1
|
Wiegmann A, Springer A, Ottensmann M, Rinaud T, Krüger O, Strube C, Chakarov N. Insights from common buzzard broods on the interaction between Leucocytozoon infection, watercourse habitats and simuliid blackfly vectors. Int J Parasitol Parasites Wildl 2024; 25:100978. [PMID: 39263426 PMCID: PMC11389542 DOI: 10.1016/j.ijppaw.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Blood parasites of the genus Leucocytozoon commonly infect many bird species worldwide and are particularly prevalent in birds of prey. As a vector-borne parasitic disease, the infection occurrence overlaps with that of the dominant vectors: blackflies (Diptera, Simuliidae). These blood-sucking insects are dependent on habitats with flowing freshwaters for the development of their larval stages. We investigated the correlation between the proximity to flowing waters and Leucocytozoon infection probability in common buzzard (Buteo buteo) broods, as well as the occurrence of adult blackflies directly at the nests. In addition, we investigated the survival of captured simuliids in relation to host infection intensity. In total in 2019, we examined 112 different nests, including 297 common buzzard nestlings, with a Leucocytozoon prevalence of 56.6% among the nestlings and of 80.3% at brood level. We found no significant association of Leucocytozoon infection probability with nestling age, the distance to the nearest stream and the sum of the length of streams within a radius of 200 and 1000 m around each nest. The number of blackflies caught around the nest showed a tentative correlation with the probability of Leucocyozoon infection of the nestlings. Among the subsample of 218 blackfly individuals that survived day one after capture, survival averaged 6.2 days. Our results suggest that Leucocytozoon transmission is complex and requires consideration of many factors, related to habitat and vector prevalence, especially given their temporal variation.
Collapse
Affiliation(s)
- Anja Wiegmann
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Meinolf Ottensmann
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
| | - Tony Rinaud
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Trotignon G, Dixon R, Atekem K, Senyonjo L, Kamgno J, Biholong D, Jones I, Nditanchou R. Cost of implementing a doxycycline test-and-treat strategy for onchocerciasis elimination among settled and semi-nomadic groups in Cameroon. PLoS Negl Trop Dis 2023; 17:e0011670. [PMID: 37851655 PMCID: PMC10615284 DOI: 10.1371/journal.pntd.0011670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/30/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Onchocerciasis is a neglected tropical disease with 217.5 million people globally at risk of having the infection. In both settled and semi-nomadic communities of Massangam Health District in Cameroon, Sightsavers has been carrying out test-and-treat with doxycycline and twice-yearly ivermectin distribution. This paper focuses on the cost of test-and-treat with doxycycline in the two community contexts of settled and semi-nomadic. METHODS For the valuation, a combination of gross or micro-costing was used to identify cost components, as well as bottom-up and top-down approaches. The opportunity costs of vehicle and equipment use were estimated and included. Not included, however, were the opportunity costs of building use and Ministry of Public Health staff salaries. We only captured the incremental costs of implementing test-and-treat activities as part of a functional annual community-directed treatment with the ivermectin programme. RESULTS We estimate the economic cost per person tested and cost per person treated in Massangam to be US$135 and US$667 respectively. Total implementation cost in the settled community was US$79,409, and in the semi-nomadic community US$69,957. Overall, the total economic cost of implementing the doxycycline test-and-treat strategy for onchocerciasis elimination in Massangam came to US$168,345. Financial costs represented 91% of total costs. CONCLUSIONS Unit costs of test-and-treat in both settled and semi-nomadic communities are higher than unit costs of community-directed treatment with ivermectin. However, it is critical to note that a two-year implementation shows a significantly larger reduction in infection prevalence than the preceding 20 years of annual community-directed treatment with ivermectin. Test-and-treat with doxycycline may be a cost-effective intervention in places where the prevalence of microfilaria is still high, or in hard-to-reach areas where community-directed treatment with ivermectin and MDA coverage are not high enough to stop transmission or where marginalised populations consistently miss treatment.
Collapse
Affiliation(s)
| | - Ruth Dixon
- Sightsavers, Haywards Heath, United Kingdom
| | - Kareen Atekem
- Sightsavers, Cameroon Country Office, Yaoundé, Cameroon
| | | | - Joseph Kamgno
- Centre de recherche sur la filariose et d’autres maladies tropicales (CRFilMT), Fouda Quarter, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé; Yaounde, Cameroon
| | - Didier Biholong
- National Programme for the Control of Lymphatic Filariasis and onchocerciasis, Ministry of Public Health, Yaoundé, Cameroon
| | - Iain Jones
- Sightsavers, Haywards Heath, United Kingdom
| | | |
Collapse
|
3
|
Nditanchou R, Dixon R, Atekem K, Akongo S, Biholong B, Ayisi F, Nwane P, Wilhelm A, Basnet S, Selby R, Wanji S, Bakajika D, Oye J, Kamgno J, Boakye D, Schmidt E, Senyonjo L. Acceptability of test and treat with doxycycline against Onchocerciasis in an area of persistent transmission in Massangam Health District, Cameroon. PLoS Negl Trop Dis 2023; 17:e0011185. [PMID: 37018235 PMCID: PMC10075443 DOI: 10.1371/journal.pntd.0011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/21/2023] [Indexed: 04/06/2023] Open
Abstract
The main onchocerciasis elimination strategy is annual Community-Directed Treatment with ivermectin (CDTi). However, as a response to persistent high infection prevalence in Massangam Health District in Cameroon, two rounds of alternative treatments including biannual CDTi, ground larviciding and test and treat with doxycycline (TTd) were implemented. This led to a significant prevalence reduction from 35.7% to 12.3% (p<0.001) as reported by Atekem and colleagues. Here we report on the acceptability of TTd component based on qualitative and quantitative data. The TTd involved microscopic examination for microfilaria in skin biopsy and those infected were offered doxycycline 100 mg daily for 35 days by community-directed distributors (CDDs). Participation level was significantly high with 54% of eligible population (age > 8, not pregnant, not breastfeeding, not severely ill,) participating in the test in each round, increasing to 83% over the two rounds. Factors associated with non-participation included mistrust, being female; being younger than 26 years; short stay in the community; and belonging to semi-nomadic sub population due to their remote and disperse settlement, discrimination, their non selection as CDD, and language and cultural barriers. Treatment coverage was high -71% in round 1 and 83% in round 2. People moving away between testing and treatment impacted treatment coverage. Some participants noted mismatch between symptoms and test result; and that ivermectin is better than doxycycline, while others favoured doxycycline. CDD worried about work burden with unmatching compensation. Overall, TTd participation was satisfactory. But can be improved through reinforcing sensitisation, reducing time between test and treatment; combining TTd and CDTi in one outing; augmenting CDDs compensation and/or weekly visit; exploring for frequently excluded populations and adapting strategies to reach them; and use of a sensitive less invasive test.
Collapse
Affiliation(s)
| | - Ruth Dixon
- Sightsavers, Haywards Heath, United Kingdom
| | | | | | - Benjamin Biholong
- National Programme for the Fight against Onchocerciasis and Lymphatic Filariasis, Ministry of Public Health, Yaoundé, Cameroon
| | - Franklin Ayisi
- National Programme for the Fight against Onchocerciasis and Lymphatic Filariasis, Ministry of Public Health, Yaoundé, Cameroon
| | - Philippe Nwane
- Filariasis and other Tropical Neglected Diseases Research Center, Yaoundé, Cameroon
| | | | | | | | - Samuel Wanji
- Research Foundation in Tropical Diseases and Environment, Buea, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Cameroon
| | - Didier Bakajika
- WHO/Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Joseph Oye
- Sightsavers, Cameroon Country Office, Cameroon
| | - Joseph Kamgno
- Filariasis and other Tropical Neglected Diseases Research Center, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Daniel Boakye
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | | |
Collapse
|
4
|
Isaïa J, Rivero A, Glaizot O, Christe P, Pigeault R. Last-come, best served? Mosquito biting order and Plasmodium transmission. Proc Biol Sci 2020; 287:20202615. [PMID: 33234076 PMCID: PMC7739503 DOI: 10.1098/rspb.2020.2615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A pervasive characteristic of parasite infections is their tendency to be overdispersed. Understanding the mechanisms underlying this overdispersed distribution is of key importance as it may impact the transmission dynamics of the pathogen. Although multiple factors ranging from environmental stochasticity to inter-individual heterogeneity may explain parasite overdispersion, parasite infection is also overdispersed in an inbred host population maintained under laboratory conditions, suggesting that other mechanisms are at play. Here, we show that the aggregated distribution of malaria parasites within mosquito vectors is partially explained by a temporal heterogeneity in parasite infectivity triggered by the bites of mosquitoes. Parasite transmission tripled between the mosquito's first and last blood feed in a period of only 3 h. Surprisingly, the increase in transmission is not associated with an increase in parasite investment in production of the transmissible stage. Overall, we highlight that Plasmodium is capable of responding to the bites of mosquitoes to increase its own transmission at a much faster pace than initially thought and that this is partly responsible for overdispersed distribution of infection. We discuss the underlying mechanisms as well as the broader implications of this plastic response for the epidemiology of malaria.
Collapse
Affiliation(s)
- J Isaïa
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - A Rivero
- MIVEGEC (UMR CNRS 5290), Montpellier, France.,CREES (Centre de Recherche en Ecologie et Evolution de la Santé), Montpellier, France
| | - O Glaizot
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland.,Musée Cantonal de Zoologie, Lausanne, Switzerland
| | - P Christe
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - R Pigeault
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Hamley JID, Milton P, Walker M, Basáñez MG. Modelling exposure heterogeneity and density dependence in onchocerciasis using a novel individual-based transmission model, EPIONCHO-IBM: Implications for elimination and data needs. PLoS Negl Trop Dis 2019; 13:e0007557. [PMID: 31805049 PMCID: PMC7006940 DOI: 10.1371/journal.pntd.0007557] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/07/2020] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Density dependence in helminth establishment and heterogeneity in exposure to infection are known to drive resilience to interventions based on mass drug administration (MDA). However, the interaction between these processes is poorly understood. We developed a novel individual-based model for onchocerciasis transmission, EPIONCHO-IBM, which accounts for both processes. We fit the model to pre-intervention epidemiological data and explore parasite dynamics during MDA with ivermectin. METHODOLOGY/PRINCIPAL FINDINGS Density dependence and heterogeneity in exposure to blackfly (vector) bites were estimated by fitting the model to matched pre-intervention microfilarial prevalence, microfilarial intensity and vector biting rate data from savannah areas of Cameroon and Côte d'Ivoire/Burkina Faso using Latin hypercube sampling. Transmission dynamics during 25 years of annual and biannual ivermectin MDA were investigated. Density dependence in parasite establishment within humans was estimated for different levels of (fixed) exposure heterogeneity to understand how parametric uncertainty may influence treatment dynamics. Stronger overdispersion in exposure to blackfly bites results in the estimation of stronger density-dependent parasite establishment within humans, consequently increasing resilience to MDA. For all levels of exposure heterogeneity tested, the model predicts a departure from the functional forms for density dependence assumed in the deterministic version of the model. CONCLUSIONS/SIGNIFICANCE This is the first, stochastic model of onchocerciasis, that accounts for and estimates density-dependent parasite establishment in humans alongside exposure heterogeneity. Capturing the interaction between these processes is fundamental to our understanding of resilience to MDA interventions. Given that uncertainty in these processes results in very different treatment dynamics, collecting data on exposure heterogeneity would be essential for improving model predictions during MDA. We discuss possible ways in which such data may be collected as well as the importance of better understanding the effects of immunological responses on establishing parasites prior to and during ivermectin treatment.
Collapse
Affiliation(s)
- Jonathan I. D. Hamley
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, London, United Kingdom
- * E-mail:
| | - Philip Milton
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, London, United Kingdom
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, Untied Kingdom
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Whittaker C, Walker M, Pion SD, Chesnais CB, Boussinesq M, Basáñez MG. The Population Biology and Transmission Dynamics of Loa loa. Trends Parasitol 2018; 34:335-350. [DOI: 10.1016/j.pt.2017.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 11/27/2022]
|
7
|
Habtewold T, Groom Z, Christophides GK. Immune resistance and tolerance strategies in malaria vector and non-vector mosquitoes. Parasit Vectors 2017; 10:186. [PMID: 28420446 PMCID: PMC5395841 DOI: 10.1186/s13071-017-2109-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/24/2017] [Indexed: 11/10/2022] Open
Abstract
Background The Anopheles gambiae complex consists of species that vary greatly in their capacity to transmit malaria. The mosquito immune system has been identified as a key factor that can influence whether Plasmodium infection establishes within the mosquito vector. This study was designed to investigate the immune responses of An. coluzzii, An. arabiensis and An. quadriannulatus mosquitoes. The first two mosquito species are major vectors of malaria in sub-Saharan Africa, while the third is thought to be a non-vector. Methods All three mosquito species were reared in mixed cultures. Their capacity to eliminate P. berghei and regulate midgut bacteria was examined. Results Our results revealed large differences in mosquito resistance to P. berghei. In all three mosquito species, immune reactions involving the complement system were triggered when the number of parasites that mosquitoes were challenged with exceeded a certain level, i.e. immune tolerance threshold. This threshold was markedly lower in An. quadriannulatus compared to An. coluzzii and An. arabiensis. We also demonstrated that the level of immune tolerance to P. berghei infection in the haemolymph is inversely correlated with the level of immune tolerance to microbiota observed in the midgut lumen after a blood meal. The malaria non-vector mosquito species, An. quadriannulatus was shown to have a much higher level of tolerance to microbiota in the midgut than An. coluzzii. Conclusions We propose a model whereby an increased tolerance to microbiota in the mosquito midgut results in lower tolerance to Plasmodium infection. In this model, malaria non-vector mosquito species are expected to have increased immune resistance in the haemocoel, possibly due to complement priming by microbiota elicitors. We propose that this strategy is employed by the malaria non-vector mosquito, An. quadriannulatus, while An. coluzzii has reduced tolerance to bacterial infection in the midgut and consequently reduced immune resistance to Plasmodium infection at the haemocoel level. An in-depth understanding of the molecular mechanisms regulating immune tolerance versus resistance in different mosquito vectors of malaria could guide the design of new vector and disease control strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2109-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, UK. .,Department of Comparative Physiology and Biometrics, University of Ghent, Ghent, Belgium.
| | - Zoe Groom
- Department of Life Sciences, Imperial College London, London, UK.,Costello Medical Consulting, Cambridge, UK
| | | |
Collapse
|
8
|
Basáñez M, Walker M, Turner H, Coffeng L, de Vlas S, Stolk W. River Blindness: Mathematical Models for Control and Elimination. ADVANCES IN PARASITOLOGY 2016; 94:247-341. [PMID: 27756456 DOI: 10.1016/bs.apar.2016.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Human onchocerciasis (river blindness) is one of the few neglected tropical diseases (NTDs) whose control strategies have been informed by mathematical modelling. With the change in focus from elimination of the disease burden to elimination of Onchocerca volvulus, much remains to be done to refine, calibrate and validate existing models. Under the impetus of the NTD Modelling Consortium, the teams that developed EPIONCHO and ONCHOSIM have joined forces to compare and improve these frameworks to better assist ongoing elimination efforts. We review their current versions and describe how they are being used to address two key questions: (1) where can onchocerciasis be eliminated with current intervention strategies by 2020/2025? and (2) what alternative/complementary strategies could help to accelerate elimination where (1) cannot be achieved? The control and elimination of onchocerciasis from the African continent is at a crucial crossroad. The African Programme for Onchocerciasis Control closed at the end of 2015, and although a new platform for support and integration of NTD control has been launched, the disease will have to compete with a myriad of other national health priorities at a pivotal time in the road to elimination. However, never before had onchocerciasis control a better arsenal of intervention strategies as well as diagnostics. It is, therefore, timely to present two models of different geneses and modelling traditions as they come together to produce robust decision-support tools. We start by describing the structural and parametric assumptions of EPIONCHO and ONCHOSIM; we continue by summarizing the modelling of current treatment strategies with annual (or biannual) mass ivermectin distribution and introduce a number of alternative strategies, including other microfilaricidal therapies (such as moxidectin), macrofilaricidal (anti-wolbachial) treatments, focal vector control and the possibility of an onchocerciasis vaccine. We conclude by discussing challenges, opportunities and future directions.
Collapse
|
9
|
Cheke RA, Basáñez MG, Perry M, White MT, Garms R, Obuobie E, Lamberton PHL, Young S, Osei-Atweneboana MY, Intsiful J, Shen M, Boakye DA, Wilson MD. Potential effects of warmer worms and vectors on onchocerciasis transmission in West Africa. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2013.0559. [PMID: 25688018 PMCID: PMC4342963 DOI: 10.1098/rstb.2013.0559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Development times of eggs, larvae and pupae of vectors of onchocerciasis (Simulium spp.) and of Onchocerca volvulus larvae within the adult females of the vectors decrease with increasing temperature. At and above 25°C, the parasite could reach its infective stage in less than 7 days when vectors could transmit after only two gonotrophic cycles. After incorporating exponential functions for vector development into a novel blackfly population model, it was predicted that fly numbers in Liberia and Ghana would peak at air temperatures of 29°C and 34°C, about 3°C and 7°C above current monthly averages, respectively; parous rates of forest flies (Liberia) would peak at 29°C and of savannah flies (Ghana) at 30°C. Small temperature increases (less than 2°C) might lead to changes in geographical distributions of different vector taxa. When the new model was linked to an existing framework for the population dynamics of onchocerciasis in humans and vectors, transmission rates and worm loads were projected to increase with temperature to at least 33°C. By contrast, analyses of field data on forest flies in Liberia and savannah flies in Ghana, in relation to regional climate change predictions, suggested, on the basis of simple regressions, that 13–41% decreases in fly numbers would be expected between the present and before 2040. Further research is needed to reconcile these conflicting conclusions.
Collapse
Affiliation(s)
- Robert A Cheke
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Maria-Gloria Basáñez
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Malorie Perry
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Michael T White
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Rolf Garms
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg 20359, Germany
| | - Emmanuel Obuobie
- Water Research Institute, Council for Scientific and Industrial Research, PO Box M32, Accra, Ghana
| | - Poppy H L Lamberton
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Stephen Young
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Mike Y Osei-Atweneboana
- Water Research Institute, Council for Scientific and Industrial Research, PO Box M32, Accra, Ghana
| | - Joseph Intsiful
- Regional Institute for Population Studies, University of Ghana, PO Box LG 97, Legon, Accra, Ghana
| | - Mingwang Shen
- Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Daniel A Boakye
- Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana
| | - Michael D Wilson
- Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana
| |
Collapse
|
10
|
Wanji S, Kengne-Ouafo JA, Esum ME, Chounna PWN, Tendongfor N, Adzemye BF, Eyong JEE, Jato I, Datchoua-Poutcheu FR, Kah E, Enyong P, Taylor DW. Situation analysis of parasitological and entomological indices of onchocerciasis transmission in three drainage basins of the rain forest of South West Cameroon after a decade of ivermectin treatment. Parasit Vectors 2015; 8:202. [PMID: 25886166 PMCID: PMC4393872 DOI: 10.1186/s13071-015-0817-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Community-Directed Treatment with Ivermectin (CDTI) is the main strategy adopted by the African Programme for Onchocerciasis control (APOC). Recent reports from onchocerciasis endemic areas of savannah zones have demonstrated the feasibility of disease elimination through CDTI. Such information is lacking in rain forest zones. In this study, we investigated the parasitological and entomological indices of onchocerciasis transmission in three drainage basins in the rain forest area of Cameroon [after over a decade of CDTI]. River basins differed in terms of river number and their flow rates; and were characterized by high pre-control prevalence rates (60-98%). METHODS Nodule palpation and skin snipping were carried out in the study communities to determine the nodule rates, microfilarial prevalences and intensity. Simulium flies were caught at capture points and dissected to determine the biting, parous, infection and infective rates and the transmission potential. RESULTS The highest mean microfilaria (mf) prevalence was recorded in the Meme (52.7%), followed by Mungo (41.0%) and Manyu drainage basin (33.0%). The same trend was seen with nodule prevalence between the drainage basins. Twenty-three (23/39) communities (among which 13 in the Meme) still had mf prevalence above 40%. All the communities surveyed had community microfilarial loads (CMFL) below 10 mf/skin snip (ss). The infection was more intense in the Mungo and Meme. The intensity of infection was still high in younger individuals and children less than 10 years of age. Transmission potentials as high as 1211.7 infective larvae/person/month were found in some of the study communities. Entomological indices followed the same trend as the parasitological indices in the three river basins with the Meme having the highest values. CONCLUSION When compared with pre-control data, results of the present study show that after over a decade of CDTI, the burden of onchocerciasis has reduced. However, transmission is still going on in this study site where loiasis and onchocerciasis are co-endemic and where ecological factors strongly favour the onchocerciasis transmission. The possible reasons for this persistent and differential transmission despite over a decade of control efforts using ivermectin are discussed.
Collapse
Affiliation(s)
- Samuel Wanji
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Jonas A Kengne-Ouafo
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Mathias E Esum
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Patrick W N Chounna
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Nicholas Tendongfor
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Bridget F Adzemye
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Joan E E Eyong
- Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon. .,Department of Biological Sciences, Faculty of Science, University of Bamenda, P.O. Box 39, Bambili, North West Region, Bamenda, Cameroon.
| | - Isaac Jato
- Tropical Medicine Research station, P.O. Box 55, Kumba, Cameroon.
| | - Fabrice R Datchoua-Poutcheu
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Research Foundation for Tropical Diseases and Environment, P.O. Box 474, Buea, Cameroon.
| | - Elvis Kah
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Department of Geography, University of Yaounde1, Yaounde, Cameroon.
| | - Peter Enyong
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon. .,Tropical Medicine Research station, P.O. Box 55, Kumba, Cameroon.
| | - David W Taylor
- Division of Pathway Medicine, School for Biomedical Studies, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
11
|
An age-structured extension to the vectorial capacity model. PLoS One 2012; 7:e39479. [PMID: 22724022 PMCID: PMC3378582 DOI: 10.1371/journal.pone.0039479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/23/2012] [Indexed: 11/20/2022] Open
Abstract
Background Vectorial capacity and the basic reproductive number (R0) have been instrumental in structuring thinking about vector-borne pathogen transmission and how best to prevent the diseases they cause. One of the more important simplifying assumptions of these models is age-independent vector mortality. A growing body of evidence indicates that insect vectors exhibit age-dependent mortality, which can have strong and varied affects on pathogen transmission dynamics and strategies for disease prevention. Methodology/Principal Findings Based on survival analysis we derived new equations for vectorial capacity and R0 that are valid for any pattern of age-dependent (or age–independent) vector mortality and explore the behavior of the models across various mortality patterns. The framework we present (1) lays the groundwork for an extension and refinement of the vectorial capacity paradigm by introducing an age-structured extension to the model, (2) encourages further research on the actuarial dynamics of vectors in particular and the relationship of vector mortality to pathogen transmission in general, and (3) provides a detailed quantitative basis for understanding the relative impact of reductions in vector longevity compared to other vector-borne disease prevention strategies. Conclusions/Significance Accounting for age-dependent vector mortality in estimates of vectorial capacity and R0 was most important when (1) vector densities are relatively low and the pattern of mortality can determine whether pathogen transmission will persist; i.e., determines whether R0 is above or below 1, (2) vector population growth rate is relatively low and there are complex interactions between birth and death that differ fundamentally from birth-death relationships with age-independent mortality, and (3) the vector exhibits complex patterns of age-dependent mortality and R0∼1. A limiting factor in the construction and evaluation of new age-dependent mortality models is the paucity of data characterizing vector mortality patterns, particularly for free ranging vectors in the field.
Collapse
|
12
|
Rodríguez-Pérez MA, Unnasch TR, Real-Najarro O. Assessment and monitoring of onchocerciasis in Latin America. ADVANCES IN PARASITOLOGY 2012; 77:175-226. [PMID: 22137585 DOI: 10.1016/b978-0-12-391429-3.00008-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Onchocerciasis has historically been one of the leading causes of infectious blindness worldwide. It is endemic to tropical regions both in Africa and Latin America and in the Yemen. In Latin America, it is found in 13 foci located in 6 different countries. The epidemiologically most important focus of onchocerciasis in the Americas is located in a region spanning the border between Guatemala and Mexico. However, the Amazonian focus straddling the border of Venezuela and Brazil is larger in overall area because the Yanomami populations are scattered over a very large geographical region. Onchocerciasis is caused by infection with the filarial parasite Onchocerca volvulus. The infection is spread through the bites of an insect vector, black flies of the genus Simulium. In Africa, the major vectors are members of the S. damnosum complex, while numerous species serve as vectors of the parasite in Latin America. Latin America has had a long history of attempts to control onchocerciasis, stretching back almost 100 years. The earliest programmes used a strategy of surgical removal of the adult parasites from affected individuals. However, because many of the adult parasites lodge in undetectable and inaccessible areas of the body, the overall effect of this strategy on the prevalence of infection was relatively minor. In 1988, a new drug, ivermectin, was introduced that effectively killed the larval stage (microfilaria) of the parasite in infected humans. As the microfilaria is both the stage that is transmitted by the vector fly and the cause of most of the pathologies associated with the infection, ivermectin opened up a new strategy for the control of onchocerciasis. Concurrent with the use of ivermectin for the treatment of onchocerciasis, a number of sensitive new diagnostic tools were developed (both serological and nucleic acid based) that provided the efficiency, sensitivity and specificity necessary to monitor the decline and eventual elimination of onchocerciasis as a result of successful control. As a result of these advances, a strategy for the elimination of onchocerciasis was developed, based upon mass distribution of ivermectin to afflicted communities for periods lasting long enough to ensure that the parasite population was placed on the road to local elimination. This strategy has been applied for the past decade to the foci in Latin America by a programme overseen by the Onchocerciasis Elimination Program for the Americas (OEPA). The efforts spearheaded by OEPA have been very successful, eliminating ocular disease caused by O. volvulus, and eliminating and interrupting transmission of the parasite in 8 of the 13 foci in the region. As onchocerciasis approaches elimination in Latin America, several questions still need to be addressed. These include defining an acceptable upper limit for transmission in areas in which transmission is thought to have been suppressed (e.g. what is the maximum value for the upper bound of the 95% confidence interval for transmission rates in areas where transmission is no longer detectable), how to develop strategies for conducting surveillance for recrudescence of infection in areas in which transmission is thought to be interrupted and how to address the problem in areas where the mass distribution of ivermectin seems to be unable to completely eliminate the infection.
Collapse
Affiliation(s)
- Mario A Rodríguez-Pérez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Ciudad Reynosa, Tamaulipas, México
| | | | | |
Collapse
|
13
|
Churcher TS, Dawes EJ, Sinden RE, Christophides GK, Koella JC, Basáñez MG. Population biology of malaria within the mosquito: density-dependent processes and potential implications for transmission-blocking interventions. Malar J 2010; 9:311. [PMID: 21050427 PMCID: PMC2988043 DOI: 10.1186/1475-2875-9-311] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/04/2010] [Indexed: 11/21/2022] Open
Abstract
Background The combined effects of multiple density-dependent, regulatory processes may have an important impact on the growth and stability of a population. In a malaria model system, it has been shown that the progression of Plasmodium berghei through Anopheles stephensi and the survival of the mosquito both depend non-linearly on parasite density. These processes regulating the development of the malaria parasite within the mosquito may influence the success of transmission-blocking interventions (TBIs) currently under development. Methods An individual-based stochastic mathematical model is used to investigate the combined impact of these multiple regulatory processes and examine how TBIs, which target different parasite life-stages within the mosquito, may influence overall parasite transmission. Results The best parasite molecular targets will vary between different epidemiological settings. Interventions that reduce ookinete density beneath a threshold level are likely to have auxiliary benefits, as transmission would be further reduced by density-dependent processes that restrict sporogonic development at low parasite densities. TBIs which reduce parasite density but fail to clear the parasite could cause a modest increase in transmission by increasing the number of infectious bites made by a mosquito during its lifetime whilst failing to sufficiently reduce its infectivity. Interventions with a higher variance in efficacy will therefore tend to cause a greater reduction in overall transmission than a TBI with a more uniform effectiveness. Care should be taken when interpreting these results as parasite intensity values in natural parasite-vector combinations of human malaria are likely to be significantly lower than those in this model system. Conclusions A greater understanding of the development of the malaria parasite within the mosquito is required to fully evaluate the impact of TBIs. If parasite-induced vector mortality influenced the population dynamics of Plasmodium species infecting humans in malaria endemic regions, it would be important to quantify the variability and duration of TBI efficacy to ensure that community benefits of control measures are not overestimated.
Collapse
Affiliation(s)
- Thomas S Churcher
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Dawes EJ, Churcher TS, Zhuang S, Sinden RE, Basáñez MG. Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission. Malar J 2009; 8:228. [PMID: 19822012 PMCID: PMC2770541 DOI: 10.1186/1475-2875-8-228] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 10/12/2009] [Indexed: 01/20/2023] Open
Abstract
Background Daily mortality is an important determinant of a vector's ability to transmit pathogens. Original simplifying assumptions in malaria transmission models presume vector mortality is independent of age, infection status and parasite load. Previous studies illustrate conflicting evidence as to the importance of Plasmodium-induced vector mortality, but very few studies to date have considered the effect of infection density on mosquito survival. Methods A series of three experiments were conducted, each consisting of four cages of 400-1,000 Anopheles stephensi mosquitoes fed on blood infected with different Plasmodium berghei ookinete densities per microlitre of blood. Twice daily the numbers of dead mosquitoes in each group were recorded, and on alternate days a sample of live mosquitoes from each group were dissected to determine parasite density in both midgut and salivary glands. Results Survival analyses indicate that mosquito mortality is both age- and infection intensity-dependent. Mosquitoes experienced an initially high, partly feeding-associated, mortality rate, which declined to a minimum before increasing with mosquito age and parasite intake. As a result, the life expectancy of a mosquito is shown to be dependent on both insect age and the density of Plasmodium infection. Conclusion These results contribute to understanding in greater detail the processes that influence sporogony in the mosquito, indicate the impact that parasite density could have on malaria transmission dynamics, and have implications for the design, development, and evaluation of transmission-blocking strategies.
Collapse
Affiliation(s)
- Emma J Dawes
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK.
| | | | | | | | | |
Collapse
|
15
|
Basáñez MG, Churcher TS, Grillet ME. Onchocerca-Simulium interactions and the population and evolutionary biology of Onchocerca volvulus. ADVANCES IN PARASITOLOGY 2009; 68:263-313. [PMID: 19289198 DOI: 10.1016/s0065-308x(08)00611-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Parasite-vector interactions shape the population dynamics of vector-borne infections and contribute to observed epidemiological patterns. Also, parasites and their vectors may co-evolve, giving rise to locally adapted combinations or complexes with the potential to stabilise the infection. Here, we focus on Onchocerca-Simulium interactions with particular reference to the transmission dynamics of human onchocerciasis. A wide range of simuliid species may act as vectors of Onchocerca volvulus, each exerting their own influence over the local epidemiology and the feasibility of controlling/eliminating the infection. Firstly, current understanding of the processes involved in parasite acquisition by, and development within, different Simulium species in West Africa and Latin America will be reviewed. A description of how Onchocerca and Simulium exert reciprocal effects on each other's survival at various stages of the parasite's life cycle within the blackfly, and may have adapted to minimise deleterious effects on fitness and maximise transmission will be given. Second, we describe the interactions in terms of resultant (positive and negative) density-dependent processes that regulate parasite abundance, and discuss their incorporation into mathematical models that provide useful qualitative insight regarding transmission breakpoints. Finally, we examine the interactions' influence upon the evolution of anthelmintic resistance, and conclude that local adaptation of Onchocerca-Simulium complexes will influence the feasibility of eliminating the parasite reservoir in different foci.
Collapse
Affiliation(s)
- María-Gloria Basáñez
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
16
|
McKenzie VJ, Starks HA. Blood parasites of two Costa Rican amphibians with comments on detection and microfilaria density associated with adult filarial worm intensity. J Parasitol 2008; 94:824-9. [PMID: 18837576 DOI: 10.1645/ge-1433.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 11/28/2007] [Indexed: 11/10/2022] Open
Abstract
The 2 objectives of this study were: (1) to compare parasite detectability in blood smears obtained from toe-clips versus the heart from amphibian hosts; and (2) to test whether microfilariae density is correlated with adult filarial worm intensity. We examined blood parasites of 2 species of amphibians, Rana vaillanti (n = 45) and Eleutherodactylus fitzingeri (n = 36), from Costa Rica collected during the summer of 2003. Separate blood smears were obtained from toe-clips and the heart during necrospy. Eight species of blood parasites were identified from R. vaillanti and 1 from E. fitzingeri. Each parasite species was counted in a 2 x 2.2-cm2 area on each blood smear, and the density of host red blood cells (RBCs) was estimated using a sub-sampling approach, allowing parasite infections to be expressed as individuals per RBC. The detection failure rate for toe-cut smears ranged from 71-100% (x = 92.3%) and from 0-9% (x = 2.4%) for heart smears, depending on parasite species. The density of RBCs was significantly higher in smears produced from heart samples and may explain the differences in detectability. Foleyellides striatus microfilariae densities (per RBC) were significantly correlated with adult female worm intensity (R2 = 0.32, P = 0.011).
Collapse
Affiliation(s)
- Valerie J McKenzie
- University of Colorado, Department of Ecology and Evolutionary Biology, Boulder, Colorado 80309-0334, USA.
| | | |
Collapse
|
17
|
Rates of microfilarial production by Onchocerca volvulus are not cumulatively reduced by multiple ivermectin treatments. Parasitology 2008; 135:1571-81. [PMID: 18831801 DOI: 10.1017/s0031182008000425] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Regular distribution of ivermectin reduces onchocerciasis transmission and morbidity by killing, within humans, the microfilarial stage of the parasite (microfilaricidal effect). In addition, ivermectin exerts a so-called embryostatic effect by which microfilarial production by the adult female worm becomes suppressed during a number of weeks after treatment. To assess the overall effect of ivermectin on onchocerciasis transmission and evaluate the likelihood of local elimination of the infection it is important to estimate the magnitude of the anti-fertility effect over the course of a treatment programme. Estimates of the effect of repeated drug treatments on the production of microfilariae by adult Onchocerca volvulus were obtained by developing a model that was fitted to data collected from three hyperendemic communities in Guatemala, where eligible residents received ivermectin twice per year for two and a half years. The data consist of microfilarial load measurements in the skin, collected just before each six-monthly treatment during the programme. The model that is developed describes the dynamics of an individual host's expected microfilarial load over the 30-month study period. We adopt a Bayesian approach and use Markov chain Monte Carlo (McMC) techniques to fit the model to the data. Combining estimates from the three villages, average microfilarial production in the first six months post-treatment was reduced by ~64% of its pre-treatment level, regardless of values chosen for the pre-ivermectin fertility rate within plausible ranges. Increased adult worm death rate after treatment (to mimic removal of macrofilariae via nodulectomy during the programme) resulted in a smaller estimated magnitude of the embryostatic effect (rate of microfilarial production was reduced by ~58% of pre-ivermectin value). After subsequent treatments, the rate of microfilarial production appeared to be similarly decreased. The data and analyses therefore do not support the hypothesis of a cumulative effect of multiple ivermectin treatments on microfilarial production by female worms.
Collapse
|
18
|
Basáñez MG, Pion SDS, Boakes E, Filipe JAN, Churcher TS, Boussinesq M. Effect of single-dose ivermectin on Onchocerca volvulus: a systematic review and meta-analysis. THE LANCET. INFECTIOUS DISEASES 2008; 8:310-22. [DOI: 10.1016/s1473-3099(08)70099-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Rodríguez-Pérez MA, Cabrera AS, Ortega CL, Basáñez MG, Davies JB. Contribution of migrant coffee labourers infected with Onchocerca volvulus to the maintenance of the microfilarial reservoir in an ivermectin-treated area of Mexico. FILARIA JOURNAL 2007; 6:16. [PMID: 18088423 PMCID: PMC2238739 DOI: 10.1186/1475-2883-6-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 12/18/2007] [Indexed: 11/10/2022]
Abstract
Background Since 1991, in Mexico, ivermectin has been administered twice a year to all residents in the onchocerciasis endemic foci which are mainly located in the coffee growing areas. However, the presence of a potentially infected itinerant seasonal labour force which is not treated regularly could jeopardise the attainment of the 85% coverage which is the present target for elimination of the disease. Methods The prevalence and intensity of Onchocerca volvulus microfilariae (mf), as well as their transmission from humans to vectors, were assessed during the coffee planting-clearing and harvesting seasons of 1997–1998, and 1998–1999 in two localities (I and II) of Southern Chiapas, Mexico, which regularly receive an influx of untreated migrant coffee labourers. Results Localities I and II had, respectively, an average of 391 (± 32) and 358 (± 14) resident inhabitants, and 70 (± 52) and 498 (± 289) temporary labourers. The ratio of migrants to residents ranged from 0.1:1 in locality I to 2.4:1 in locality II. The proportion of infected Simulium ochraceum s.l. parous flies was significantly lower in locality I than in locality II, and significantly higher during the stay of the migrants than before their arrival or after their departure. Parity and infection were higher in May-July than in November-February (in contrast with the latter being typically considered as the peak onchocerciasis transmission season by S. ochraceum s.l.). Conclusion The presence of significant numbers of untreated and potentially infected migrants may contribute to ongoing transmission, and their incorporation into ivermectin programmes should be beneficial for the attainment of the elimination goals of the regional initiative. However, the possibility that the results also reflect transmission patterns for the area cannot be excluded and these should be analyzed further.
Collapse
Affiliation(s)
- Mario A Rodríguez-Pérez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd, del Maestro esquina Elías Piña, Col, Narciso Mendoza, 88710, Reynosa, Tamaulipas, México.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Variation in the strength of selection pressures acting upon different subpopulations may cause density-dependent regulatory processes to act differentially on particular genotypes and may influence the rate of selection of adaptive traits. Using host-helminth parasite systems as examples, we investigate the impact of different positive and negative density dependence on the potential spread of anthelmintic resistance. Following chemotherapy, the negative density-dependent processes restricting parasite population growth will be relaxed, increasing the genetic contribution of resistant parasites to the next generation. Simple deterministic models of directly transmitted nematodes that merge population dynamics and genetics show that the frequency of drug-resistant alleles may increase faster in species whose population size is down-regulated by density-dependent parasite fecundity than in species with density-dependent establishment or parasite mortality. A genetically structured population dynamics model of an indirectly transmitted nematode is used to highlight how population regulation will influence the resistance allele frequency in different parasite lifestages. Results indicate that surveys aimed at monitoring the evolution of drug resistance should consider carefully which life stage to sample, and the time following treatment samples should be collected. Anthelmintic resistance offers a good opportunity to apply fundamental evolutionary and ecological principles to the management of a potentially crucial public health problem.
Collapse
Affiliation(s)
- Thomas S Churcher
- Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom.
| | | |
Collapse
|
21
|
Wetten S, Collins RC, Vieira JC, Marshall C, Shelley AJ, Basáñez MG. Vector competence for Onchocerca volvulus in the Simulium (Notolepria) exiguum complex: cytoforms or density-dependence? Acta Trop 2007; 103:58-68. [PMID: 17618859 DOI: 10.1016/j.actatropica.2007.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 04/24/2007] [Accepted: 05/20/2007] [Indexed: 11/19/2022]
Abstract
Although Simulium exiguum Roubaud s.l. is present in all South American onchocerciasis foci, it is a significant vector only in Colombia and Ecuador. This variable vectorial role has been attributed to sibling forms that differ in their ability to allow Onchocerca volvulus larval development and their preferred bloodmeal hosts. Here we evaluate the relationship between parasite availability in human skin and infective larval output measured as (a) number of L3 larvae and (b) proportion of surviving flies with L3s in the Cayapa form of S. exiguum s.l. from Ecuador, taking into account the variation in counts of microfilariae (mf) from 6skin snips/patient. Comparisons with other cytoforms (Aguarico, Bucay and Quevedo, absent in the main Ecuadorean onchocerciasis foci) are made to suggest the relative roles of intrinsic susceptibility or co-adaptation versus density-dependent parasite uptake. A nonlinear (limitation) relationship, characterised by an initial rapid increase in infective larvae with increasing mf skin density was confirmed for the Cayapa cytoform. The proportion of infective Cayapa flies increased and saturated rapidly (reaching 80% for >/= 20mf/mg skin). After adjusting for density dependence, non-Cayapa cytoforms exhibited significantly lower L3 loads and proportions of infective flies for a given mf skin density than Cayapa flies, indicating that the susceptibility of those cytoforms is intrinsically lower than that of the Cayapa cytoform and that the differences observed are not due to density-dependent effects.
Collapse
Affiliation(s)
- Sally Wetten
- Department of Infectious Disease Epidemiology, Imperial College London, Faculty of Medicine (St. Mary's Campus), Norfolk Place, London W2 1PG, UK
| | | | | | | | | | | |
Collapse
|
22
|
Basáñez MG, Razali K, Renz A, Kelly D. Density-dependent host choice by disease vectors: epidemiological implications of the ideal free distribution. Trans R Soc Trop Med Hyg 2006; 101:256-69. [PMID: 17112556 DOI: 10.1016/j.trstmh.2006.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 08/23/2006] [Accepted: 08/25/2006] [Indexed: 11/24/2022] Open
Abstract
The proportion of vector blood meals taken on humans (the human blood index, h) appears as a squared term in classical expressions of the basic reproduction ratio (R(0)) for vector-borne infections. Consequently, R(0) varies non-linearly with h. Estimates of h, however, constitute mere snapshots of a parameter that is predicted, from evolutionary theory, to vary with vector and host abundance. We test this prediction using a population dynamics model of river blindness assuming that, before initiation of vector control or chemotherapy, recorded measures of vector density and human infection accurately represent endemic equilibrium. We obtain values of h that satisfy the condition that the effective reproduction ratio (R(e)) must equal 1 at equilibrium. Values of h thus obtained decrease with vector density, decrease with the vector:human ratio and make R(0) respond non-linearly rather than increase linearly with vector density. We conclude that if vectors are less able to obtain human blood meals as their density increases, antivectorial measures may not lead to proportional reductions in R(0) until very low vector levels are achieved. Density dependence in the contact rate of infectious diseases transmitted by insects may be an important non-linear process with implications for their epidemiology and control.
Collapse
Affiliation(s)
- María-Gloria Basáñez
- Department of Infectious Disease Epidemiology, Faculty of Medicine (St Mary's Campus), Imperial College London, Norfolk Place, London W2 1PG, UK.
| | | | | | | |
Collapse
|
23
|
Grenier AM, Duport G, Pagès S, Condemine G, Rahbé Y. The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid. Appl Environ Microbiol 2006; 72:1956-65. [PMID: 16517643 PMCID: PMC1393189 DOI: 10.1128/aem.72.3.1956-1965.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 01/04/2006] [Indexed: 11/20/2022] Open
Abstract
Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, either by septic injury or by oral infection. The lethal inoculum dose was calculated to be as low as 10 ingested bacterial cells. A D. dadantii mutant with the four cytotoxin genes deleted showed a reduced per os virulence for A. pisum, highlighting the potential role of at least one of these genes in pathogenicity. Since only one bacterial pathogen of aphids has been previously described (Erwinia aphidicola), other species from the same bacterial group were tested. The pathogenic trait for aphids was shown to be widespread, albeit variable, within the phytopathogens, with no link to phylogenetic positioning in the Enterobacteriaceae. Previously characterized gut symbionts from thrips (Erwinia/Pantoea group) were also highly pathogenic to the aphid, whereas the potent entomopathogen Photorhabdus luminescens was not. D. dadantii is not a generalist insect pathogen, since it has low pathogenicity for three other insect species (Drosophila melanogaster, Sitophilus oryzae, and Spodoptera littoralis). D. dadantii was one of the most virulent aphid pathogens in our screening, and it was active on most aphid instars, except for the first one, probably due to anatomical filtering. The observed difference in virulence toward apterous and winged aphids may have an ecological impact, and this deserves specific attention in future research.
Collapse
Affiliation(s)
- Anne-Marie Grenier
- Laboratoire de Biologie Fonctionnelle Insectes et Interactions, BF2I, UMR 203 INRA-INSA de Lyon, Bat. L.-Pasteur, F-69621 Villeurbanne Cedex, France
| | | | | | | | | |
Collapse
|
24
|
Ardelli BF, Guerriero SB, Prichard RK. Characterization of a half-size ATP-binding cassette transporter gene which may be a useful marker for ivermectin selection in Onchocerca volvulus. Mol Biochem Parasitol 2006; 145:94-100. [PMID: 16257066 DOI: 10.1016/j.molbiopara.2005.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/20/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
ATP-binding cassette (ABC) transporters comprise a large paralogous protein family and several confer drug resistance. Ivermectin (IVM) is the only drug approved for treatment of onchocerciasis and is a substrate for some ABC transporters. Furthermore, there is accumulating evidence that IVM selects on some ABC transporter genes in Onchocerca volvulus and other parasitic nematodes. The onchocerciasis control programs rely on community based treatment with IVM each year to reduce morbidity and decrease parasite transmission. This appears to be imposing selection pressure on O. volvulus. A half-size ABC transporter cDNA has previously been reported for O. volvulus, however, the full length gene has not been previously characterized and investigated for possible selection by IVM. Genes under selection may be identified by patterns of linkage disequilibrium (LD) and a loss of genetic polymorphism at physically linked loci. Twelve genetic markers spanning the full gene were examined in O. volvulus from non-treated and IVM treated populations in Ghana. Analysis of the genomic organization of the half-size ABC transporter (OvPLP) indicates that it spans approximately 3.8 kb comprising nine exons. Worms from treated people showed a reduction in gene diversity, a loss of genetic polymorphism at several markers, a selection for specific alleles, and a reduction in the number of regions in LD; these effects were more pronounced as treatment increased. These changes suggest that IVM is imposing selection pressure on this gene. The region between transmembrane domains four and five may be a useful marker for IVM selection in O. volvulus.
Collapse
Affiliation(s)
- Bernadette F Ardelli
- Institute of Parasitology, Macdonald Campus, McGill University, Anne de Bellevue, Que., Canada H9X 3V9
| | | | | |
Collapse
|
25
|
Ardelli BF, Guerriero SB, Prichard RK. Ivermectin imposes selection pressure on P-glycoprotein from Onchocerca volvulus: linkage disequilibrium and genotype diversity. Parasitology 2005; 132:375-86. [PMID: 16280093 DOI: 10.1017/s0031182005008991] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 08/15/2005] [Accepted: 08/15/2005] [Indexed: 11/07/2022]
Abstract
Widespread use of ivermectin (IVM) as part of the Onchocerciasis Control Program (OCP) in West Africa could influence the evolution of the human filarial parasite Onchocerca volvulus. Use of IVM, in some areas for 15 years, may have restricted genetic diversity of O. volvulus, resembling effects attributed to a population bottleneck. Large population-based chemotherapy programmes, such as the OCP, may impose strong selection pressure on parasites and an examination of possible genetic selection by IVM in O. volvulus is warranted. IVM is a substrate for P-glycoprotein; a homologue from O. volvulus (OvPGP) has been linked with IVM sensitivity. Linkage disequilibrium (LD) patterns of 28 genetic markers spanning the OvPGP locus were examined in 4 O. volvulus populations from the Volta Region of Ghana, West Africa. Reduced gene diversity, increased heterozygosity and an increase in the number of markers not in Hardy-Weinberg equilibrium were associated with increasing IVM treatment. The number of regions in LD decreased with treatment and with time. However, between 1999 and 2002, seven regions of OvPGP were always in complete LD, while surrounding areas showed a reduction in genetic variation. The use of IVM for onchocerciasis control has imposed strong selection on O. volvulus populations, reducing genetic variation and disrupting LD.
Collapse
Affiliation(s)
- B F Ardelli
- Institute of Parasitology, Macdonald Campus, McGill University, 21 111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | | | | |
Collapse
|
26
|
Churcher TS, Ferguson NM, Basáñez MG. Density dependence and overdispersion in the transmission of helminth parasites. Parasitology 2005; 131:121-32. [PMID: 16038403 DOI: 10.1017/s0031182005007341] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The influence of density-dependent processes on the transmission of parasitic helminths is determined by both the severity of the regulatory constraints and the degree of parasite overdispersion among the host population. We investigate how overdispersed parasite distributions among humans influence transmission levels in both directly- and indirectly-transmitted nematodes (Ascaris lumbricoides and Onchocerca volvulus). While past work has assumed, for simplicity, that density dependence acts on the average worm load, here we model density-dependence as acting on individual parasite burdens before averaging across hosts. A composite parameter, which we call the effective transmission contribution, is devised to measure the number of transmission stages contributed by a given worm burden after incorporating over-dispersion in adult worm mating probabilities and other density-dependent mechanisms. Results indicate that the more overdispersed the parasite population, the greater the effect of density dependence upon its transmission dynamics. Strong regulation and parasite overdispersion make the relationship between mean worm burden and its effective contribution to transmission highly non-linear. Consequently, lowering the intensity of infection in a host population using chemotherapy may produce only a small decline in transmission (relative to its initial endemic level). Our analysis indicates that when parasite burden is low, intermediate levels of parasite clustering maximize transmission. Implications are discussed in relation to existing control programmes and the spread of anthelmintic resistance.
Collapse
Affiliation(s)
- T S Churcher
- Department of Infectious Disease Epidemiology, Faculty of Medicine, St Mary's Campus, Imperial College London, Norfolk Place, London W2 1PG, UK.
| | | | | |
Collapse
|
27
|
Eng JKL, Prichard RK. A comparison of genetic polymorphism in populations of Onchocerca volvulus from untreated- and ivermectin-treated patients. Mol Biochem Parasitol 2005; 142:193-202. [PMID: 15885823 DOI: 10.1016/j.molbiopara.2005.01.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 01/12/2005] [Accepted: 01/18/2005] [Indexed: 11/29/2022]
Abstract
An analysis of the polymorphism of 16 genes from Onchocerca volvulus was undertaken, in two populations of worms from either ivermectin-naïve patients or patients who had been repeatedly treated with ivermectin, in Ghana. Six genes were selected for analysis because studies in other nematodes had suggested a possible association with ivermectin resistance. The other 10 genes were included as control genes and have not been associated with ivermectin resistance. Twelve of the 16 genes were polymorphic, including five of the candidate genes and seven of the control genes. In all of the control genes and four of the candidate genes, there were no differences in genetic polymorphism between the untreated and ivermectin treatment worms. However, there were statically significant differences (chi2=0.05) in allelic frequencies between the untreated and treatment derived worms for P-glycoprotein and beta-tubulin genes; both genes which have been previously associated with ivermectin resistance in other nematodes. These genes were in Hardy-Weinberg equilibrium in the untreated population. However, the P-glycoprotein alleles, in the worms from the patients under treatment were not in Hardy-Weinberg equilibrium, and analysis of the allele frequencies of beta-tubulin suggested that this gene may have also been under selection in the worms from the ivermectin-treated patients. This data provides evidence of genetic selection by ivermectin on O. volvulus and indicates that investigations should be made to determine whether ivermectin resistance is developing. The beta-tubulin and P-glycoprotein genes may prove useful for monitoring for possible development of ivermectin resistance.
Collapse
Affiliation(s)
- J K L Eng
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Sainte Anne-de-Bellevue, Que., Canada H9X 3V9
| | | |
Collapse
|
28
|
Vieira JC, Brackenboro L, Porter CH, Basáñez MG, Collins RC. Spatial and temporal variation in biting rates and parasite transmission potentials of onchocerciasis vectors in Ecuador. Trans R Soc Trop Med Hyg 2005; 99:178-95. [PMID: 15653120 DOI: 10.1016/j.trstmh.2004.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 03/01/2004] [Accepted: 03/03/2004] [Indexed: 11/16/2022] Open
Abstract
The influence of spatial and temporal factors on onchocerciasis transmission by Simulium exiguum s.l. and S. quadrivittatum in Ecuador was investigated to help develop sampling protocols for entomological surveillance of ivermectin programmes. Flies were collected in alternate months (November 1995-November 1996) at four sites each in the hyperendemic communities of San Miguel and El Tigre. A fixed-effects analysis of variance was used to explore the influence on vector abundance of locality, site, month and hour. Infectivity rates detected by dissection and PCR assays were compared. Simulium exiguum s.l. predominated at El Tigre (75%) whereas S. quadrivittatum prevailed at San Miguel (62%). Vector abundance was highest on river banks and outside houses. Biting and infection rates peaked from March to July. Hourly activity patterns were bimodal in S. exiguum but unimodal in S. quadrivittatum. Annual transmission potentials (ATP) for both species combined were 385 and 733 third stage larvae/person in San Miguel and El Tigre respectively, with S. exiguum accounting for 80% of the combined ATP at both localities. We recommend protocols that may maximize detection of parasite transmission. Infection rates thus obtained must be linked with vector density estimates to assess meaningfully host exposure as treatment progresses.
Collapse
Affiliation(s)
- J C Vieira
- Programa de Control de Oncocercosis en Ecuador, Ministerio de Salud Pública de Ecuador, Calle Villalengua # 267 y 10 de Agosto, HCJB Casilla 17-17-691, Hospital Vozandes, Quito, Ecuador
| | | | | | | | | |
Collapse
|
29
|
Krishnamoorthy K, Subramanian S, Van Oortmarssen GJ, Habbema JDF, Das PK. Vector survival and parasite infection: the effect of Wuchereria bancrofti on its vector Culex quinquefasciatus. Parasitology 2004; 129:43-50. [PMID: 15267110 DOI: 10.1017/s0031182004005153] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper investigates a cohort of 2187 laboratory reared Culex quinquefasciatus fed on 69 human volunteers, including 59 persons with different levels of Wuchereria bancrofti microfilariae and 10 without microfilaria. Mosquitoes were followed until death. Mosquito survival was analysed in relation to the level of microfilaria in the human and larval count in the dead mosquito. Vector mortality during the extrinsic incubation period (12 days post-engorgement) was significantly higher in mosquitoes fed on microfilaraemic volunteers (50%) than in those fed on amicrofilaraemics (29%). Both the percentage infected and the geometric mean parasite density was significantly higher among mosquitoes which died before 13 days (45% infected and 10 larvae per infected mosquito) than those surviving beyond 13 days (39% and 2.2), suggesting a parasite loss of more than 80% during the extrinsic incubation period. A large proportion (62%) of the mosquitoes that died during the early of phase of parasite development were infected (36% in low, 26% in medium and 90% in high human Mf-density). Survival analysis showed that the parasite load in mosquitoes and the human Mf-density for a given parasite load are independent risk factors of vector survival. Overall, the hazard of dying was found to be 11-15 times higher among mosquitoes fed on microfilaraemic volunteers than those fed on amicrofilaraemics. The hazard doubles for every increase of about 60-70 parasites in the vector. As a consequence of the parasite-induced reduction in vector survival, the transmission success of the parasite is reduced. The implication of the results on control/elimination of lymphatic filariasis using mass-drug administration is discussed.
Collapse
Affiliation(s)
- K Krishnamoorthy
- Vector Control Research Centre (Indian Council of Medical Research), Indira Nagar, Medical Complex, Pondicherry-605 006, India
| | | | | | | | | |
Collapse
|
30
|
Soumbey-Alley E, Basáñez MG, Bissan Y, Boatin BA, Remme JHF, Nagelkerke NJD, de Vlas SJ, Borsboom GJJM, Habbema JDF. Uptake of Onchocerca volvulus (Nematoda: Onchocercidae) by Simulium (Diptera: Simuliidae) is not strongly dependent on the density of skin microfilariae in the human host. JOURNAL OF MEDICAL ENTOMOLOGY 2004; 41:83-94. [PMID: 14989351 DOI: 10.1603/0022-2585-41.1.83] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The relation between the number of microfilariae (mf) ingested by host-seeking vectors of human onchocerciasis and skin mf load is an important component of the population biology of Onchocerca volvulus, with implications for disease control and evaluation of the risk of transmission recrudescence. The microsimulation model ONCHOSIM has been used to assess such risk in the area of the Onchocerciasis Control Program (OCP) in West Africa, based on a strongly nonlinear relation between vector mf uptake and human mf skin density previously published. However, observed levels of recrudescence have exceeded predictions, warranting a recalibration of the model. To this end, we present the results of a series of fly-feeding experiments carried out in savanna and forest localities of West Africa. Flies belonging to Simulium damnosum s.s., S. sirbanum, S. soubrense, and S. leonense were fed on mf carriers and dissected to assess the number of ingested mf escaping imprisonment by the peritrophic matrix (the number of exo-peritrophic mf), a predictor of infective larval output. The method of instrumental variables was used to obtain (nearly) unbiased estimates of the parameters of interest, taking into account error in the measurement of skin mf density. This error is often neglected in these types of studies, making it difficult to ascertain the degree of density-dependence truly present in the relation between mf uptake and skin load. We conclude that this relation is weakly (yet significantly) nonlinear in savanna settings but indistinguishable from linearity in forest vectors. Exo-peritrophic mf uptake does not account for most of the density dependence in the transmission dynamics of the parasite as previously thought. The number of exo-mf in forest simuliids is at least five times higher than in the savanna vectors. Parasite abundance in human onchocerciasis is regulated by poorly known mechanisms operating mainly on other stages of the lifecycle.
Collapse
Affiliation(s)
- Edoh Soumbey-Alley
- World Health Organization, Onchocerciasis Control Program, B.P. 549, Ouagadougou, Burkina Faso, West Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Demanou M, Enyong P, Pion SDS, Basáñez MG, Boussinesq M. Experimental studies on the transmission of Onchocerca volvulus by its vector in the Sanaga valley (Cameroon): Simulium squamosum B. Intake of microfilariae and their migration to the haemocoel of the vector. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2003; 97:381-402. [PMID: 12831524 DOI: 10.1179/000349803235002254] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As large-scale ivermectin distribution is becoming the mainstay of onchocerciasis control in Africa, the issue of its impact on local transmission is increasing in importance. The vector competence of Simulium squamosum B in the severe focus of the Sanaga valley, Cameroon, was therefore investigated, by feeding 1320 flies on 14 carriers of Onchocerca volvulus microfilariae (mff). The results enabled the relationships between skin microfilarial load, microfilarial intake by the flies, the proportion and mean number of ingested mff that succeed in reaching the fly's haemocoel, and the frequency distribution of the ingested mff to be described, as functions of time post-engorgement (p.e.) and parasite density (while taking account of possible measurement error in the predictor variable). The proportion of flies with haemocoelic mff and the mean number of mff/fly increased up to 3 h p.e. The proportion of flies with ingested mff was non-linearly related to mean intake, via the negative-binomial distribution, with the overdispersion parameter k best described as an increasing (power) function of the mean. Approximately one in every three ingested mff escaped imprisonment by the peritrophic matrix, irrespective of the skin microfilarial load or the intake of mff. The relationship between successful and input mff is nearly linear (indicating proportionality) in S. squamosum B. These results are compared with those from O. volvulus-S. damnosum s.l. combinations in other West African foci.
Collapse
Affiliation(s)
- M Demanou
- Laboratoire mixte IRD (Institut de Recherche pour le Développement) - CPC (Centre Pasteur du Cameroun) d'Epidémiologie et de Santé Publique, Centre Pasteur du Cameroun, BP 1274, Yaoundé, Cameroon
| | | | | | | | | |
Collapse
|
32
|
Basáñez MG, Ricárdez-Esquinca J. Models for the population biology and control of human onchocerciasis. Trends Parasitol 2001; 17:430-8. [PMID: 11530355 DOI: 10.1016/s1471-4922(01)02013-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The absence of animal models in which to reproduce successfully the complete life cycle of Onchocerca volvulus has hindered progress towards unravelling the processes involved in the regulation of parasite abundance in the vertebrate host. Mathematical frameworks have been developed to explore the consequences of such processes in determining parasite population dynamics and the effect on these of control interventions. Post-control predictions are strongly influenced by the assumptions concerning the reproductive life span of the adult female worm (the longest-lived parasite stage) and the distribution of its survival times, and this notion is important to all frameworks. Here, we review the development of models concerning onchocerciasis and discuss the various approaches that have been used, presenting a deterministic framework with parameter values estimated from the Mexican onchocerciasis control programme. This model is used to evaluate interventions combining the removal of adult worms (nodulectomy) and the microfilaricidal and possibly sterilizing effect of ivermectin.
Collapse
Affiliation(s)
- M G Basáñez
- Dept of Infectious Disease Epidemiology, Imperial College School of Medicine (St. Mary's campus), Norfolk Place, W2 1PG., London, UK.
| | | |
Collapse
|
33
|
Abstract
Human onchocerciasis (river blindness) is the filarial infection caused by Onchocerca volvulus and transmitted among people through the bites of the Simulium vector. Some 86 million people around the world are at risk of acquiring the nematode, with 18 million people infected and 600,000 visually impaired, half of them partially or totally blind. 99% of cases occur in tropical Africa; scattered foci exist in Latin America. Until recently control programmes, in operation since 1975, have consisted of antivectorial measures. With the introduction of ivermectin in 1988, safe and effective chemotherapy is now available. With the original Onchocerciasis Control Programme of West Africa coming to an end, both the new African Programme for Onchocerciasis Control and the Onchocerciasis Elimination Programme for the Americas, rely heavily on ivermectin self-sustained mass delivery. In consequence, the need for understanding the processes regulating parasite abundance in human and simuliid populations is of utmost importance. We present a simple mathematical framework built around recent analyses of exposure- and density-dependent processes operating, respectively, within the human and vector hosts. An expression for the basic reproductive ratio, R0, is derived and related to the minimum vector density required for parasite persistence in localities of West Africa in general and northern Cameroon in particular. Model outputs suggest that constraints acting against parasite establishment in both humans and vectors are necessary to reproduce field observations, but those in humans may not fully protect against reinfection. Analyses of host age-profiles of infection prevalence, intensity, and aggregation for increasing levels of endemicity and intensity of transmission in the Vina valley of northern Cameroon are in agreement with these results and discussed in light of novel work on onchocerciasis immunology.
Collapse
Affiliation(s)
- M G Basáñez
- Wellcome Trust Centre for Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, UK.
| | | |
Collapse
|
34
|
Vivas-Martinez S, Basáñez MG, Grillet ME, Weiss H, Botto C, García M, Villamizar NJ, Chavasse DC. Onchocerciasis in the Amazonian focus of southern Venezuela: altitude and blackfly species composition as predictors of endemicity to select communities for ivermectin control programmes. Trans R Soc Trop Med Hyg 1998; 92:613-20. [PMID: 10326102 DOI: 10.1016/s0035-9203(98)90784-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In preparation for an ivermectin distribution programme, the prevalence and intensity of infection due to Onchocerca volvulus as well as the species composition and abundance of Simulium vectors were investigated in 22 Yanomami communities situated along 2 altitudinal transects in the southern Venezuelan onchocerciasis focus. These transects corresponded to the Ocamo-Putaco and Orinoco-Orinoquito river systems, covering a range of elevation between 50 m and 740 m above sea level (asl). A total of 831 people underwent parasitological examination in this survey and an additional 196 patients from a previous study, at an altitude of 950 m, were included in the analysis. A total of 92,659 man-biting blackflies were collected and identified to morphospecies. S. oyapockense s.l. was the predominant simuliid up to 150 m asl, whereas S. guianense s.l. and S. incrustatum s.l. prevailed above 150 m. Communities located below 150 m were found to range from hypo- to mesoendemic; all villages above 150 m proved to be hyperendemic (> 60% microfilarial prevalence) and mass ivermectin treatment should be implemented. Age above 10-14 years, altitude of the village and biting rate of S. guianense s.l. up to 200 m asl were found to be statistically significant independent predictors of infection by multivariate logistic regression using a spline model. There were no differences in infection status according to sex. Above 200 m, microfilarial rate and density remained approximately constant, prevalence averaging 79% regardless of blackfly abundance. For the implementation of ivermectin-based onchocerciasis control programmes in the Amazonian focus, altitude and species composition of the blackfly population might be adopted as useful indicators aiding selection of the most affected communities. However, below 200 m additional parasitological indicators may also be necessary. As a direct result of this study, regular mass-ivermectin delivery to meso- and hyperendemic communities is now in progress.
Collapse
|