1
|
Stevens L, Martínez-Ugalde I, King E, Wagah M, Absolon D, Bancroft R, Gonzalez de la Rosa P, Hall JL, Kieninger M, Kloch A, Pelan S, Robertson E, Pedersen AB, Abreu-Goodger C, Buck AH, Blaxter M. Ancient diversity in host-parasite interaction genes in a model parasitic nematode. Nat Commun 2023; 14:7776. [PMID: 38012132 PMCID: PMC10682056 DOI: 10.1038/s41467-023-43556-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Host-parasite interactions exert strong selection pressures on the genomes of both host and parasite. These interactions can lead to negative frequency-dependent selection, a form of balancing selection that is hypothesised to explain the high levels of polymorphism seen in many host immune and parasite antigen loci. Here, we sequence the genomes of several individuals of Heligmosomoides bakeri, a model parasite of house mice, and Heligmosomoides polygyrus, a closely related parasite of wood mice. Although H. bakeri is commonly referred to as H. polygyrus in the literature, their genomes show levels of divergence that are consistent with at least a million years of independent evolution. The genomes of both species contain hyper-divergent haplotypes that are enriched for proteins that interact with the host immune response. Many of these haplotypes originated prior to the divergence between H. bakeri and H. polygyrus, suggesting that they have been maintained by long-term balancing selection. Together, our results suggest that the selection pressures exerted by the host immune response have played a key role in shaping patterns of genetic diversity in the genomes of parasitic nematodes.
Collapse
Affiliation(s)
- Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| | - Isaac Martínez-Ugalde
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Erna King
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Martin Wagah
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | | | - Rowan Bancroft
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Jessica L Hall
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Elaine Robertson
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy B Pedersen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy H Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
2
|
Poulin R. Model worms: knowledge gains and risks associated with the use of model species in parasitological research. Parasitology 2023; 150:967-978. [PMID: 37853764 PMCID: PMC10941210 DOI: 10.1017/s0031182023000963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023]
Abstract
Model parasite species, whose entire life cycle can be completed in the laboratory and maintained for multiple generations, have played a fundamental role in our understanding of host–parasite interactions. Yet, keeping parasites in laboratory conditions may expose them to unnatural evolutionary pressures, and using laboratory cultures for research is therefore not without limitations. Using 2 widely-used model helminth species, the cestode Hymenolepis diminuta and the nematode Heligmosomoides polygyrus, I illustrate the caution needed when interpreting experimental results on model species. I first review more than 1200 experimental studies published on these species in the past 4 decades, to determine which research areas they have contributed to. This is followed by an examination of the institutional laboratory cultures that have provided the parasites used in these studies. Some of these have persisted for decades and accounted for a substantial proportion of published studies, whereas others have been short-lived. Using information provided by the curators of active cultures, I summarize data on their origins and maintenance conditions. Finally, I discuss how laboratory cultures may have been subject to the influence of evolutionary genetic processes, such as founder effects, genetic drift and inbreeding. I also address the possibility that serial passage through laboratory hosts across multiple generations has exerted artificial selection on several parasite traits, resulting in genetic and phenotypic divergence among laboratory cultures, and between these cultures and natural parasite populations. I conclude with recommendations for the continued usage of laboratory helminth cultures aimed at maximizing their important contribution to parasitological research.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Musah-Eroje M, Burton L, Kerr N, Behnke JM. Quantitative assessment of spicule length in Heligmosomoides spp. (Nematoda, Heligmosomidae): distinction between H. bakeri, H. polygyrus and H. glareoli. Parasitology 2023; 150:1022-1030. [PMID: 37705292 PMCID: PMC10941215 DOI: 10.1017/s0031182023000872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Nematode spicules play a vital role in the reproductive activity of species that possess them. Our primary objective was to compare the lengths of spicules of the laboratory mouse (Mus musculus) – maintained isolate H. bakeri – with those of H. polygyrus from naturally infected wood mice (Apodemus sylvaticus). On a more limited scale, we also included H. glareoli from bank voles (Myodes glareolus), a species reputed to possess longer spicules than either of the 2 former species. In total, we measured 1264 spicules (H. bakeri, n = 614; H. polygyrus n = 582; and H. glareoli, n = 68). There was a highly significant difference between the spicule lengths of the Nottingham-maintained H. bakeri (mean = 0.518 mm) and H. polygyrus (0.598 mm) from 11 different localities across the British Isles. A comparison of the spicules of H. bakeri maintained in 4 different laboratories in 3 continents revealed a range in the mean values from 0.518 to 0.540 mm, while those of worms from Australian wild house mice were shorter (0.480 mm). Mean values for H. polygyrus from wood mice from the British Isles ranged from 0.564 to 0.635 mm, although isolates of this species from Norway had longer spicules (0.670 mm). In agreement with the literature, the spicules of H. glareoli were considerably longer (1.098 mm). Since spicules play a vital role in the reproduction of nematode species that possess them, the difference in spicule lengths between H. bakeri and H. polygyrus adds to the growing evidence that these 2 are quite distinct species and likely reproductively isolated.
Collapse
Affiliation(s)
- Mayowa Musah-Eroje
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Laura Burton
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Nicola Kerr
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Jerzy M. Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
4
|
Heligmosomoides bakeri: a new name for an old worm? Trends Parasitol 2010; 26:524-9. [DOI: 10.1016/j.pt.2010.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 11/21/2022]
|
5
|
Heligmosomoides bakeri: a model for exploring the biology and genetics of resistance to chronic gastrointestinal nematode infections. Parasitology 2009; 136:1565-80. [PMID: 19450375 DOI: 10.1017/s0031182009006003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intestinal nematode Heligmosomoides bakeri has undergone 2 name changes during the last 4 decades. Originally, the name conferred on the organism in the early 20th century was Nematospiroides dubius, but this was dropped in favour of Heligmosomoides polygyrus, and then more recently H. bakeri, to distinguish it from a closely related parasite commonly found in wood mice in Europe. H. bakeri typically causes long-lasting infections in mice and in this respect it has been an invaluable laboratory model of chronic intestinal nematode infections. Resistance to H. bakeri is a dominant trait and is controlled by genes both within and outside the MHC. More recently, a significant QTL has been identified on chromosome 1, although the identity of the underlying genes is not yet known. Other QTL for resistance traits and for the accompanying immune responses were also defined, indicating that resistance to H. bakeri is a highly polygenic phenomenon. Hence marker-assisted breeding programmes aiming to improve resistance to GI nematodes in breeds of domestic livestock will need to be highly selective, focussing on genes that confer the greatest proportion of overall genetic resistance, whilst leaving livestock well-equipped genetically to cope with other types of pathogens and preserving important production traits.
Collapse
|
6
|
Cable J, Harris PD, Lewis JW, Behnke JM. Molecular evidence that Heligmosomoides polygyrus from laboratory mice and wood mice are separate species. Parasitology 2006; 133:111-22. [PMID: 16536883 DOI: 10.1017/s0031182006000047] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 11/09/2005] [Accepted: 01/16/2006] [Indexed: 11/05/2022]
Abstract
The gastro-intestinal (GI) nematode Heligmosomoides polygyrus is an important experimental model in laboratory mice and a well-studied parasite of wood mice in the field. Despite an extensive literature, the taxonomy of this parasite in different hosts is confused, and it is unclear whether laboratory and field systems represent the same or different Operational Taxonomic Units (OTUs). Molecular analyses reveal high sequence divergence between H. p. bakeri (laboratory) and H. p. polygyrus (field); 3% difference in the ribosomal DNA Internal Transcribed Spacers (ITS) and 8.6% variation in the more rapidly evolving mitochondrial cytochrome c oxidase I (COI) gene. The COI sequence of U.K. H. p. polygyrus is more similar to H. glareoli from voles than to H. p. bakeri, while a single isolate of H. p. polygyrus from Guernsey confirms the extent of genetic variation between H. p. polygyrus populations. Analysis of molecular variance demonstrated that mtCOI sequence variation is associated primarily with groups with distinct ITS2 sequences, and with host identity, but is not partitioned significantly with a single combined taxon H. polygyrus incorporating European and North American isolates. We conclude therefore that the laboratory OTU should be raised to the level of a distinct species, as H. bakeri from the laboratory mouse Mus musculus, and we reject the hypothesis that H. bakeri has diverged from H. polygyrus in the recent past following introduction into America. However, we are unable to reject the hypothesis that H. polygyrus and H. bakeri are sister taxa, and it may be that H. polygyrus is polyphyletic or paraphyletic.
Collapse
Affiliation(s)
- J Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3TL, UK.
| | | | | | | |
Collapse
|
7
|
Höglund J, Morrison DA, Mattsson JG, Engström A. Population genetics of the bovine/cattle lungworm (Dictyocaulus viviparus) based on mtDNA and AFLP marker techniques. Parasitology 2006; 133:89-99. [PMID: 16515731 DOI: 10.1017/s0031182006009991] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/20/2006] [Accepted: 01/21/2006] [Indexed: 11/06/2022]
Abstract
Mitochondrial DNA (mtDNA) sequence data and amplified fragment length polymorphism (AFLP) patterns were compared for the lungworm Dictyocaulus viviparus, a nematode parasite of cattle. Eight individual D. viviparus samples from each of 8 herds in Sweden and 1 laboratory isolate were analysed, with the aim of describing the diversity and genetic structure in populations using different genetic markers on exactly the same DNA samples. There was qualitative agreement between the whole-genome AFLP data and the mtDNA sequence data, both indicating relatively strong genetic differentiation among the Swedish farms. However, the AFLP data detected much more genetic variation than did the mtDNA data, even after allowing for the different inheritance patterns of the markers, and indicated that there was much less differentiation among the populations. The mtDNA data therefore seemed to be more informative about the most recent history of the parasite populations, as the general patterns were less obscured by detailed inter-relationships among individual worms. The 4 mtDNA genes sequenced (1542 bp) showed consistent patterns, although there was more genetic variation in the protein-coding genes than in the structural RNA genes. Furthermore, there appeared to be at least 3 distinct genetic groups of D. viviparus infecting Swedish cattle, 1 of which was predominant and showed considerable differentiation between farms, but not necessarily within farms. Second, the 2 smaller genetic groups occurred on farms where the predominant group also occurred, suggesting that these farms have had multiple introductions of D. viviparus.
Collapse
Affiliation(s)
- J Höglund
- Department of Parasitology (SWEPAR), National Veterinary Institute and Swedish University of Agricultural Sciences, 751 89 Uppsala, Sweden.
| | | | | | | |
Collapse
|
8
|
Li TH, Guo XR, Xue J, Hu L, Qiang HQ, Xue HC, Bin Z, Hawdon JM, Xiao SH. Comparison of mitochondrial cytochrome oxidase 1 DNA sequences from Necator americanus hookworms maintained for 100 generations in golden hamsters (Mesocricetus auratus) and hookworms from natural human infections. Acta Trop 2004; 92:71-5. [PMID: 15301977 DOI: 10.1016/j.actatropica.2004.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
The human hookworm Necator americanus was maintained through one hundred generations in the golden hamsters. The strain is now routinely maintained in laboratory hamsters through serial passage, and is the laboratory strain of choice for vaccine studies. Comparison of the mitochondrial cytochrome oxidase 1 (cox-1) sequences was shown previously to be useful for comparing the genetic structure of populations of N. americanus in China. Cytochrome oxidase 1 genes were amplified by the polymerase chain reaction, and the sequences compared to those of N. americanus recovered from infected humans from several regions in China. Sequence comparison revealed little difference between the laboratory strain and the field isolates at the cox-1 locus, but also indicated that the laboratory strain is represented by a single cox-1 haplotype. These results suggest that the laboratory strain of N. americanus has undergone a severe genetic bottleneck, and that the genetic diversity in other genes, including potential vaccine antigens, could be similarly limited.
Collapse
Affiliation(s)
- Tie-Hua Li
- Institute of Parasitic Diseases, Chinese Centers for Disease Control (CCDC), 207 Rui Jin Er Lu, Shanghai 200025, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
van der Veer M, Kanobana K, Ploeger HW, de Vries E. Cytochrome oxidase c subunit 1 polymorphisms show significant differences in distribution between a laboratory maintained population and a field isolate of Cooperia oncophora. Vet Parasitol 2003; 116:231-8. [PMID: 14559166 DOI: 10.1016/j.vetpar.2003.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A 474 bp fragment of the mitochondrial cytochrome oxidase c subunit 1 (cox1) of Cooperia oncophora was cloned and sequenced. The overall nucleotide diversity of the cox1 fragment varied from 0.5 to 2.0% between individuals. Two nucleotide substitutions were found within two RsaI endonuclease restriction sites and were used in a PCR-based restriction fragment length polymorphism (PCR-RFLP) assay to asses the intra-population variation of C. oncophora. Testing 816 individuals revealed the existence of three different haplotypes, having either both (type I) or only one (types II and III) RsaI site. Laboratory maintained individuals obtained at different time points after infection showed no significant difference in the distribution of the three haplotypes. Neither was there a difference in the distribution between male and female worms, confirming that the mitochondrial genome of C. oncophora is also maternally inherited. Nevertheless, there was a significant difference in the prevalence of the RsaI point mutation in the cox1 gene between the laboratory maintained population of C. oncophora and a Dutch field isolate, indicating that these RFLPs can be used to study genetic variation within or among C. oncophora populations.
Collapse
Affiliation(s)
- Margreet van der Veer
- Division of Parasitology and Tropical Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, PO Box 80.165, 3508 TD Utrecht, The Netherlands
| | | | | | | |
Collapse
|