Salum P, Berktas S, Bas D, Cam M, Erbay Z. Optimization of spray drying conditions for improved physical properties in the production of enzyme-modified cheese powder.
J Food Sci 2023;
88:244-258. [PMID:
36463415 DOI:
10.1111/1750-3841.16392]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 12/07/2022]
Abstract
Enzyme-modified cheese (EMC), a cheese flavor additive with high-fat content, is preferably produced in powder form because of its long shelf-life and high industrial applicability. The physical properties of additives, especially with high-fat contents, are very important for their industrial usage, and the spray drying process conditions substantially determine the physical properties of powders. In this study, optimization of the spray drying process during the production of EMC powder was performed to improve the powder physical properties. The process factors were inlet temperature, feed flow rate, and aspiration rate, while the responses were selected as drying yield, Carr index (CI), wettability, surface fat content, and browning index (BI). The optimum spray drying conditions were calculated as 150°C, 9.1 mL/min, and 28.4 m3 /h for inlet temperature, feed flow rate, and aspiration rate, respectively. It has been determined that the spray drying conditions at low inlet temperature, medium feed flow, and aspiration rates in order to obtain improved powder physical properties should be preferred. Practical Application: Enzyme-modified cheese (EMC) is a widely used product in the development of foods with cheese flavor, and EMC in powder form offers various advantages for industrial applications such as ease in storage and transportation, long shelf-life, and product applicability, which mainly depend on powder physical properties. In powder production, spray drying is the principle process determining the powder physical properties, and optimization is essential for the desired physical properties. In this study, laboratory-scale optimization of EMC powder production was carried out, data was provided for scale-up studies, and the effects of processing conditions on powder physical properties were evaluated.
Collapse