1
|
Nwoke EA, Lowe S, Aldabbagh F, Kalesh K, Kadri H. Nucleoside Analogues for Chagas Disease and Leishmaniasis Therapy: Current Status and Future Perspectives. Molecules 2024; 29:5234. [PMID: 39598623 PMCID: PMC11596272 DOI: 10.3390/molecules29225234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Chagas disease and leishmaniasis are two neglected tropical diseases that affect millions of people in low- and middle-income tropical countries. These diseases caused by protozoan parasites pose significant global health challenges, which have been exacerbated by the recent COVID-19 pandemic. There is an urgent need for novel therapeutics as current treatments are limited by toxicity and drug resistance. Nucleoside analogues, which have been extensively studied and successfully applied in antiviral and antitumor therapies, hold potential that has yet to be fully explored for treating these neglected diseases. In this review, we discuss the use of nucleoside analogues as promising therapeutic agents for Chagas disease and leishmaniasis. After briefly examining the pathology, progression, and current treatment options for these diseases, we provide a comprehensive analysis of the status of nucleoside analogues and explore their prospects. By outlining the current landscape and future directions, this review aims to guide research and development efforts towards more effective nucleoside-based treatments for Chagas disease and leishmaniasis.
Collapse
Affiliation(s)
- Emmanuel Awucha Nwoke
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (E.A.N.); (S.L.); (F.A.)
| | - Silvester Lowe
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (E.A.N.); (S.L.); (F.A.)
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (E.A.N.); (S.L.); (F.A.)
| | - Karunakaran Kalesh
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK;
| | - Hachemi Kadri
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (E.A.N.); (S.L.); (F.A.)
| |
Collapse
|
2
|
Das A, Liu T, Li H, Husain S. The RNA-binding protein RBP42 regulates cellular energy metabolism in mammalian-infective Trypanosoma brucei. mSphere 2023; 8:e0027323. [PMID: 37581443 PMCID: PMC10654194 DOI: 10.1128/msphere.00273-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 08/16/2023] Open
Abstract
RNA-binding proteins (RBPs) are key players in coordinated post-transcriptional regulation of functionally related genes, defined as RNA regulons. RNA regulons play particularly critical roles in parasitic trypanosomes, which exhibit unregulated co-transcription of long unrelated gene arrays. In this report, we present a systematic analysis of an essential RBP, RBP42, in the mammalian-infective bloodstream form of African trypanosome and show that RBP42 is a key regulator of parasite's central carbon and energy metabolism. Using individual-nucleotide resolution UV cross-linking and immunoprecipitation to identify genome-wide RBP42-RNA interactions, we show that RBP42 preferentially binds within the coding region of mRNAs encoding core metabolic enzymes. Global quantitative transcriptomic and proteomic analyses reveal that loss of RBP42 reduces the abundance of target mRNA-encoded proteins, but not target mRNA, suggesting a positive translational regulatory role of RBP42. Significant changes in central carbon metabolic intermediates, following loss of RBP42, further support its critical role in cellular energy metabolism. Trypanosoma brucei infection, transmitted through the bite of blood-feeding tsetse flies, causes deadly diseases in humans and livestock. This disease, if left untreated, is almost always fatal. Existing therapies are toxic and difficult to administer. During T. brucei's lifecycle in two different host environments, the parasite progresses through distinctive life stages with major morphological and metabolic changes, requiring precise alteration of parasite gene expression program. In the absence of regulated transcription, post-transcriptional processes mediated by RNA-binding proteins play critical roles in T. brucei gene regulation. In this study, we show that the RNA-binding protein RBP42 plays crucial roles in cellular energy metabolic regulation of this important human pathogen. Metabolic dysregulation observed in RBP42 knockdown cells offers a breadth of potential interest to researchers studying parasite biology and can also impact research in general eukaryotic biology.
Collapse
Affiliation(s)
- Anish Das
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Tong Liu
- Center for Advanced Proteomics Research, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Hong Li
- Center for Advanced Proteomics Research, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Seema Husain
- Genomics Center, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
3
|
Glockzin K, Meneely KM, Hughes R, Maatouk SW, Piña GE, Suthagar K, Clinch K, Buckler JN, Lamb AL, Tyler PC, Meek TD, Katzfuss A. Kinetic and Structural Characterization of Trypanosoma cruzi Hypoxanthine-Guanine-Xanthine Phosphoribosyltransferases and Repurposing of Transition-State Analogue Inhibitors. Biochemistry 2023. [PMID: 37418678 DOI: 10.1021/acs.biochem.3c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Over 70 million people are currently at risk of developing Chagas Disease (CD) infection, with more than 8 million people already infected worldwide. Current treatments are limited and innovative therapies are required. Trypanosoma cruzi, the etiological agent of CD, is a purine auxotroph that relies on phosphoribosyltransferases to salvage purine bases from their hosts for the formation of purine nucleoside monophosphates. Hypoxanthine-guanine-xanthine phosphoribosyltransferases (HGXPRTs) catalyze the salvage of 6-oxopurines and are promising targets for the treatment of CD. HGXPRTs catalyze the formation of inosine, guanosine, and xanthosine monophosphates from 5-phospho-d-ribose 1-pyrophosphate and the nucleobases hypoxanthine, guanine, and xanthine, respectively. T. cruzi possesses four HG(X)PRT isoforms. We previously reported the kinetic characterization and inhibition of two isoforms, TcHGPRTs, demonstrating their catalytic equivalence. Here, we characterize the two remaining isoforms, revealing nearly identical HGXPRT activities in vitro and identifying for the first time T. cruzi enzymes with XPRT activity, clarifying their previous annotation. TcHGXPRT follows an ordered kinetic mechanism with a postchemistry event as the rate-limiting step(s) of catalysis. Its crystallographic structures reveal implications for catalysis and substrate specificity. A set of transition-state analogue inhibitors (TSAIs) initially developed to target the malarial orthologue were re-evaluated, with the most potent compound binding to TcHGXPRT with nanomolar affinity, validating the repurposing of TSAIs to expedite the discovery of lead compounds against orthologous enzymes. We identified mechanistic and structural features that can be exploited in the optimization of inhibitors effective against TcHGPRT and TcHGXPRT concomitantly, which is an important feature when targeting essential enzymes with overlapping activities.
Collapse
Affiliation(s)
- Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Kathleen M Meneely
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Ryan Hughes
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Sean W Maatouk
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Grace E Piña
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Kajitha Suthagar
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Keith Clinch
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Joshua N Buckler
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Audrey L Lamb
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Peter C Tyler
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Thomas D Meek
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Ardala Katzfuss
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| |
Collapse
|
4
|
Nascimento JF, Souza ROO, Alencar MB, Marsiccobetre S, Murillo AM, Damasceno FS, Girard RBMM, Marchese L, Luévano-Martinez LA, Achjian RW, Haanstra JR, Michels PAM, Silber AM. How much (ATP) does it cost to build a trypanosome? A theoretical study on the quantity of ATP needed to maintain and duplicate a bloodstream-form Trypanosoma brucei cell. PLoS Pathog 2023; 19:e1011522. [PMID: 37498954 PMCID: PMC10409291 DOI: 10.1371/journal.ppat.1011522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/08/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
ATP hydrolysis is required for the synthesis, transport and polymerization of monomers for macromolecules as well as for the assembly of the latter into cellular structures. Other cellular processes not directly related to synthesis of biomass, such as maintenance of membrane potential and cellular shape, also require ATP. The unicellular flagellated parasite Trypanosoma brucei has a complex digenetic life cycle. The primary energy source for this parasite in its bloodstream form (BSF) is glucose, which is abundant in the host's bloodstream. Here, we made a detailed estimation of the energy budget during the BSF cell cycle. As glycolysis is the source of most produced ATP, we calculated that a single parasite produces 6.0 x 1011 molecules of ATP/cell cycle. Total biomass production (which involves biomass maintenance and duplication) accounts for ~63% of the total energy budget, while the total biomass duplication accounts for the remaining ~37% of the ATP consumption, with in both cases translation being the most expensive process. These values allowed us to estimate a theoretical YATP of 10.1 (g biomass)/mole ATP and a theoretical [Formula: see text] of 28.6 (g biomass)/mole ATP. Flagellar motility, variant surface glycoprotein recycling, transport and maintenance of transmembrane potential account for less than 30% of the consumed ATP. Finally, there is still ~5.5% available in the budget that is being used for other cellular processes of as yet unknown cost. These data put a new perspective on the assumptions about the relative energetic weight of the processes a BSF trypanosome undergoes during its cell cycle.
Collapse
Affiliation(s)
- Janaina F. Nascimento
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Rodolpho O. O. Souza
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Mayke B. Alencar
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Sabrina Marsiccobetre
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Ana M. Murillo
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Flávia S. Damasceno
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Richard B. M. M. Girard
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Letícia Marchese
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Luis A. Luévano-Martinez
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Renan W. Achjian
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| | - Jurgen R. Haanstra
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul A. M. Michels
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo–São Paulo, Brazil
| |
Collapse
|
5
|
Soni M, Pratap JV. Development of Novel Anti-Leishmanials: The Case for Structure-Based Approaches. Pathogens 2022; 11:pathogens11080950. [PMID: 36015070 PMCID: PMC9414883 DOI: 10.3390/pathogens11080950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The neglected tropical disease (NTD) leishmaniasis is the collective name given to a diverse group of illnesses caused by ~20 species belonging to the genus Leishmania, a majority of which are vector borne and associated with complex life cycles that cause immense health, social, and economic burdens locally, but individually are not a major global health priority. Therapeutic approaches against leishmaniasis have various inadequacies including drug resistance and a lack of effective control and eradication of the disease spread. Therefore, the development of a rationale-driven, target based approaches towards novel therapeutics against leishmaniasis is an emergent need. The utilization of Artificial Intelligence/Machine Learning methods, which have made significant advances in drug discovery applications, would benefit the discovery process. In this review, following a summary of the disease epidemiology and available therapies, we consider three important leishmanial metabolic pathways that can be attractive targets for a structure-based drug discovery approach towards the development of novel anti-leishmanials. The folate biosynthesis pathway is critical, as Leishmania is auxotrophic for folates that are essential in many metabolic pathways. Leishmania can not synthesize purines de novo, and salvage them from the host, making the purine salvage pathway an attractive target for novel therapeutics. Leishmania also possesses an organelle glycosome, evolutionarily related to peroxisomes of higher eukaryotes, which is essential for the survival of the parasite. Research towards therapeutics is underway against enzymes from the first two pathways, while the third is as yet unexplored.
Collapse
Affiliation(s)
- Mohini Soni
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - J. Venkatesh Pratap
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence:
| |
Collapse
|
6
|
Hulpia F, Van Hecke K, França da Silva C, da Gama Jaen Batista D, Maes L, Caljon G, de Nazaré C Soeiro M, Van Calenbergh S. Discovery of Novel 7-Aryl 7-Deazapurine 3'-Deoxy-ribofuranosyl Nucleosides with Potent Activity against Trypanosoma cruzi. J Med Chem 2018; 61:9287-9300. [PMID: 30234983 DOI: 10.1021/acs.jmedchem.8b00999] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chagas disease is the leading cause of cardiac-related mortality in Latin American countries where it is endemic. Trypanosoma cruzi, the disease-causing pathogen, is unable to synthesize purines de novo, necessitating salvage of preformed host purines. Therefore, purine and purine-nucleoside analogues might constitute an attractive source for identifying antitrypanosomal hits. In this study, structural elements of two purine-nucleoside analogues (i.e., cordycepin and a recently discovered 7-substituted 7-deazaadenosine) led to the identification of novel nucleoside analogues with potent in vitro activity. The structure-activity relationships of substituents at C-7 were investigated, ultimately leading to the selection of compound 5, with a C-7 para-chlorophenyl group, for in vivo evaluation. This derivative showed complete suppression of T. cruzi Y-strain blood parasitemia when orally administered twice daily for 5 days at 25 mg/kg and was able to protect infected mice from parasite-induced mortality. However, sterile cure by immunosuppression could not be demonstrated.
Collapse
Affiliation(s)
- Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans) , Ghent University , Ottergemsesteenweg 460 , Gent B-9000 , Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry , Ghent University , Krijgslaan 281 S3 , Gent B-9000 , Belgium
| | - Cristiane França da Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ) , Fundação Oswaldo Cruz , Avenida Brasil, 4365 , Manguinhos, Rio de Janeiro , RJ 21040-900 , Brazil
| | - Denise da Gama Jaen Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ) , Fundação Oswaldo Cruz , Avenida Brasil, 4365 , Manguinhos, Rio de Janeiro , RJ 21040-900 , Brazil
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene , University of Antwerp , Universiteitsplein 1 (S7) , Wilrijk B-2610 , Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene , University of Antwerp , Universiteitsplein 1 (S7) , Wilrijk B-2610 , Belgium
| | - Maria de Nazaré C Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ) , Fundação Oswaldo Cruz , Avenida Brasil, 4365 , Manguinhos, Rio de Janeiro , RJ 21040-900 , Brazil
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans) , Ghent University , Ottergemsesteenweg 460 , Gent B-9000 , Belgium
| |
Collapse
|
7
|
Figueroa-Villar JD, Sales EM. The importance of nucleoside hydrolase enzyme (NH) in studies to treatment of Leishmania: A review. Chem Biol Interact 2016; 263:18-27. [PMID: 27939867 DOI: 10.1016/j.cbi.2016.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 11/16/2022]
Abstract
Leishmania is a genus of trypanosomes, which are responsible for leishmaniasis disease, a major trypanosome infection in humans. In recent years, published studies have shown that the search for new drugs for Leishmania treatments has intensified. Through technique modeling it has been possible to develop new compounds, which act as nucleoside hydrolase (NH) inhibitors. The effect of these enzymes is the hydrolysis of certain RNA nucleotides, which include uridine and inosine, necessary for the protozoa to transform certain nucleosides obtained from infected individuals into nucleobases for the preparation of their DNA. The obtention of NH inhibitors is very important to eliminate leishmaniasis disease in infected individuals. The aim of this study is to discuss the research and development of new agents for the treatment of Leishmania, and to stimulate the formulation of new NH inhibitors.
Collapse
Affiliation(s)
- José D Figueroa-Villar
- Medicinal Chemistry Group, Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, Brazil.
| | - Edijane M Sales
- Medicinal Chemistry Group, Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Vodnala M, Ranjbarian F, Pavlova A, de Koning HP, Hofer A. Trypanosoma brucei Methylthioadenosine Phosphorylase Protects the Parasite from the Antitrypanosomal Effect of Deoxyadenosine: IMPLICATIONS FOR THE PHARMACOLOGY OF ADENOSINE ANTIMETABOLITES. J Biol Chem 2016; 291:11717-26. [PMID: 27036940 DOI: 10.1074/jbc.m116.715615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 02/03/2023] Open
Abstract
Trypanosoma brucei causes African sleeping sickness for which no vaccine exists and available treatments are of limited use due to their high toxicity or lack of efficacy. T. brucei cultivated in the presence of deoxyadenosine accumulates high levels of dATP in an adenosine kinase-dependent process and dies within a few hours. Here we show that T. brucei treated with 1 mm deoxyadenosine accumulates higher dATP levels than mammalian cells but that this effect diminishes quickly as the concentration of the deoxynucleoside decreases. Radioactive tracer studies showed that the parasites are partially protected against lower concentrations of deoxyadenosine by the ability to cleave it and use the adenine for ATP synthesis. T. brucei methylthioadenosine phosphorylase (TbMTAP) was found to be responsible for the cleavage as indicated by the phosphate dependence of deoxyadenosine cleavage in T. brucei cell extracts and increased deoxyadenosine sensitivity in TbMTAP knockdown cells. Recombinant TbMTAP exhibited higher turnover number (kcat) and Km values for deoxyadenosine than for the regular substrate, methylthioadenosine. One of the reaction products, adenine, inhibited the enzyme, which might explain why TbMTAP-mediated protection is less efficient at higher deoxyadenosine concentrations. Consequently, T. brucei grown in the presence of adenine demonstrated increased sensitivity to deoxyadenosine. For deoxyadenosine/adenosine analogues to remain intact and be active against the parasite, they need to either be resistant to TbMTAP-mediated cleavage, which is the case with the three known antitrypanosomal agents adenine arabinoside, tubercidin, and cordycepin, or they need to be combined with TbMTAP inhibitors.
Collapse
Affiliation(s)
- Munender Vodnala
- From the Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden and
| | - Farahnaz Ranjbarian
- From the Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden and
| | - Anna Pavlova
- From the Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden and
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | - Anders Hofer
- From the Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden and
| |
Collapse
|
9
|
de Mesquita Barbosa A, dos Santos Costa S, da Rocha JR, Montanari CA, Giorgio S. Evaluation of the leishmanicidal and cytotoxic effects of inhibitors for microorganism metabolic pathway enzymes. Biomed Pharmacother 2015; 74:95-100. [DOI: 10.1016/j.biopha.2015.07.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/27/2015] [Accepted: 07/27/2015] [Indexed: 02/01/2023] Open
|
10
|
Creek DJ, Mazet M, Achcar F, Anderson J, Kim DH, Kamour R, Morand P, Millerioux Y, Biran M, Kerkhoven EJ, Chokkathukalam A, Weidt SK, Burgess KEV, Breitling R, Watson DG, Bringaud F, Barrett MP. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose. PLoS Pathog 2015; 11:e1004689. [PMID: 25775470 PMCID: PMC4361558 DOI: 10.1371/journal.ppat.1004689] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/19/2015] [Indexed: 01/21/2023] Open
Abstract
Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate. In this work we have followed the distribution of carbon derived from glucose in bloodstream form trypanosomes, the causative agent of African trypanosomiasis, revealing it to enter a diverse range of metabolites. The work involved using 13C-labelled glucose and following the fate of the labelled carbon with an LC-MS based metabolomics platform. Beyond glycolysis and the oxidative branch of the pentose phosphate pathway the label entered lipid biosynthesis both through glycerol 3-phosphate and also acetate. Glucose derived carbon also entered nucleotide synthesis through ribose and pyrimidine synthesis through oxaloacetate-derived aspartate. Appreciable quantities of the carboxylic acids succinate and malate were identified, although labelling patterns indicate they are not TCA cycle derived. Amino sugars and sugar nucleotides were also labelled as was inositol used in protein modification but not in inositol phospholipid headgroup production. We confirm active and essential oxaloacetate production in bloodstream form trypanosomes and show that phosphoenolpyruvate carboxykinase is essential to these parasites using RNA interference. The amount of glucose entering these metabolites is minor compared to the quantity that enters pyruvate excreted from the cell, but the observation that enzymes contributing to the metabolism of glucose beyond glycolysis can be essential offers potential new targets for chemotherapy against trypanosomiasis.
Collapse
Affiliation(s)
- Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria, Australia
| | - Muriel Mazet
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Fiona Achcar
- Wellcome Trust Centre of Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jana Anderson
- Department of Public Health, Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Ruwida Kamour
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Pauline Morand
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Yoann Millerioux
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Eduard J. Kerkhoven
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Achuthanunni Chokkathukalam
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stefan K. Weidt
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Karl E. V. Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Michael P. Barrett
- Wellcome Trust Centre of Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Abstract
The application of genome-scale approaches to study Trypanosoma cruzi-host interactions at different stages of the infective process is becoming possible with sequencing and assembly of the T. cruzi genome nearing completion and sequence information available for both human and mouse genomes. Investigators have recently begun to exploit DNA microarray technology to analyze host transcriptional responses to T. cruzi infection and dissect developmental processes in the complex T. cruzi life-cycle. Collectively, information generated from these and future studies will provide valuable insights into the molecular requirements for establishment of T. cruzi infection in the host and highlight the molecular events coinciding with disease progression. While the field is in its infancy, the availability of genomic information and increased accessibility to relatively high-throughput technologies represents a significant advancement toward identification of novel drug targets and vaccine candidates for the treatment and prevention of Chagas' disease.
Collapse
Affiliation(s)
- B A Burleigh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntingzon Ave, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Vodnala M, Fijolek A, Rofougaran R, Mosimann M, Mäser P, Hofer A. Adenosine kinase mediates high affinity adenosine salvage in Trypanosoma brucei. J Biol Chem 2007; 283:5380-8. [PMID: 18167353 DOI: 10.1074/jbc.m705603200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
African sleeping sickness is caused by Trypanosoma brucei. This extracellular parasite lacks de novo purine biosynthesis, and it is therefore dependent on exogenous purines such as adenosine that is taken up from the blood and other body fluids by high affinity transporters. The general belief is that adenosine needs to be cleaved to adenine inside the parasites in order to be used for purine nucleotide synthesis. We have found that T. brucei also can salvage this nucleoside by adenosine kinase (AK), which has a higher affinity to adenosine than the cleavage-dependent pathway. The recombinant T. brucei AK (TbAK) preferably used ATP or GTP to phosphorylate both natural and synthetic nucleosides in the following order of catalytic efficiencies: adenosine > cordycepin > deoxyadenosine > adenine arabinoside (Ara-A) > inosine > fludarabine (F-Ara-A). TbAK differed from the AK of the related intracellular parasite Leishmania donovani by having a high affinity to adenosine (K m = 0.04-0.08 microm depending on [phosphate]) and by being negatively regulated by adenosine (K i = 8-14 microm). These properties make the enzyme functionally related to the mammalian AKs, although a phylogenetic analysis grouped it together with the L. donovani enzyme. The combination of a high affinity AK and efficient adenosine transporters yields a strong salvage system in T. brucei, a potential Achilles' heel making the parasites more sensitive than mammalian cells to adenosine analogs such as Ara-A. Studies of wild-type and AK knockdown trypanosomes showed that Ara-A inhibited parasite proliferation and survival in an AK-dependent manner by affecting nucleotide levels and by inhibiting nucleic acid biosynthesis.
Collapse
Affiliation(s)
- Munender Vodnala
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Ogbunude POJ, Lamour N, Barrett MP. Molecular cloning, expression and characterization of ribokinase of Leishmania major. Acta Biochim Biophys Sin (Shanghai) 2007; 39:462-6. [PMID: 17558452 DOI: 10.1111/j.1745-7270.2007.00298.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Ribokinase (EC 2.1.7.15) from Leishmania major was cloned, sequenced and overexpressed in Escherichia coli. The gene expressed an active enzyme that had comparable activity to the same enzyme studied in E. coli. It specifically phosphorylated D-ribose. Under defined conditions, the K(m) for the substrates D-ribose and ATP were 0.3+/-0.04 mM and 0.2+/-0.02 mM, respectively. The turnover numbers of the enzyme for the substrates were 10.8 s(-1) and 10.2 s(-1), respectively. The enzyme product ribose 5-phosphate inhibited the phosphorylation of D-ribose with an apparent K(i) of 0.4 mM, which is close to the K(m) (0.3 mM) of D-ribose, suggesting that it might play a role in regulating flux through the enzyme.
Collapse
Affiliation(s)
- Patrick O J Ogbunude
- Department of Medical Biochemistry, University of Nigeria, Enugu 1000004, Nigeria.
| | | | | |
Collapse
|
14
|
Colasante C, Ellis M, Ruppert T, Voncken F. Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei. Proteomics 2006; 6:3275-93. [PMID: 16622829 DOI: 10.1002/pmic.200500668] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peroxisomes are present in nearly every eukaryotic cell and compartmentalize a wide range of important metabolic processes. Glycosomes of Kinetoplastid parasites are peroxisome-like organelles, characterized by the presence of the glycolytic pathway. The two replicating stages of Trypanosoma brucei brucei, the mammalian bloodstream form (BSF) and the insect (procyclic) form (PCF), undergo considerable adaptations in metabolism when switching between the two different hosts. These adaptations involve also substantial changes in the proteome of the glycosome. Comparative (non-quantitative) analysis of BSF and PCF glycosomes by nano LC-ESI-Q-TOF-MS resulted in the validation of known functional aspects of glycosomes and the identification of novel glycosomal constituents.
Collapse
|
15
|
Hansen MR, Dandanell G. Purification and characterization of RihC, a xanthosine-inosine-uridine-adenosine-preferring hydrolase from Salmonella enterica serovar Typhimurium. Biochim Biophys Acta Gen Subj 2005; 1723:55-62. [PMID: 15784179 DOI: 10.1016/j.bbagen.2005.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 01/14/2005] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
Salmonella enterica serovar Typhimurium normally salvage nucleobases and nucleosides by the action of nucleoside phosphorylases and phosphoribosyltransferases. In contrast to Escherichia coli, which catabolizes xanthosine by xanthosine phosphorylase (xapA), Salmonella cannot grow on xanthosine as the sole carbon and energy source. By functional complementation, we have isolated a nucleoside hydrolase (rihC) that can complement a xapA deletion in E. coli and we have overexpressed, purified and characterized this hydrolase. RihC is a heat stable homotetrameric enzyme with a molecular weight of 135 kDa that can hydrolyze xanthosine, inosine, adenosine and uridine with similar catalytic efficiency (k(cat)/Km=1 to 4 x 10(4) M(-1)s(-1)). Cytidine and guanosine is hydrolyzed with approximately 10-fold lower efficiency (k(cat)/Km=0.7 to 1.2 x 10(3) M(-1)s(-1)) while RihC is unable to hydrolyze the deoxyribonucleosides thymidine and deoxyinosine. The Km for all nucleosides except adenosine is in the mM range. The pH optimum is different for inosine and xanthosine and the hydrolytic capacity (k(cat)/Km) is 5-fold higher for xanthosine than for inosine at pH 6.0 while they are similar at pH 7.2, indicating that RihC most likely prefers the neutral form of xanthosine.
Collapse
Affiliation(s)
- Michael Riis Hansen
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83 H, 1307 Copenhagen K, Denmark
| | | |
Collapse
|
16
|
Natto MJ, Wallace LJM, Candlish D, Al-Salabi MI, Coutts SE, de Koning HP. Trypanosoma brucei: expression of multiple purine transporters prevents the development of allopurinol resistance. Exp Parasitol 2005; 109:80-6. [PMID: 15687014 DOI: 10.1016/j.exppara.2004.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 11/03/2004] [Accepted: 11/18/2004] [Indexed: 11/26/2022]
Abstract
Allopurinol is a hypoxanthine analogue used to treat Leishmania infections that also displays activity against the related parasite Trypanosoma brucei. We have investigated the ease by which resistance to this drug is established in Trypanosoma brucei brucei and correlated this to the mechanisms by which it is accumulated by the parasite. Long-term exposure of procyclic T. b. brucei to 3mM allopurinol did not induce resistance. This appears to be related to the fact that allopurinol was taken up through two distinct nucleobase transporters, H1 and H4, both with high affinity for the drug. The apparent Km for [3H]allopurinol transport by H4 (2.1+/-0.4 microM) was determined by expressing the encoding gene in Saccharomyces cerevisiae. Long-term allopurinol exposure did not change Km (hypoxanthine), Ki (allopurinol), or Vmax values of either H1 or H4 transporters and the cells retained their ability to proliferate with hypoxanthine as sole purine source. This study shows that transport-related resistance to purine antimetabolites is not easily induced in Trypanosoma spp. as long as uptake is mediated by multiple transporters.
Collapse
Affiliation(s)
- Manal J Natto
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| | | | | | | | | | | |
Collapse
|
17
|
Cui L, Rajasekariah GR, Martin SK. A nonspecific nucleoside hydrolase from Leishmania donovani: implications for purine salvage by the parasite. Gene 2001; 280:153-62. [PMID: 11738828 DOI: 10.1016/s0378-1119(01)00768-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In contrast to their mammalian hosts, protozoan parasites do not synthesize purines de novo, but depend on preformed nucleotides that they purportedly obtain by salvage pathways. Nucleoside hydrolases may play a crucial role in that salvage process. By screening Leishmania donovani libraries with polyclonal antibodies against promastigote soluble exo-antigens, we have identified a cDNA encoding a protein with significant homology to nonspecific and uridine-inosine-preferring nucleoside hydrolases. Sequence comparison demonstrated that all the residues involved in Ca(2+)-binding and substrate recognition in the active site are conserved among the characterized protozoan nucleoside hydrolases. Genomic analysis suggests that it is a single copy gene in L. donovani, and its homologues are present in members representing other Leishmania species complexes. Both Northern blot and immunoblot analyses indicate that it is constitutively expressed in L. donovani promastigotes. The recombinant enzyme overexpressed in and purified from bacteria showed significant activity with all naturally occurring purine and pyrimidine nucleosides, and efficient utilization of p-nitrophenyl-beta-D-ribofuranoside as a substrate. Altogether, the sequence comparison and substrate specificity data identify this L. donovani nucleoside hydrolase as a nonspecific nucleoside hydrolase. Further, the nucleoside hydrolase was localized to specific foci in L. donovani promastigotes by immunofluorescent assays. Although the conservation of the nucleoside hydrolases among protozoan parasites offers promise for the design of broad-spectrum anti-parasitic drugs, the existence of multiple and distinct nucleoside hydrolases in a single species demands special consideration.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Protozoan/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Enzymologic
- Leishmania donovani/enzymology
- Leishmania donovani/genetics
- Molecular Sequence Data
- N-Glycosyl Hydrolases/genetics
- N-Glycosyl Hydrolases/metabolism
- Purines/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- L Cui
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA.
| | | | | |
Collapse
|
18
|
Versées W, Decanniere K, Pellé R, Depoorter J, Brosens E, Parkin DW, Steyaert J. Structure and function of a novel purine specific nucleoside hydrolase from Trypanosoma vivax. J Mol Biol 2001; 307:1363-79. [PMID: 11292348 DOI: 10.1006/jmbi.2001.4548] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purine salvage pathway of parasitic protozoa is currently considered as a target for drug development because these organisms cannot synthesize purines de novo. Insight into the structure and mechanism of the involved enzymes can aid in the development of potent inhibitors, leading to new curative drugs. Nucleoside hydrolases are key enzymes in the purine salvage pathway of Trypanosomatidae, and they are especially attractive because they have no equivalent in mammalian cells. We cloned, expressed and purified a nucleoside hydrolase from Trypanosoma vivax. The substrate activity profile establishes the enzyme to be a member of the inosine-adenosine-guanosine-preferring nucleoside hydrolases (IAG-NH). We solved the crystal structure of the enzyme at 1.6 A resolution using MAD techniques. The complex of the enzyme with the substrate analogue 3-deaza-adenosine is presented. These are the first structures of an IAG-NH reported in the literature. The T. vivax IAG-NH is a homodimer, with each subunit consisting of ten beta-strands, 12 alpha-helices and three small 3(10)-helices. Six of the eight strands of the central beta-sheet form a motif resembling the Rossmann fold. Superposition of the active sites of this IAG-NH and the inosine-uridine-preferring nucleoside hydrolase (IU-NH) of Crithidia fasciculata shows the molecular basis of the different substrate specificity distinguishing these two classes of nucleoside hydrolases. An "aromatic stacking network" in the active site of the IAG-NH, absent from the IU-NH, imposes the purine specificity. Asp10 is the proposed general base in the reaction mechanism, abstracting a proton from a nucleophilic water molecule. Asp40 (replaced by Asn39 in the IU-NH) is positioned appropriately to act as a general acid and to protonate the purine leaving group. The second general acid, needed for full enzymatic activity, is probably part of a flexible loop located in the vicinity of the active site.
Collapse
Affiliation(s)
- W Versées
- Dienst Ultrastructuur, Vlaams Interuniversitair instituut voor Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, Sint-Genesius-Rode, B-1640, Belgium
| | | | | | | | | | | | | |
Collapse
|
19
|
Kaminsky R, Nickel B, Holý A. Arrest of Trypanosoma brucei rhodesiense and T. brucei brucei in the S-phase of the cell cycle by (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine ((S)-HPMPA). Mol Biochem Parasitol 1998; 93:91-100. [PMID: 9662031 DOI: 10.1016/s0166-6851(98)00023-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
African trypanosomes are incapable of purine de novo synthesis. They use salvage pathways to meet their purine requirements. Therefore, purine analogues appear as potential candidates to interfere in trypanosome metabolism. The acyclic adenosine analogue (S)-9-(-3-hydroxy-2-phosphonylmethoxypropyl)adenine ((S)-HPMPA) expressed antitrypanosomal activity in vitro and vivo. When exposed to 20 microM (S)-HPMPA, trypanosomes were arrested in the S-phase of the cell cycle and were unable to enter G2-phase. Thymidine uptake and incorporation was inhibited almost completely. Only nuclear DNA replication was inhibited, while mitochondrial DNA replication and kinetoplast division was not inhibited. The antitrypanosomal effect was reversible when cells were exposed for 12 h. As a control, aphidicolin arrested trypanosomes in the G1-phase of the cell cycle at a concentration of 30 microM. At 20 microM (S)-HPMPA, glycolysis was not effected, while leucine and adenine uptake were reduced with prolonged exposure.
Collapse
|
20
|
Pellé R, Schramm VL, Parkin DW. Molecular cloning and expression of a purine-specific N-ribohydrolase from Trypanosoma brucei brucei. Sequence, expression, and molecular analysis. J Biol Chem 1998; 273:2118-26. [PMID: 9442052 DOI: 10.1074/jbc.273.4.2118] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
N-Ribohydrolases, including the inosine-adenosine-guanosine-preferring (IAG) nucleoside hydrolase, have been proposed to be involved in the nucleoside salvage pathway of protozoan parasites and may constitute rational therapeutic targets for the treatment of these diseases. Reported is the complete sequence of the Trypanosoma brucei brucei iagnh gene, which encodes IAG-nucleoside hydrolase. The 1.4-kilobase iagnh cDNA contains an open reading frame of 981 base pairs, corresponding to 327 amino acids. The iagnh gene is present as one copy/haploid genome and is located on the size-polymorphic pair of chromosome III or IV in the genome of T. b. brucei. In Southern blot analysis, the iagnh probe hybridized strongly with Trypanosoma brucei gambiense, Trypanosoma brucei rhodesiense, Trypanosoma evansi, Trypanosoma congolense, and Trypanosoma vivax and, to a lesser extent, with Trypanosoma cruzi genomic DNA. The iagnh gene is expressed in blood-stream forms and procyclic (insect) life-cycle stages of T. b. brucei. There are no close amino acid homologues of IAG-nucleoside hydrolase outside bacterial, yeast, or parasitic organisms. Low amino acid sequence similarity is seen with the inosine-uridine-preferring nucleoside hydrolase isozyme from Crithidia fasciculata. The T. b. brucei iagnh open reading frame was cloned into Escherichia coli BL21 (DE3), and a soluble recombinant IAG-nucleoside hydrolase was expressed and purified to > 97% homogeneity. The molecular weights of the recombinant IAG-nucleoside hydrolase, based on the amino acid sequence and observed mass, were 35,735 and 35,737, respectively. The kinetic parameters of the recombinant IAG-nucleoside hydrolase are experimentally identical to the native IAG-nucleoside hydrolase.
Collapse
Affiliation(s)
- R Pellé
- International Livestock Research Institute, Nairobi, Kenya
| | | | | |
Collapse
|
21
|
|
22
|
Kaminsky R, Schmid C, Grether Y, Holý A, DeClercq E, Naesens L, Brun R. (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA]: a purine analogue with trypanocidal activity in vitro and in vivo. Trop Med Int Health 1996; 1:255-63. [PMID: 8665394 DOI: 10.1111/j.1365-3156.1996.tb00036.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The unique features of purine salvage systems of pathogenic haemoflagellates render them selectively susceptible to the cytotoxic effects of purine analogues. A series of acyclic nucleoside phosphonates were evaluated for activity against pathogenic haemoflagellates in vitro. One of the phosphonylmethoxyalkylpurines, namely (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA], was active in vitro against bloodstream forms of Trypanosoma brucei rhodesiense, T. b. gambiense, multidrug-resistant T. b. brucei, T. congolense and T. evansi, but not against intracellular T. cruzi or Leishmania donovani. Cytotoxic effects against mammalian cells were observed at 4900-27 300-fold higher concentrations than those necessary to inhibit T. b. rhodesiense. (S)-HPMPA was able to eliminate T. b. rhodesiense and multidrug-resistant T. b. brucei in an acute rodent model with two administrations of 10 mg/kg each.
Collapse
Affiliation(s)
- R Kaminsky
- Swiss Tropical Institute, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Estupiñán B, Schramm V. Guanosine-inosine-preferring nucleoside N-glycohydrolase from Crithidia fasciculata. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31620-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Montero C, Llorente P. Further studies on the purine phosphoribosyltransferase 'burst' velocity reaction. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1084:149-54. [PMID: 1854799 DOI: 10.1016/0005-2760(91)90213-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the assays used to determinate the adenine and hypoxanthine-guanine phosphoribosyltransferases activities from Artemia cysts two phases of velocity are observed in the synthesis of AMP, IMP and GMP: one initial burst and a second, slower, steady-state velocity. Both reaction velocities are divalent cation-dependent and temperature-resistant, as they are detectable at temperatures from 0 to 100 degrees C. Butanol, frequently employed to interrupt the purine phosphoribosyltransferase reactions, does not inhibit the enzyme activities. The 'burst' phase is not detected when the reaction is ended by the addition of EDTA. These data support that the initial velocities of these enzymatic reactions may be due to the accumulation of products formed by the overall reaction, developed subsequent to the controlled reaction period, being the 'burst' a result from the relative resistance of these enzymes to the agents that are often used to stop the reaction, such as heat or butanol.
Collapse
Affiliation(s)
- C Montero
- Instituto de Investigaciones Biomédicas del C.S.I.C., Madrid, Spain
| | | |
Collapse
|
25
|
Steenkamp DJ. The purine-2-deoxyribonucleosidase from Crithidia luciliae. Purification and trans-N-deoxyribosylase activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:431-9. [PMID: 2026165 DOI: 10.1111/j.1432-1033.1991.tb15929.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Crude extracts of Crithidia luciliae catalysed a deoxyribosyl transfer from purine deoxynucleosides to free purine bases. Fractionation of a 0-80% (NH4)2SO4 fraction from C. luciliae on DEAE-cellulose resulted in the separation of three nucleosidase activities. Two of these were ribonucleosidases, one specific for inosine, uridine and xanthosine and the other for inosine and guanosine, whereas the third activity was specific for purine deoxyribonucleosides. This pattern is similar to that found in Leishmania donovani. Significant deoxyribosyltransferase activity was, however, associated with the purine-2'-deoxyribonucleosidase from C. luciliae. The purine-2'-deoxyribonucleosidase was purified to homogeneity by a six-step procedure involving (NH4)2SO4 fractionation and chromatography on DEAE-cellulose, hydroxyapatite, Sephadex G-75, and a chromatofocusing resin. The purified enzyme migrated as a single band of 17 kDa on SDS/polyacrylamide gel electrophoresis. The enzyme catalysed the hydrolysis of deoxyinosine, deoxyguanosine and deoxyadenosine with Km values of 80 +/- 10.5 microM, 20.7 +/- 3.2 microM and 17.3 +/- 5.3 microM, respectively, and V values for these substrates in the ratio 1:0.5:0.39. The pH optimum for deoxyribosyl transfer from deoxyinosine to guanine was at pH 7.7, while deoxyinosine hydrolysis in the presence of guanine was optimal in the range pH 6-7. During the synthesis of deoxyinosine from hypoxanthine and deoxyadenosine two products were formed. One of these coeluted with deoxyinosine on HPLC, while the second was tentatively identified as the positional isomer, 7-(beta-D-2'-deoxyribofuranosyl)hypoxanthine.
Collapse
Affiliation(s)
- D J Steenkamp
- Department of Chemical Pathology, University of Cape Town Medical School, South Africa
| |
Collapse
|
26
|
Montero C, Llorente P. Artemia purine phosphoribosyltransferases. Purification and characterization. Biochem J 1991; 275 ( Pt 2):327-34. [PMID: 1850982 PMCID: PMC1150056 DOI: 10.1042/bj2750327] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adenine phosphoribosyltransferase (APRTase) and hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) have been purified from Artemia cysts and nauplii to apparent homogeneity, as determined by SDS-PAGE. The purification includes affinity chromatography on AMP-Sepharose, which binds both enzymes, and they are eluted at different 5-phospho-alpha-D-ribosyl diphosphate (PP-Rib-P) concentrations. The purified enzymes from Artemia cysts were similar to nauplii enzymes with respect to Mr in denaturing gel electrophoresis and gel filtration, pH and cation dependence and kinetic constants for substrates and inhibitors. By Sephadex G-100 filtration, the native Mr of the adenine and hypoxanthine-guanine enzymes was estimated to be Mr 28,000 and 66,000, respectively. Analysis by SDS-PAGE revealed that the APRTase was a dimer of Mr 15,000 sub-units and the HGPRTase, a tetramer of four identical Mr 19,000 sub-units. The pH profile of the HGPRTase shows two apparent buffer-independent pH optima, at 7.0 and 9.5, while the APRTase has just one, at about pH 8-9. The purine phosphoribosyltransferase activity with adenine was highest, about tenfold the HGPRTase activity with hypoxanthine and fivefold that with guanine. Both enzymes exhibited similar requirements for divalent cations, either Mg2+, Mn2+ or Zn2+, while Ca2+ is highly inhibitory. The Km values of APRTase for adenine and PP-Rib-P are 2 and 30 microM, respectively, and the Km values of HGPRTase for hypoxanthine, guanine and PP-Rib-P are less than 1, less than 1 and 15 microM, respectively. Plots of the reciprocal enzyme activities versus reciprocal concentrations of one substrate at several fixed levels of the second one yield a pattern of inhibition by guanine and hypoxanthine. Product-inhibition studies indicated that AMP is a competitive inhibitor with respect to PP-Rib-P in the APRTase reaction, while the HGPRTase shows a mixed inhibition by GMP.
Collapse
Affiliation(s)
- C Montero
- Instituto de Investigaciones Biomédicas del C.S.I.C. Arturo Duperier, Madrid, Spain
| | | |
Collapse
|
27
|
Cronín CN, Nolan DP, Voorheis HP. The enzymes of the classical pentose phosphate pathway display differential activities in procyclic and bloodstream forms of Trypanosoma brucei. FEBS Lett 1989; 244:26-30. [PMID: 2924907 DOI: 10.1016/0014-5793(89)81154-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The specific activities of each of the enzymes of the classical pentose phosphate pathway have been determined in both cultured procyclic and bloodstream forms of Trypanosoma brucei. Both forms contained glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconolactonase (EC 3.1.1.31), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), ribose-5-phosphate isomerase (EC 5.3.1.6) and transaldolase (EC 2.2.1.2). However, ribulose-5-phosphate 3'-epimerase (EC 5.1.3.1) and transketolase (EC 2.2.1.1) activities were detectable only in procyclic forms. These results clearly demonstrate that both forms of T. brucei can metabolize glucose via the oxidative segment of the classical pentose phosphate pathway in order to produce D-ribose-5-phosphate for the synthesis of nucleic acids and reduced NADP for other synthetic reactions. However, only procyclic forms are capable of using the non-oxidative segment of the classical pentose phosphate pathway to cycle carbon between pentose and hexose phosphates in order to produce D-glyceraldehyde 3-phosphate as a net product of the pathway. Both forms lack the key gluconeogenic enzyme, fructose-bisphosphatase (EC 3.1.3.11). Consequently, neither form should be able to engage in gluconeogenesis nor should procyclic forms be able to return any of the glyceraldehyde 3-phosphate produced in the pentose phosphate pathway to glucose 6-phosphate. This last specific metabolic arrangement and the restriction of all but the terminal steps of glycolysis to the glycosome may be the observations required to explain the presence of distinct cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. These same observations also may provide the basis for explaining the presence of cytosolic hexokinase and phosphoglucose isomerase without the presence of any cytosolic phosphofructokinase activity. The key enzymes of the Entner-Doudoroff pathway, 6-phosphogluconate dehydratase (EC 4.2.1.12) and 2-keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) were not detected in either procyclic or bloodstream forms of T. brucei.
Collapse
Affiliation(s)
- C N Cronín
- Department of Biochemistry, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
28
|
Ghoda LY, Savarese TM, Northup CH, Parks RE, Garofalo J, Katz L, Ellenbogen BB, Bacchi CJ. Substrate specificities of 5'-deoxy-5'-methylthioadenosine phosphorylase from Trypanosoma brucei brucei and mammalian cells. Mol Biochem Parasitol 1988; 27:109-18. [PMID: 3125430 DOI: 10.1016/0166-6851(88)90030-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The separation by chromatofocusing of two distinct purine nucleoside cleaving activities from crude extracts of Trypanosoma brucei brucei is described. One catalyzes the reversible phosphorolysis of 5'-deoxy-5'-methylthioadenosine (MeSAdo) and adenosine (Ado) and was designated an MeSAdo/Ado phosphorylase, while the other catalyzes the hydrolysis of adenosine, inosine, and guanosine but not MeSAdo. The substrate specificity of trypanosomal MeSAdo/Ado phosphorylase differed from that of a mammalian MeSAdo phosphorylase (derived from murine Sarcoma 180 cells) in that it was able to phosphorolyze 2'-deoxyadenosine, 3'-deoxyadenosine and 2',3'-dideoxyadenosine. In addition, the trypanosomal phosphorylase was able to utilize the nucleoside analog, 6-methylpurine 2'-deoxyribonucleoside, as an alternative substrate, whereas the mammalian enzyme could not. Because of these differences, cytotoxic analogs of MeSAdo may be designed that are selectively activated by the trypanosomal MeSAdo/Ado phosphorylase.
Collapse
Affiliation(s)
- L Y Ghoda
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ogbunude PO. Efflux of 3H-thymidine by erythrocytes from mice infected with Trypanosoma brucei brucei. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 1986; 80:581-5. [PMID: 3675031 DOI: 10.1080/00034983.1986.11812071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Erythrocytes from mice infected with Trypanosoma brucei brucei showed a higher rate of efflux of labelled thymidine than did control erythrocytes from uninfected mice (0.56 +/- 0.10 and 0.38 +/- 0.06 mumole min-1 ml-1 packed cells respectively). Efflux of the nucleoside from erythrocytes of normal and infected mice were inhibited to the same extent by a specific nucleoside transport inhibitor, nitrobenzylthioinosine. Enumeration of nitrobenzylthioinosine binding sites on the erythrocytes showed that both have similar numbers of sites (6.2-6.6 X 10(3) sites/erythrocyte). It is concluded that the membrane permeability of the erythrocytes from infected mice was affected by the trypanosome in such a way as to enhance the purine nucleoside transport capacity. This may result in an increased supply of vital purine bases and nucleosides to trypanosomes which depend on their hosts for these nutrients.
Collapse
Affiliation(s)
- P O Ogbunude
- Nigerian Institute for Trypanosomiasis Research, Vom, Plateau State, Nigeria
| |
Collapse
|
30
|
Hassan H, Coombs G. A comparative study of the purine- and pyrimidine-metabolising enzymes of a range of trypanosomatids. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0305-0491(86)90209-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Hassan HF, Coombs GH. Leishmania mexicana: purine-metabolizing enzymes of amastigotes and promastigotes. Exp Parasitol 1985; 59:139-50. [PMID: 2982637 DOI: 10.1016/0014-4894(85)90066-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cultured promastigote and isolated amastigote forms of Leishmania mexicana mexicana have been surveyed for the presence of enzymes involved in purine metabolism. Quantitative but not qualitative differences between the enzymes of two forms were discovered. There were found to be significant differences between the enzyme content of L. m. mexicana and that reported for L. donovani. Extracts of both parasite forms of L. m. mexicana were found to have higher levels of adenine deaminase (EC 3.5.4.2) and guanine deaminase (EC 3.5.4.3) than adenosine deaminase (EC 3.5.4.4). There appeared to be two distinct nucleosidases (EC 3.2.2.1), one active on nucleosides, the other on deoxynucleosides. Phosphorylase (EC 2.4.2.1) could be detected only in the catabolic direction. Nucleotidases were present, but were more active on 3' (EC 3.1.3.6)- than 5' (EC 3.1.3.5)-nucleotides. Phosphoribosyltransferase (EC 2.4.2.7,.8 and .22) and nucleoside kinase (EC 2.7.1.20) activities were detected in both forms. Nucleotide-interconverting enzymes were found to be present, with IMP dehydrogenase (EC 1.2.1.14) being the most active. Cell fractionation experiments revealed that, in the promastigote, enzyme separation within the parasite may play an important part in regulating cellular purine metabolism.
Collapse
|
32
|
Hassan HF, Coombs GH. Purine phosphoribosyltransferases of Leishmania mexicana mexicana and other flagellate protozoa. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1985; 82:773-9. [PMID: 3937660 DOI: 10.1016/0305-0491(85)90524-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amastigotes and cultured promastigotes of Leishmania mexicana mexicana and L. m. amazonensis, cultured promastigotes of L. donovani and L. tarentolae, and the culture forms of Crithidia fasciculata, Herpetomonas muscarum muscarum and H. m. ingenoplastis all possessed four phosphoribosyltransferase (PRTase) activities: adenine PRTase, hypoxanthine PRTase, guanine PRTase and xanthine PRTase. The enzymes of L. m. mexicana required divalent cations for activity; Mn2+ or Co2+ produced maximal activity in most cases. Hypoxanthine PRTase, guanine PRTase and xanthine PRTase from all organisms were sedimentable in part, suggesting that they may occur within glycosomes. The enzymes of L. m. mexicana cultured promastigotes were inhibited by a range of purine analogues.
Collapse
|
33
|
Abstract
The pathways leading to purine and pyrimidine nucleotide production in members of the family Trypanosomatidae are discussed with special emphasis on data relating to pathogenic species published from 1974 to 1983 inclusive. Trypanosomes and leishmania in general lack a de novo purine biosynthetic pathway, but have a multiplicity of possible routes for purine salvage. In contrast, pyrimidine nucleotides can be produced by either de novo or salvage pathways. The properties of these pathways in trypanosomatids are compared and contrasted with those of their hosts.
Collapse
|