of Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
10
|
Girard M, Dohme-Meier F, Wechsler D, Goy D, Kreuzer M, Bee G. Ability of 3 tanniferous forage legumes to modify quality of milk and Gruyère-type cheese. J Dairy Sci 2016; 99:205-20. [DOI: 10.3168/jds.2015-9952] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022]
|
11
|
Khiaosa-ard R, Kreuzer M, Leiber F. Apparent recovery of C18 polyunsaturated fatty acids from feed in cow milk: A meta-analysis of the importance of dietary fatty acids and feeding regimens in diets without fat supplementation. J Dairy Sci 2015; 98:6399-414. [DOI: 10.3168/jds.2015-9459] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/06/2015] [Indexed: 11/19/2022]
|
12
|
Kälber T, Kreuzer M, Leiber F. Milk fatty acid composition of dairy cows fed green whole-plant buckwheat, phacelia or chicory in their vegetative and reproductive stage. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2014.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|