1
|
Hao CL, Yang YY, Wei NW, Liu YJ, Shi CX, Wang JP, Zhang L, Xia SZ, Yue C. Complete mitochondrial genomes of Dactylogyrus crucifer and Dactylogyrus zandti reveal distinct patterns of codon usage within Dactylogyrus. Gene 2025; 933:148935. [PMID: 39255859 DOI: 10.1016/j.gene.2024.148935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/24/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Monogeneans of the genus Dactylogyrus Diesing, 1850, the largest genus in the family Dactylogyridae, mostly parasitize the gills of cyprinoid hosts; however, only 3 Dactylogyrus' mitochondrial genomes (mitogenomes) are studied so far. The aim of this research is to extend our understanding of the mitogenomes of Dactylogyrus. We sequenced the mitogenomes of D. crucifer and D. zandti isolated from Rutilus rutilus and Abramis brama orientalis in northwest China, and then we compared these mitogenomes with other monogeneans. We used Illumina NovaSeq to sequence the entire mitochondrial genomes of D. crucifer and D. zandti and characterized the mitogenomes to understand the gene structure, gene identity, the secondary structures of the 22 tRNA genes, and relative synonymous codon usage. We used the analytic Bayesian Information and Maximum Likelihood methods to determine their associated phylogenetic trees. The mitogenomes of D. crucifer and D. zandti were 14,403 and 18,584 bp, respectively. Organization and positioning of these genes were in accordance with Dactylogyrus lamellatus and Dactylogyrus tuba. The nucleotide composition of Dactylogyridae was different from other families of Monogenea, and the A+T count of genus Dactylogyrus (54 - 58.4 %) was lower than other genus species of the family Dactylogyridea (63.9 - 78.4 %) in protein-coding genes. Dactylogyrus members displayed a codon usage bias. The relative synonymous codon used by Dactylogyrus was not conserved and was lower than other monogeneans. The codon use patterns of closely-related species isolated from closely-related hosts were identical. Phylogenetic analyses using mitogenomic dataset produced Dactylogyrus isolated from host subfamily Leuciscinae formed a sister-group. Our results contributed significantly to an increased database of mitogenomes, more than 50 %, for Dactylogyrus that may help future studies of mitochondrial genes and codon uses for the analysis of monogenean phylogenetics.
Collapse
Affiliation(s)
- Cui-Lan Hao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, China.
| | - Yuan-Yuan Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Nian-Wen Wei
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Yan-Jun Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Cai-Xia Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Jin-Pu Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Li Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Shen-Zhen Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Cheng Yue
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| |
Collapse
|
2
|
Hu Y, Ye T, Zou H, Wang GT, Li WX, Zhang D. Complete mitochondrial genome and phylogenetic analysis of Dollfustrema vaneyi (Trematoda: Bucephalidae). BMC Genomics 2024; 25:862. [PMID: 39278945 PMCID: PMC11403940 DOI: 10.1186/s12864-024-10740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND The Bucephalidae is a large family of digenean trematodes but most previous analyses of its phylogenetic position have relied on a single mitochondrial gene or morphological features. Mitochondrial genomes (mitogenomes) remain unavailable for the entire family. To address this, we sequenced the complete mitogenome of Dollfustrema vaneyi and analyzed the phylogenetic relationships with other trematodes. RESULTS The circular genome of Dollfustrema vaneyi spanned 14,959 bp and contained 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a major non-coding region. We used concatenated amino acid and nucleotide sequences of all 36 genes for phylogenetic analyses, conducted using MrBayes, IQ-TREE and PhyloBayes. We identified pronounced topological instability across different analyses. The addition of recently sequenced two mitogenomes for the Aspidogastrea subclass along with the use of a site-heterogeneous model stabilized the topology, particularly the positions of Azygiidae and Bucephalidae. The stabilized results indicated that Azygiidae was the closest lineage to Bucephalidae in the available dataset, and together, they clustered at the base of the Plagiorchiida. CONCLUSIONS Our study provides the first comprehensive description and annotation of the mitochondrial genome for the Bucephalidae family. The results indicate a close phylogenetic relationship between Azygiidae and Bucephalidae, and reveal their basal placement within the order Plagiorchiida. Furthermore, the inclusion of Aspidogastrea mitogenomes and the site-heterogeneous model significantly improved the topological stability. These data will provide key molecular resources for future taxonomic and phylogenetic studies of the family Bucephalidae.
Collapse
Affiliation(s)
- Ye Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Tong Ye
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hong Zou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Gui-Tang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Wen-Xiang Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| | - Dong Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Key Laboratory of Biodiversity and Environment On the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850011, China.
| |
Collapse
|
3
|
Hao CL, Wei NW, Liu YJ, Shi CX, Arken K, Yue C. Mitochondrial phylogenomics provides conclusive evidence that the family Ancyrocephalidae is deeply paraphyletic. Parasit Vectors 2023; 16:83. [PMID: 36859280 PMCID: PMC9979435 DOI: 10.1186/s13071-023-05692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Unresolved taxonomic classification and paraphyly pervade the flatworm class Monogenea: the class itself may be paraphyletic and split into Polyopisthocotylea and Monopisthocotylea; there are some indications that the monopisthocotylean order Dactylogyridea may also be paraphyletic; single-gene markers and some morphological traits indicate that the family Ancyrocephalidae is paraphyletic and intertwined with the family Dactylogyridae. METHODS To attempt to study the relationships of Ancyrocephalidae and Monopisthocotylea using a phylogenetic marker with high resolution, we sequenced mitochondrial genomes of two fish ectoparasites from the family Dactylogyridae: Dactylogyrus simplex and Dactylogyrus tuba. We conducted phylogenetic analyses using three datasets and three methods. Datasets were ITS1 (nuclear) and nucleotide and amino acid sequences of almost complete mitogenomes of almost all available Monopisthocotylea mitogenomes. Methods were maximum likelihood (IQ-TREE), Bayesian inference (MrBayes) and CAT-GTR (PhyloBayes). RESULTS Both mitogenomes exhibited the ancestral gene order for Neodermata, and both were compact, with few and small intergenic regions and many and large overlaps. Gene sequences were remarkably divergent for nominally congeneric species, with only trnI exhibiting an identity value > 80%. Both mitogenomes had exceptionally low A + T base content and AT skews. We found evidence of pervasive compositional heterogeneity in the dataset and indications that base composition biases cause phylogenetic artefacts. All six mitogenomic analyses produced unique topologies, but all nine analyses produced topologies that rendered Ancyrocephalidae deeply paraphyletic. Mitogenomic data consistently resolved the order Capsalidea as nested within the Dactylogyridea. CONCLUSIONS The analyses indicate that taxonomic revisions are needed for multiple Polyopisthocotylea lineages, from genera to orders. In combination with previous findings, these results offer conclusive evidence that Ancyrocephalidae is a paraphyletic taxon. The most parsimonious solution to resolve this is to create a catch-all Dactylogyridae sensu lato clade comprising the current Ancyrocephalidae, Ancylodiscoididae, Pseudodactylogyridae and Dactylogyridae families, but the revision needs to be confirmed by another marker with a sufficient resolution.
Collapse
Affiliation(s)
- Cui-Lan Hao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Nian-Wen Wei
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Yan-Jun Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Cai-Xia Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Kadirden Arken
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Cheng Yue
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
| |
Collapse
|
4
|
Yang C, Shan B, Liu Y, Wang L, Wu Q, Luo Z, Sun D. Complete Mitochondrial Genome of Two Ectoparasitic Capsalids (Platyhelminthes: Monogenea: Monopisthocotylea): Gene Content, Composition, and Rearrangement. Genes (Basel) 2022; 13:genes13081376. [PMID: 36011287 PMCID: PMC9407395 DOI: 10.3390/genes13081376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
The capsalid monogeneans are important pathogens that generally infect marine fishes and have a substantial impact on fish welfare in aquaculture systems worldwide. However, the current mitogenome information on capsalids has received little attention, limiting the understanding of their evolution and phylogenetic relationships with other monogeneans. This paper reports the complete mitochondrial genomes of Capsala katsuwoni and Capsala martinieri for the first time, which we obtained using a next-generation sequencing method. The mitogenomes of C. katsuwoni and C. martinieri are 13,265 and 13,984 bp in length, respectively. Both species contain the typical 12 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region. The genome compositions show a moderate A+T bias (66.5% and 63.9% for C. katsuwoni and C. martinieri, respectively) and exhibit a negative AT skew but a positive GC skew in both species. One gene block rearrangement was found in C. katsuwoni in comparison with other capsalid species. Instead of being basal to the Gyrodactylidea and Dactylogyridea or being clustered with Dactylogyridea, all species of Capsalidea are grouped into a monophyletic clade. Our results clarify the gene rearrangement process and evolutionary status of Capsalidae and lay a foundation for further phylogenetic studies of monogeneans.
Collapse
Affiliation(s)
- Changping Yang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; (C.Y.); (B.S.); (Y.L.); (L.W.); (Q.W.); (Z.L.)
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Binbin Shan
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; (C.Y.); (B.S.); (Y.L.); (L.W.); (Q.W.); (Z.L.)
| | - Yan Liu
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; (C.Y.); (B.S.); (Y.L.); (L.W.); (Q.W.); (Z.L.)
| | - Liangming Wang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; (C.Y.); (B.S.); (Y.L.); (L.W.); (Q.W.); (Z.L.)
| | - Qiaer Wu
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; (C.Y.); (B.S.); (Y.L.); (L.W.); (Q.W.); (Z.L.)
| | - Zhengli Luo
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; (C.Y.); (B.S.); (Y.L.); (L.W.); (Q.W.); (Z.L.)
- School of Fisheries of Zhejiang Ocean University, Zhoushan 316022, China
| | - Dianrong Sun
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; (C.Y.); (B.S.); (Y.L.); (L.W.); (Q.W.); (Z.L.)
- Correspondence:
| |
Collapse
|
5
|
Hao CL, Arken K, Kadir M, Zhang WR, Rong MJ, Wei NW, Liu YJ, Yue C. The complete mitochondrial genomes of Paradiplozoon yarkandense and Paradiplozoon homoion confirm that Diplozoidae evolve at an elevated rate. Parasit Vectors 2022; 15:149. [PMID: 35477556 PMCID: PMC9044634 DOI: 10.1186/s13071-022-05275-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diplozoidae are monogenean (Monogenea: Polyopisthocotylea) fish parasites characterised by a unique life history: two larvae permanently fuse into an X-shaped "Siamese" organism. Taxonomy and phylogeny of Diplozoidae and Polyopisthocotylea remain unresolved due to the unavailability of molecular markers with sufficiently high resolution. Mitogenomes may be a suitable candidate, but there are currently only 12 available for the Polyopisthocotylea (three for Diplozoidae). The only available study of diplozoid mitogenomes found unique base composition patterns and elevated evolution rates in comparison with other Monogenean mitogenomes. METHODS To further explore their evolution and generate molecular data for evolutionary studies, we sequenced the complete mitogenomes of two Diplozoidae species, Paradiplozoon homoion and Paradiplozoon yarkandense, and conducted a number of comparative mitogenomic analyses with other polyopisthocotyleans. RESULTS We found further evidence that mitogenomes of Diplozoidae evolve at a unique, elevated rate, which was reflected in their exceptionally long branches, large sizes, unique base composition, skews, and very low gene sequence similarity levels between the two newly sequenced species. They also exhibited remarkably large overlaps between some genes. Phylogenetic analysis of Polyopisthocotylea resolved all major taxa as monophyletic, and Mazocraeidea was split into two major clades: (Diplozoidae) + (all four remaining families: Diclidophoridae, Chauhaneidae, Mazocraeidae and Microcotylidae). It also provided further confirmation that the genus Paradiplozoon is paraphyletic and requires a taxonomic revision, so the two species may have to be renamed Indodiplozoon homoion and Diplozoon yarkandense comb. nov. CONCLUSIONS Although our findings indicate that mitogenomes may be a promising tool for resolving the phylogeny of Polyopisthocotylea, elevated evolutionary rates of Diplozoidae may cause phylogenetic artefacts, so future studies should pay caution to this problem. Furthermore, as the reason for their elevated evolution remains unknown, Diplozoidae are a remarkably interesting lineage for other types of evolutionary mitogenomic studies.
Collapse
Affiliation(s)
- Cui-Lan Hao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Kadirden Arken
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Munira Kadir
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Wen-Run Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Meng-Jie Rong
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Nian-Wen Wei
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Yan-Jun Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Cheng Yue
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
| |
Collapse
|
6
|
Chen F, Zou H, Jin X, Zhang D, Li W, Li M, Wu S, Wang G. Sequencing of the Complete Mitochondrial Genome of Pingus sinensis (Spirurina: Quimperiidae): Gene Arrangements and Phylogenetic Implications. Genes (Basel) 2021; 12:genes12111772. [PMID: 34828378 PMCID: PMC8624427 DOI: 10.3390/genes12111772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Despite several decades of intensive research on spirurine nematodes, molecular data on some of the main lineages are still absent, which makes taxonomic classification insufficiently resolved. In the present study, we sequenced the first complete mitogenome for the family Quimperiidae, belonging to P. sinensis (Spirurina: Quimperiidae), a parasite living in the intestines of snakehead (Ophiocephalus argus). The circular mitogenome is 13,874 bp long, and it contains the standard nematode gene set: 22 transfer RNAs, 2 ribosomal RNAs and 12 protein-coding genes. There are also two long non-coding regions (NCR), in addition to only 8 other intergenic regions, ranging in size from 1 to 58 bp. To investigate its phylogenetic position and study the relationships among other available Spirurina, we performed the phylogenetic analysis using Bayesian inference and maximum likelihood approaches by concatenating the nucleotide sequences of all 36 genes on a dataset containing all available mitogenomes of the suborder Spirurina from NCBI and compared with gene order phylogenies using the MLGO program. Both supported the closer relationship of Ascaridoidea to Seuratoidea than to Spiruroidea. Pingus formed a sister-group with the Cucullanus genus. The results provide a new insights into the relationships within Spirurina.
Collapse
Affiliation(s)
- Fanglin Chen
- College of Science, Tibet University, Lhasa 850000, China;
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.Z.); (X.J.); (W.L.); (M.L.); (S.W.)
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.Z.); (X.J.); (W.L.); (M.L.); (S.W.)
| | - Xiao Jin
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.Z.); (X.J.); (W.L.); (M.L.); (S.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, China;
| | - Wenxiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.Z.); (X.J.); (W.L.); (M.L.); (S.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.Z.); (X.J.); (W.L.); (M.L.); (S.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangong Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.Z.); (X.J.); (W.L.); (M.L.); (S.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guitang Wang
- College of Science, Tibet University, Lhasa 850000, China;
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (H.Z.); (X.J.); (W.L.); (M.L.); (S.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
7
|
Mitochondrial genome of Rhabdosynochus viridisi (Monogenea: Diplectanidae), a parasite of Pacific white snook Centropomus viridis. J Helminthol 2021; 95:e21. [PMID: 33875027 DOI: 10.1017/s0022149x21000146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the nearly complete mitochondrial genome of Rhabdosynochus viridisi - the first for this genus - achieved by combining shotgun sequencing of genomic and cDNA libraries prepared using low-input protocols. This integration of genomic information leads us to correct the annotation of the gene features. The mitochondrial genome consists of 13,863 bp. Annotation resulted in the identification of 12 protein-encoding genes, 22 tRNA genes and two rRNA genes. Three non-coding regions, delimited by three tRNAs, were found between the genes nad5 and cox3. A phylogenetic analysis grouped R. viridisi with three other species of diplectanid monogeneans for which mitochondrial genomes are available.
Collapse
|
8
|
Caña-Bozada V, Llera-Herrera R, Fajer-Ávila EJ, Morales-Serna FN. Mitochondrial genome of Scutogyrus longicornis (Monogenea: Dactylogyridea), a parasite of Nile tilapia Oreochromis niloticus. Parasitol Int 2021; 81:102281. [PMID: 33401015 DOI: 10.1016/j.parint.2020.102281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Víctor Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán 82112, Sinaloa, Mexico.
| | - Raúl Llera-Herrera
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Sinaloa, Mexico.
| | - Emma J Fajer-Ávila
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán 82112, Sinaloa, Mexico.
| | - F Neptalí Morales-Serna
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán 82112, Sinaloa, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México, Mexico.
| |
Collapse
|
9
|
Monnens M, Thijs S, Briscoe AG, Clark M, Frost EJ, Littlewood DTJ, Sewell M, Smeets K, Artois T, Vanhove MPM. The first mitochondrial genomes of endosymbiotic rhabdocoels illustrate evolutionary relaxation of atp8 and genome plasticity in flatworms. Int J Biol Macromol 2020; 162:454-469. [PMID: 32512097 DOI: 10.1016/j.ijbiomac.2020.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/02/2023]
Abstract
The first three mitochondrial (mt) genomes of endosymbiotic turbellarian flatworms are characterised for the rhabdocoels Graffilla buccinicola, Syndesmis echinorum and S. kurakaikina. Interspecific comparison of the three newly obtained sequences and the only previously characterised rhabdocoel, the free-living species Bothromesostoma personatum, reveals high mt genomic variability, including numerous rearrangements. The first intrageneric comparison within rhabdocoels shows that gene order is not fully conserved even between congeneric species. Atp8, until recently assumed absent in flatworms, was putatively annotated in two sequences. Selection pressure was tested in a phylogenetic framework and is shown to be significantly relaxed in this and another protein-coding gene: cox1. If present, atp8 appears highly derived in platyhelminths and its functionality needs to be addressed in future research. Our findings for the first time allude to a large degree of undiscovered (mt) genomic plasticity in rhabdocoels. It merits further attention whether this variation is correlated with a symbiotic lifestyle. Our results illustrate that this phenomenon is widespread in flatworms as a whole and not exclusive to the better-studied neodermatans.
Collapse
Affiliation(s)
- Marlies Monnens
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Sofie Thijs
- Hasselt University, Centre for Environmental Sciences, Research Group Environmental Biology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Andrew G Briscoe
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - Miriam Clark
- School of Biological Sciences, University of Auckland, New Zealand.
| | - Emily Joy Frost
- School of Biological Sciences, University of Auckland, New Zealand.
| | - D Tim J Littlewood
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - Mary Sewell
- School of Biological Sciences, University of Auckland, New Zealand.
| | - Karen Smeets
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Tom Artois
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Maarten P M Vanhove
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 17, Helsinki FI-00014, Finland; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
10
|
Zhang D, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, Chen R, Li WX, Wang GT. Evidence for Adaptive Selection in the Mitogenome of a Mesoparasitic Monogenean Flatworm Enterogyrus malmbergi. Genes (Basel) 2019; 10:genes10110863. [PMID: 31671638 PMCID: PMC6896049 DOI: 10.3390/genes10110863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Whereas a majority of monogenean flatworms are ectoparasitic, i.e., parasitize on external surfaces (mainly gills) of their fish hosts, Enterogyrus species (subfamily Ancyrocephalinae) are mesoparasitic, i.e., parasitize in the stomach of the host. As there are numerous drastic differences between these two environments (including lower oxygen availability), we hypothesized that this life-history innovation might have produced adaptive pressures on the energy metabolism, which is partially encoded by the mitochondrial genome (OXPHOS). To test this hypothesis, we sequenced mitochondrial genomes of two Ancyrocephalinae species: mesoparasitic E. malmbergi and ectoparasitic Ancyrocephalus mogurndae. The mitogenomic architecture of E. malmbergi is mostly standard for monogeneans, but that of A. mogurndae exhibits some unique features: missing trnL2 gene, very low AT content (60%), a non-canonical start codon of the nad2 gene, and exceptionally long tandem-repeats in the non-coding region (253 bp). Phylogenetic analyses produced paraphyletic Ancyrocephalinae (with embedded Dactylogyrinae), but with low support values. Selective pressure (PAML and HYPHY) and protein structure analyses all found evidence for adaptive evolution in cox2 and cox3 genes of the mesoparasitic E. malmbergi. These findings tentatively support our hypothesis of adaptive evolution driven by life-history innovations in the mitogenome of this species. However, as only one stomach-inhabiting mesoparasitic monogenean was available for this analysis, our findings should be corroborated on a larger number of mesoparasitic monogeneans and by physiological studies.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100000, China.
| | - Hong Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Shan G Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100000, China.
| | - Ming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100000, China.
| | | | - Jin Zhang
- Bio-Transduction Lab, Wuhan 430075, China.
| | - Rong Chen
- Bio-Transduction Lab, Wuhan 430075, China.
| | - Wen X Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100000, China.
| | - Gui T Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100000, China.
| |
Collapse
|
11
|
Zhang D, Zou H, Jakovlić I, Wu SG, Li M, Zhang J, Chen R, Li WX, Wang GT. Mitochondrial Genomes of Two Thaparocleidus Species (Platyhelminthes: Monogenea) Reveal the First rRNA Gene Rearrangement among the Neodermata. Int J Mol Sci 2019; 20:E4214. [PMID: 31466297 PMCID: PMC6747449 DOI: 10.3390/ijms20174214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 01/17/2023] Open
Abstract
Phylogenetic framework for the closely related Ancylodiscoidinae and Ancyrocephalinae subfamilies remains contentious. As this issue was never studied using a large molecular marker, we sequenced the first two Ancylodiscoidinae mitogenomes: Thaparocleidus asoti and Thaparocleidus varicus. Both mitogenomes had two non-coding regions (NCRs) that contained a number of repetitive hairpin-forming elements (RHE). Due to these, the mitogenome of T. asoti (16,074 bp) is the longest among the Monogenea; especially large is its major NCR, with 3500 bp, approximately 1500 bp of which could not be sequenced (thus, the total mitogenome size is ≈ 17,600 bp). Although RHEs have been identified in other monopisthocotyleans, they appear to be independently derived in different taxa. The presence of RHEs may have contributed to the high gene order rearrangement rate observed in the two mitogenomes, including the first report of a transposition of rRNA genes within the Neodermata. Phylogenetic analyses using mitogenomic dataset produced Dactylogyrinae embedded within the Ancyrocephalinae (paraphyly), whereas Ancylodiscoidinae formed a sister-group with them. This was also supported by the gene order analysis. 28S rDNA dataset produced polyphyletic Dactylogyridae and Ancyrocephalinae. The phylogeny of the two subfamilies shall have to be further evaluated with more data.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | - Shan G Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jin Zhang
- Bio-Transduction Lab, Biolake, Wuhan 430075, China
| | - Rong Chen
- Bio-Transduction Lab, Biolake, Wuhan 430075, China
| | - Wen X Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Gui T Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
12
|
Song R, Zhang D, Gao JW, Cheng XF, Xie M, Li H, Wu YA. Characterization of the complete mitochondrial genome of Brentisentisyangtzensis Yu & Wu, 1989 (Acanthocephala, Illiosentidae). Zookeys 2019; 861:1-14. [PMID: 31363345 PMCID: PMC6656981 DOI: 10.3897/zookeys.861.34809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/31/2019] [Indexed: 11/12/2022] Open
Abstract
The mitogenome of Brentisentisyangtzensis is 13,864 bp in length and has the circular structure typical of metazoans. It contains 36 genes: 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and 12 protein-encoding genes (PCGs). All genes are transcribed from the same strand. Thirteen overlapping regions were found in the mitochondrial genome. The overall A+T content of B.yangtzensis is 68.3% versus 31.7% of G+C content (A = 27.8%, T = 40.5%, C = 9.0%, G = 22.7%). B.yangtzenensis (Illiosentidae) and Leptorhynchoidesthecatus (Rhadinorhynchidae) form a sister clade, showing the relatively close relationship between the Illiosentidae and the Rhadinorhynchidae. The mitochondrial gene arrangements of acanthocephalan species are relatively conserved, with only a few translocations of tRNAs (trnS1, trnS2, trnV, and trnK) detected. An identical gene order was found both in a sister clade (Centrorhynchusaluconis and Plagiorhynchustransversus) and across different classes (B.yangtzensis (Palaeacanthocephala), Acanthosentischeni (Eoacanthocephala) and Macracanthorhynchushirudinaceus (Archiacanthocephala), Oncicolaluehei and L.thecatus (Palaeacanthocephala)). More studies and more sequences of acanthocephalan species are needed to gain a clear understanding of the phylogenetic relationships.
Collapse
Affiliation(s)
- Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, ChinaCollaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan ProvinceChangdeChina
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, ChinaInstitute of Hydrobiology, Chinese Academy of SciencesWuhanChina
| | - Jin-Wei Gao
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Xiao-Fei Cheng
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Hong Li
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
| | - Yuan-An Wu
- Hunan Fisheries Science Institute, Changsha 410153, ChinaHunan Fisheries Science InstituteChangshaChina
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, ChinaCollaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan ProvinceChangdeChina
| |
Collapse
|
13
|
Zhang D, Li WX, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, Chen R, Wang GT. Mitochondrial genomes of two diplectanids (Platyhelminthes: Monogenea) expose paraphyly of the order Dactylogyridea and extensive tRNA gene rearrangements. Parasit Vectors 2018; 11:601. [PMID: 30458858 PMCID: PMC6245931 DOI: 10.1186/s13071-018-3144-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent mitochondrial phylogenomics studies have reported a sister-group relationship of the orders Capsalidea and Dactylogyridea, which is inconsistent with previous morphology- and molecular-based phylogenies. As Dactylogyridea mitochondrial genomes (mitogenomes) are currently represented by only one family, to improve the phylogenetic resolution, we sequenced and characterized two dactylogyridean parasites, Lamellodiscus spari and Lepidotrema longipenis, belonging to a non-represented family Diplectanidae. RESULTS The L. longipenis mitogenome (15,433 bp) contains the standard 36 flatworm mitochondrial genes (atp8 is absent), whereas we failed to detect trnS1, trnC and trnG in L. spari (14,614 bp). Both mitogenomes exhibit unique gene orders (among the Monogenea), with a number of tRNA rearrangements. Both long non-coding regions contain a number of different (partially overlapping) repeat sequences. Intriguingly, these include putative tRNA pseudogenes in a tandem array (17 trnV pseudogenes in L. longipenis, 13 trnY pseudogenes in L. spari). Combined nucleotide diversity, non-synonymous/synonymous substitutions ratio and average sequence identity analyses consistently showed that nad2, nad5 and nad4 were the most variable PCGs, whereas cox1, cox2 and cytb were the most conserved. Phylogenomic analysis showed that the newly sequenced species of the family Diplectanidae formed a sister-group with the Dactylogyridae + Capsalidae clade. Thus Dactylogyridea (represented by the Diplectanidae and Dactylogyridae) was rendered paraphyletic (with high statistical support) by the nested Capsalidea (represented by the Capsalidae) clade. CONCLUSIONS Our results show that nad2, nad5 and nad4 (fast-evolving) would be better candidates than cox1 (slow-evolving) for species identification and population genetics studies in the Diplectanidae. The unique gene order pattern further suggests discontinuous evolution of mitogenomic gene order arrangement in the Class Monogenea. This first report of paraphyly of the Dactylogyridea highlights the need to generate more molecular data for monogenean parasites, in order to be able to clarify their relationships using large datasets, as single-gene markers appear to provide a phylogenetic resolution which is too low for the task.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wen X. Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Shan G. Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Biolake, Wuhan, 430075 People’s Republic of China
| | - Jin Zhang
- Bio-Transduction Lab, Biolake, Wuhan, 430075 People’s Republic of China
| | - Rong Chen
- Bio-Transduction Lab, Biolake, Wuhan, 430075 People’s Republic of China
| | - Gui T. Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
14
|
Xi BW, Zhang D, Li WX, Yang BJ, Xie J. Characterization of the complete mitochondrial genome of Parabreviscolexniepini Xi et al., 2018 (Cestoda, Caryophyllidea). Zookeys 2018:97-112. [PMID: 30323705 PMCID: PMC6182261 DOI: 10.3897/zookeys.783.24674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022] Open
Abstract
Parabreviscolexniepini is a recently described caryophyllidean monozoic tapeworm from schizothoracine fish on the Tibetan Plateau. In the present study, the complete mitochondrial genome of P.niepini is determined for the first time. The mitogenome is 15,034 bp in length with an A+T content of 59.6%, and consists of 12 protein-encoding genes, 22 tRNA genes, two rRNA genes, and two non-coding regions. The secondary structure of tRNAs exhibit the conventional cloverleaf structure, except for trnS1(AGN) and trnR, which lack DHU arms. The anti-codon of trnS1(AGN) in the mitogenome of P.niepini is TCT. The two major non-coding regions, 567 bp and 1428 bp in size, are located between trnL2 and cox2, trnG and cox3, respectively. The gene order of P.niepini shows a consistent pattern with other caryophyllideans. Phylogenetic analysis based on mitogenomic data indicates that P.niepini has a close evolutionary relationship with tapeworms Breviscolexorientalis and Atractolytocestushuronensis.
Collapse
Affiliation(s)
- Bing-Wen Xi
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences Wuxi China
| | - Dong Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Institute of Hydrobiology, Chinese Academy of Sciences Wuhan China
| | - Wen-Xiang Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Institute of Hydrobiology, Chinese Academy of Sciences Wuhan China
| | - Bao-Juan Yang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences Wuxi China
| | - Jun Xie
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences Wuxi China
| |
Collapse
|
15
|
Zhang D, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, Chen R, Li WX, Wang GT. Three new Diplozoidae mitogenomes expose unusual compositional biases within the Monogenea class: implications for phylogenetic studies. BMC Evol Biol 2018; 18:133. [PMID: 30176801 PMCID: PMC6122551 DOI: 10.1186/s12862-018-1249-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/20/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND As the topologies produced by previous molecular and morphological studies were contradictory and unstable (polytomy), evolutionary relationships within the Diplozoidae family and the Monogenea class (controversial relationships among the Discocotylinea, Microcotylinea and Gastrocotylinea suborders) remain unresolved. Complete mitogenomes carry a relatively large amount of information, sufficient to provide a much higher phylogenetic resolution than traditionally used morphological traits and/or single molecular markers. However, their implementation is hampered by the scarcity of available monogenean mitogenomes. Therefore, we sequenced and characterized mitogenomes belonging to three Diplozoidae family species, and conducted comparative genomic and phylogenomic analyses for the entire Monogenea class. RESULTS Taxonomic identification was inconclusive, so two of the species were identified merely to the genus level. The complete mitogenomes of Sindiplozoon sp. and Eudiplozoon sp. are 14,334 bp and 15,239 bp in size, respectively. Paradiplozoon opsariichthydis (15,385 bp) is incomplete: an approximately 2000 bp-long gap within a non-coding region could not be sequenced. Each genome contains the standard 36 genes (atp8 is missing). G + T content and the degree of GC- and AT-skews of these three mitogenome (and their individual elements) were higher than in other monogeneans. nad2, atp6 and nad6 were the most variable PCGs, whereas cox1, nad1 and cytb were the most conserved. Mitochondrial phylogenomics analysis, conducted using concatenated amino acid sequences of all PCGs, indicates that evolutionary relationships of the three genera are: (Eudiplozoon, (Paradiplozoon, Sindiplozoon)); and of the three suborders: (Discocotylinea, (Microcotylinea, Gastrocotylinea)). These intergeneric relationships were also supported by the skewness and principal component analyses. CONCLUSIONS Our results show that nad2, atp6 and nad6 (fast-evolving) would be better candidates than cox1 (slow-evolving) for species identification and population genetics studies in Diplozoidae. Nucleotide bias and codon and amino acid usage patterns of the three diplozoid mitogenomes are more similar to cestodes and trematodes than to other monogenean flatworms. This unusual mutational bias was reflected in disproportionately long branches in the phylogram. Our study offsets the scarcity of molecular data for the subclass Polyopisthocotylea to some extent, and might provide important new insights into the evolutionary history of the three genera and three suborders.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Shan G. Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Biolake, Wuhan, 430075 People’s Republic of China
| | - Jin Zhang
- Bio-Transduction Lab, Biolake, Wuhan, 430075 People’s Republic of China
| | - Rong Chen
- Bio-Transduction Lab, Biolake, Wuhan, 430075 People’s Republic of China
| | - Wen X. Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Gui T. Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
16
|
Vanhove MPM, Briscoe AG, Jorissen MWP, Littlewood DTJ, Huyse T. The first next-generation sequencing approach to the mitochondrial phylogeny of African monogenean parasites (Platyhelminthes: Gyrodactylidae and Dactylogyridae). BMC Genomics 2018; 19:520. [PMID: 29973152 PMCID: PMC6032552 DOI: 10.1186/s12864-018-4893-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Monogenean flatworms are the main ectoparasites of fishes. Representatives of the species-rich families Gyrodactylidae and Dactylogyridae, especially those infecting cichlid fishes and clariid catfishes, are important parasites in African aquaculture, even more so due to the massive anthropogenic translocation of their hosts worldwide. Several questions on their evolution, such as the phylogenetic position of Macrogyrodactylus and the highly speciose Gyrodactylus, remain unresolved with available molecular markers. Also, diagnostics and population-level research would benefit from the development of higher-resolution genetic markers. We aim to offer genetic resources for work on African monogeneans by providing mitogenomic data of four species (two belonging to Gyrodactylidae, two to Dactylogyridae), and analysing their gene sequences and gene order from a phylogenetic perspective. RESULTS Using Illumina technology, the first four mitochondrial genomes of African monogeneans were assembled and annotated for the cichlid parasites Gyrodactylus nyanzae, Cichlidogyrus halli, Cichlidogyrus mbirizei (near-complete mitogenome) and the catfish parasite Macrogyrodactylus karibae (near-complete mitogenome). Complete nuclear ribosomal operons were also retrieved, as molecular vouchers. The start codon TTG is new for Gyrodactylus and for Dactylogyridae, as is the incomplete stop codon TA for Dactylogyridae. Especially the nad2 gene is promising for primer development. Gene order was identical for protein-coding genes and differed between the African representatives of these families only in a tRNA gene transposition. A mitochondrial phylogeny based on an alignment of nearly 12,500 bp including 12 protein-coding and two ribosomal RNA genes confirms that the Neotropical oviparous Aglaiogyrodactylus forficulatus takes a sister group position with respect to the other gyrodactylids, instead of the supposedly 'primitive' African Macrogyrodactylus. Inclusion of the African Gyrodactylus nyanzae confirms the paraphyly of Gyrodactylus. The position of the African dactylogyrid Cichlidogyrus is unresolved, although gene order suggests it is closely related to marine ancyrocephalines. CONCLUSIONS The amount of mitogenomic data available for gyrodactylids and dactylogyrids is increased by roughly one-third. Our study underscores the potential of mitochondrial genes and gene order in flatworm phylogenetics, and of next-generation sequencing for marker development for these non-model helminths for which few primers are available.
Collapse
Affiliation(s)
- Maarten P. M. Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O.Box 17, FI-00014 Helsinki, Finland
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
- Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| | - Andrew G. Briscoe
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Michiel W. P. Jorissen
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
- Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| | - D. Tim J. Littlewood
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Tine Huyse
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
- Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| |
Collapse
|
17
|
Li WX, Fu PP, Zhang D, Boyce K, Xi BW, Zou H, Li M, Wu SG, Wang GT. Comparative mitogenomics supports synonymy of the genera Ligula and Digramma (Cestoda: Diphyllobothriidae). Parasit Vectors 2018; 11:324. [PMID: 29848351 PMCID: PMC5975392 DOI: 10.1186/s13071-018-2910-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
Background After observing differences in the number of reproductive complexes per proglottid within the genus Ligula, the genus Digramma was erected. However, the validity of Digramma has been previously questioned due to a low variability in the cox1, nad1 and ITS rDNA sequences between the two genera. We undertook a study to greatly increase the amount of sequence data available for resolution of this question by sequencing and characterizing the complete mitogenomes of Digramma interrupta and Ligula intestinalis. Results The circular mtDNA molecules of Digramma interrupta and Ligula intestinalis are 13,685 bp and 13,621 bp in size, respectively, both comprising 12 PCGs, 22 tRNA genes, two rRNA genes, and two mNCRs. Both mitogenomes exhibit the same gene order and share 92.7% nucleotide identity, compared with 85.8–86.5% to the most closely related genus Dibothriocephalus. Each gene from D. interrupta and L. intestinalis is almost of the same size, and the sequence identity ranges from 87.5% (trnD) to 100% (trnH, trnQ and trnV). NCR2 sequences of D. interrupta and L. intestinalis are 249 bp and 183 bp in length, respectively, which contributes to the main difference in length between their complete mitogenomes. A sliding window analysis of the 12 PCGs and two rRNAs indicated nucleotide diversity to be higher in nad5, nad6, nad2, nad4 and cox3, whereas the most conserved genes were rrnL and rrnS. Lower sequence identity was also found in nad2, nad4, nad5, nad6 and cox3 genes between the two diphyllobothriids. Within the Diphyllobothriidae, phylogenetic analysis indicated Ligula and Digramma to be most closely related to one another, forming a sister group with Dibothriocephalus. Conclusions Owing to higher nucleotide diversity, the genes nad2, nad4, nad5, nad6 and cox3 should be considered optimal candidates to use as molecular markers for population genetics and species identification between the two closely related species. The phylogenetic results in combination with the comparative analysis of the two mitogenomes, consistently support the congeneric status of L. intestinalis and D. interrupta. Electronic supplementary material The online version of this article (10.1186/s13071-018-2910-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen X Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Pei P Fu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Kellyanne Boyce
- South Devon College University Centre, Long Road, Paignton, TQ4 7EJ, UK
| | - Bing W Xi
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Shan G Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Gui T Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
18
|
Liu ZQ, Liu YF, Kuermanali N, Wang DF, Chen SJ, Guo HL, Zhao L, Wang JW, Han T, Wang YZ, Wang J, Shen CF, Zhang ZZ, Chen CF. Sequencing of complete mitochondrial genomes confirms synonymization of Hyalomma asiaticum asiaticum and kozlovi, and advances phylogenetic hypotheses for the Ixodidae. PLoS One 2018; 13:e0197524. [PMID: 29768482 PMCID: PMC5955544 DOI: 10.1371/journal.pone.0197524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Phylogeny of hard ticks (Ixodidae) remains unresolved. Mitochondrial genomes (mitogenomes) are increasingly used to resolve phylogenetic controversies, but remain unavailable for the entire large Hyalomma genus. Hyalomma asiaticum is a parasitic tick distributed throughout the Asia. As a result of great morphological variability, two subspecies have been recognised historically; until a morphological data-based synonymization was proposed. However, this hypothesis was never tested using molecular data. Therefore, objectives of this study were to: 1. sequence the first Hyalomma mitogenome; 2. scrutinise the proposed synonymization using molecular data, i.e. complete mitogenomes of both subspecies: H. a. asiaticum and kozlovi; 3. conduct phylogenomic and comparative analyses of all available Ixodidae mitogenomes. Results corroborate the proposed synonymization: the two mitogenomes are almost identical (99.6%). Genomic features of both mitogenomes are standard for Metastriata; which includes the presence of two control regions and all three "Tick-Box" motifs. Gene order and strand distribution are perfectly conserved for the entire Metastriata group. Suspecting compositional biases, we conducted phylogenetic analyses (29 almost complete mitogenomes) using homogeneous and heterogeneous (CAT) models of substitution. The results were congruent, apart from the deep-level topology of prostriate ticks (Ixodes): the homogeneous model produced a monophyletic Ixodes, but the CAT model produced a paraphyletic Ixodes (and thereby Prostriata), divided into Australasian and non-Australasian clades. This topology implies that all metastriate ticks have evolved from the ancestor of the non-Australian branch of prostriate ticks. Metastriata was divided into three clades: 1. Amblyomminae and Rhipicephalinae (Rhipicephalus, Hyalomma, Dermacentor); 2. Haemaphysalinae and Bothriocrotoninae, plus Amblyomma sphenodonti; 3. Amblyomma elaphense, basal to all Metastriata. We conclude that mitogenomes have the potential to resolve the long-standing debate about the evolutionary history of ticks, but heterogeneous evolutionary models should be used to alleviate the effects of compositional heterogeneity on deep-level relationships.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yan-Feng Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Nuer Kuermanali
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Deng-Feng Wang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shi-Jun Chen
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hui-Ling Guo
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Li Zhao
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jun-Wei Wang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tao Han
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yuan-Zhi Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Jie Wang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Chen-Feng Shen
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhuang-Zhi Zhang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Chuang-Fu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
19
|
Justine JL, Poddubnaya LG. Spermiogenesis and spermatozoon ultrastructure in basal polyopisthocotylean monogeneans, Hexabothriidae and Chimaericolidae, and their significance for the phylogeny of the Monogenea. Parasite 2018; 25:7. [PMID: 29436366 PMCID: PMC5811217 DOI: 10.1051/parasite/2018007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/24/2018] [Indexed: 11/14/2022] Open
Abstract
Sperm ultrastructure provides morphological characters useful for understanding phylogeny; no study was available for two basal branches of the Polyopisthocotylea, the Chimaericolidea and Diclybothriidea. We describe here spermiogenesis and sperm in Chimaericola leptogaster (Chimaericolidae) and Rajonchocotyle emarginata (Hexabothriidae), and sperm in Callorhynchocotyle callorhynchi (Hexabothriidae). Spermiogenesis in C. leptogaster and R. emarginata shows the usual pattern of most Polyopisthocotylea with typical zones of differentiation and proximo-distal fusion of the flagella. In all three species, the structure of the spermatozoon is biflagellate, with two incorporated trepaxonematan 9 + "1" axonemes and a posterior nucleus. However, unexpected structures were also seen. An alleged synapomorphy of the Polyopisthocotylea is the presence of a continuous row of longitudinal microtubules in the nuclear region. The sperm of C. leptogaster has a posterior part with a single axoneme, and the part with the nucleus is devoid of the continuous row of microtubules. The spermatozoon of R. emarginata has an anterior region with membrane ornamentation, and posterior lateral microtubules are absent. The spermatozoon of C. callorhynchi has transverse sections with only dorsal and ventral microtubules, and its posterior part shows flat sections containing a single axoneme and the nucleus. These findings have important implications for phylogeny and for the definition of synapomorphies in the Neodermata. We point out a series of discrepancies between actual data and interpretation of character states in the matrix of a phylogeny of the Monogenea. Our main conclusion is that the synapomorphy "lateral microtubules in the principal region of the spermatozoon" does not define the Polyopisthocotylea but is restricted to the Mazocraeidea.
Collapse
Affiliation(s)
- Jean-Lou Justine
- Institut Systématique Évolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE,
57 rue Cuvier, CP 51,
75005
Paris France
| | - Larisa G. Poddubnaya
- I. D. Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences,
152742
Borok, Yaroslavl Russia
| |
Collapse
|
20
|
Zou H, Jakovlić I, Chen R, Zhang D, Zhang J, Li WX, Wang GT. The complete mitochondrial genome of parasitic nematode Camallanus cotti: extreme discontinuity in the rate of mitogenomic architecture evolution within the Chromadorea class. BMC Genomics 2017; 18:840. [PMID: 29096600 PMCID: PMC5669012 DOI: 10.1186/s12864-017-4237-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Complete mitochondrial genomes are much better suited for the taxonomic identification and phylogenetic studies of nematodes than morphology or traditionally-used molecular markers, but they remain unavailable for the entire Camallanidae family (Chromadorea). As the only published mitogenome in the Camallanina suborder (Dracunculoidea superfamily) exhibited a unique gene order, the other objective of this research was to study the evolution of mitochondrial architecture in the Spirurida order. Thus, we sequenced the complete mitogenome of the Camallanus cotti fish parasite and conducted structural and phylogenomic comparative analyses with all available Spirurida mitogenomes. RESULTS The mitogenome is exceptionally large (17,901 bp) among the Chromadorea and, with 46 (pseudo-) genes, exhibits a unique architecture among nematodes. Six protein-coding genes (PCGs) and six tRNAs are duplicated. An additional (seventh) tRNA (Trp) was probably duplicated by the remolding of tRNA-Ser2 (missing). Two pairs of these duplicated PCGs might be functional; three were incomplete and one contained stop codons. Apart from Ala and Asp, all other duplicated tRNAs are conserved and probably functional. Only 19 unique tRNAs were found. Phylogenomic analysis included Gnathostomatidae (Spirurina) in the Camallanina suborder. CONCLUSIONS Within the Nematoda, comparable PCG duplications were observed only in the enoplean Mermithidae family, but those result from mitochondrial recombination, whereas characteristics of the studied mitogenome suggest that likely rearrangement mechanisms are either a series of duplications, transpositions and random loss events, or duplication, fragmentation and subsequent reassembly of the mitogenome. We put forward a hypothesis that the evolution of mitogenomic architecture is extremely discontinuous, and that once a long period of stasis in gene order and content has been punctuated by a rearrangement event, such a destabilised mitogenome is much more likely to undergo subsequent rearrangement events, resulting in an exponentially accelerated evolutionary rate of mitogenomic rearrangements. Implications of this model are particularly important for the application of gene order similarity as an additive source of phylogenetic information. Chromadorean nematodes, and particularly Camallanina clade (with C. cotti as an example of extremely accelerated rate of rearrangements), might be a good model to further study this discontinuity in the dynamics of mitogenomic evolution.
Collapse
Affiliation(s)
- Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Rong Chen
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Jin Zhang
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
21
|
Zhang D, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, Chen R, Wang GT, Li WX. Sequencing of the complete mitochondrial genome of a fish-parasitic flatworm Paratetraonchoides inermis (Platyhelminthes: Monogenea): tRNA gene arrangement reshuffling and implications for phylogeny. Parasit Vectors 2017; 10:462. [PMID: 29017532 PMCID: PMC5633893 DOI: 10.1186/s13071-017-2404-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paratetraonchoides inermis (Monogenea: Tetraonchoididae) is a flatworm parasitising the gills of uranoscopid fishes. Its morphological characteristics are ambiguous, and molecular data have never been used to study its phylogenetic relationships, which makes its taxonomic classification controversial. Also, several decades of unsuccessful attempts to resolve the relationships within the Monogenea present a strong indication that morphological datasets may not be robust enough to be used to infer evolutionary histories. As the use of molecular data is currently severely limited by their scarcity, we have sequenced and characterized the complete mitochondrial (mt) genome of P. inermis. To investigate its phylogenetic position, we performed phylogenetic analyses using Bayesian inference and maximum likelihood approaches using concatenated amino acid sequences of all 12 protein-coding genes on a dataset containing all available monogenean mt genomes. RESULTS The circular mt genome of P. inermis (14,654 bp) contains the standard 36 genes: 22 tRNAs, two rRNAs, 12 protein-encoding genes (PCGs; Atp8 is missing) and a major non-coding region (mNCR). All genes are transcribed from the same strand. The A + T content of the whole genome (82.6%), as well as its elements, is the highest reported among the monogeneans thus far. Three tRNA-like cloverleaf structures were found in mNCR. Several results of the phylogenomic analysis are in disagreement with previously proposed relationships: instead of being closely related to the Gyrodactylidea, Tetraonchidea exhibit a phylogenetic affinity with the Dactylogyridea + Capsalidea clade; and the order Capsalidea is neither basal within the subclass Monopisthocotylea, nor groups with the Gyrodactylidea, but instead forms a sister clade with the Dactylogyridea. The mt genome of P. inermis exhibits a unique gene order, with an extensive reorganization of tRNAs. Monogenea exhibit exceptional gene order plasticity within the Neodermata. CONCLUSIONS This study shows that gene order within monopisthocotylid mt genomes is evolving at uneven rates, which creates misleading evolutionary signals. Furthermore, our results indicate that all previous attempts to resolve the evolutionary history of the Monogenea may have produced at least partially erroneous relationships. This further corroborates the necessity to generate more molecular data for this group of parasitic animals.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Shan G. Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, People’s Republic of China
| | - Jin Zhang
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, People’s Republic of China
| | - Rong Chen
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, People’s Republic of China
| | - Gui T. Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Wen X. Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|