1
|
Venter A, Vorster I, Nkosi NF, Sibeko-Matjila KP, Bhoora RV. Molecular genotyping of Babesia caballi. Vet Parasitol 2024; 329:110214. [PMID: 38823187 DOI: 10.1016/j.vetpar.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Babesia caballi is an intra-erythrocytic parasite causing equine piroplasmosis. Three B. caballi genotypes (A, B, and C) have been identified based on the 18 S rRNA and rhoptry-associated protein (rap-1) gene sequences. These variant parasite genotypes compromise the diagnostic utility of the WOAH-recommended serological assays in declaring horses free of equine piroplasmosis. Although a gene encoding a spherical body protein 4 (sbp4) has recently been identified as a potential antigen for the serological detection of B. caballi, the ability of this antigen to detect the different geographical strains has not been determined. The molecular distinction between variant B. caballi genotypes is limited and therefore we developed molecular typing assays for the rapid detection and quantification of distinct parasite genotypes. Field samples were screened for the presence of B. caballi using an established multiplex equine piroplasmosis qPCR assay. In this study, B. caballi genotype A was not detected in any field samples screened. However, phylogenetic analysis of the amplified sbp4 and 18 S rRNA genes confirmed the phylogenetic groupings of the South African isolates into either B. caballi genotypes B or C. A multiple sequence alignment of the sbp4 gene sequences obtained in this study together with the published sbp4 sequences representing B. caballi genotype A, were used to identify conserved regions within the gene to design three primer pairs and three genotype-specific TaqMan minor-groove binder (MGB™) probes. The qPCR assays were shown to be specific and efficient in the detection and differentiation between B. caballi genotypes A, B, and C and could be used as a diagnostic assay to prevent the unintentional spread of variant B. caballi genotypes globally.
Collapse
Affiliation(s)
- Alicia Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Ilse Vorster
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Nokuzola Faith Nkosi
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Kgomotso Penelope Sibeko-Matjila
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Raksha Vasantrai Bhoora
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| |
Collapse
|
2
|
Zhou B, Yang G, Hu Z, Chen K, Guo W, Wang X, Du C. Development of a Real-Time Quantitative PCR Based on a TaqMan-MGB Probe for the Rapid Detection of Theileria haneyi. Microorganisms 2023; 11:2633. [PMID: 38004645 PMCID: PMC10673206 DOI: 10.3390/microorganisms11112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Equine piroplasmosis (EP) is a parasitic disease caused by Theileria equi (T. equi), Babesia caballi (B. caballi) and Theileria haneyi (T. haneyi). This disease is considered to be reportable by the World Organization for Animal Health (WOAH). Real-time quantitative PCR (qPCR) is regarded as a straightforward, rapid and sensitive diagnostic method to detect pathogens. However, qPCR has not been employed in the various epidemiological investigations of T. haneyi. In this study, we developed a new qPCR method to detect T. haneyi based on the chr1sco (chromosome 1 single-copy open reading frame (ORF)) gene, which has no detectable orthologs in T. equi or B. caballi. A TaqMan MGB probe was used in the development of the qPCR assay. A plasmid containing the chr1sco gene was constructed and used to establish the standard curves. The novel qPCR technique demonstrated great specificity for detecting additional frequent equine infectious pathogens and sensitivity for detecting diluted standard plasmids. This qPCR was further validated by comparison with an optimized nested PCR (nPCR) assay in the analysis of 96 clinical samples. The agreement between the nPCR assay and the established qPCR assay was 85.42%. The newly established method could contribute to the accurate diagnosis of T. haneyi infections in horses.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaojun Wang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.Z.); (G.Y.); (Z.H.); (K.C.); (W.G.)
| | - Cheng Du
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.Z.); (G.Y.); (Z.H.); (K.C.); (W.G.)
| |
Collapse
|
3
|
Wang BH, Du LF, Zhang MZ, Xia LY, Li C, Lin ZT, Wang N, Gao WY, Ye RZ, Liu JY, Han XY, Shi WQ, Shi XY, Jiang JF, Jia N, Cui XM, Zhao L, Cao WC. Genomic Characterization of Theileria luwenshuni Strain Cheeloo. Microbiol Spectr 2023; 11:e0030123. [PMID: 37260375 PMCID: PMC10434005 DOI: 10.1128/spectrum.00301-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Theileria, a tick-borne intracellular protozoan, can cause infections of various livestock and wildlife around the world, posing a threat to veterinary health. Although more and more Theileria species have been identified, genomes have been available only from four Theileria species to date. Here, we assembled a whole genome of Theileria luwenshuni, an emerging Theileria, through next-generation sequencing of purified erythrocytes from the blood of a naturally infected goat. We designated it T. luwenshuni str. Cheeloo because its genome was assembled by the researchers at Cheeloo College of Medicine, Shandong University, China. The genome of T. lunwenshuni str. Cheeloo was the smallest in comparison with the other four Theileria species. T. luwenshuni str. Cheeloo possessed the fewest gene gains and gene family expansion. The protein count of each category was always comparable between T. luwenshuni str. Cheeloo and T. orientalis str. Shintoku in the Eukaryote Orthologs annotation, though there were remarkable differences in genome size. T. luwenshuni str. Cheeloo had lower counts than the other four Theileria species in most categories at level 3 of Gene Ontology annotation. Kyoto Encyclopedia of Genes and Genomes annotation revealed a loss of the c-Myb in T. luwenshuni str. Cheeloo. The infection rate of T. luwenshuni str. Cheeloo was up to 81.5% in a total of 54 goats from three flocks. The phylogenetic analyses based on both 18S rRNA and cox1 genes indicated that T. luwenshuni had relatively low diversity. The first characterization of the T. luwenshuni genome will promote better understanding of the emerging Theileria. IMPORTANCE Theileria has led to substantial economic losses in animal husbandry. Whole-genome sequencing data of the genus Theileria are currently limited, which has prohibited us from further understanding their molecular features. This work depicted whole-genome sequences of T. luwenshuni str. Cheeloo, an emerging Theileria species, and reported a high prevalence of T. luwenshuni str. Cheeloo infection in goats. The first assembly and characterization of T. luwenshuni genome will benefit exploring the infective and pathogenic mechanisms of the emerging Theileria to provide scientific basis for future control strategies of theileriosis.
Collapse
Affiliation(s)
- Bai-Hui Wang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Li-Feng Du
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Cheng Li
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Zhe-Tao Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Ning Wang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Jin-Yue Liu
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xiao-Yu Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Wen-Qiang Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao-Yu Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Nehra AK, Kumari A, Moudgil AD, Vohra S. An insight into misidentification of the small-subunit ribosomal RNA (18S rRNA) gene sequences of Theileria spp. as Theileria annulata. BMC Vet Res 2022; 18:454. [PMID: 36577977 PMCID: PMC9795727 DOI: 10.1186/s12917-022-03540-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There had been isolated reports of the presence of novel Theileria annulata genotypes based on the 18S rRNA gene sequence data from India, Pakistan and Saudi Arabia; but, these studies were restricted to limited field samples. Additionally, no comparative study has been conducted on all the isolates of this parasite from different countries whose sequences are available in the nucleotide databases. Therefore, we aimed to study the genetic diversity of T. annulata based on all available nearly complete 18S rRNA gene sequences in the GenBank™. Out of a total of 312 gene sequences of T. annulata available in the NCBI database, only 70 nearly complete sequences (> 1527 bp) were used for multiple sequence alignment. RESULTS The maximum likelihood tree obtained using TN93 + G + I model manifested two major clades. All the valid host-cell transforming Theileria species clustered in one clade. The T. annulata designated sequences occupying this clade clustered together, excluding two isolates (DQ287944 and EU083799), and represented the true T. annulata sequences (n = 54). DQ287944 and EU083799 exhibited close association with Theileria lestoquardi. In addition, 14 Indian sequences formed a large monophyletic group with published Theileria orientalis sequences. The broad range of sequence identity (95.8-100%) of T. annulata designated sequences indicated the presence of different Theileria spp. A closer analysis revealed the presence of three Theileria spp., namely, T. annulata, T. orientalis, and two isolates (DQ287944 and EU083799) closely related to T. lestoquardi. The true T. annulata sequences manifested 98.8-100% nucleotide identity within them. EU083799 and 14 misidentified Indian T. annulata sequences exhibited the highest similarity with T. lestoquardi (98.6-98.8%) and T. orientalis (98.0-99.9%) in comparison with the other Theileria spp. of domestic and wild ruminants. CONCLUSION In the course of analyzing the genetic diversity of T. annulata, we identified the nearly complete 18S rRNA gene sequences of other Theileria spp. that have not only been misidentified as T. annulata in the GenBank™, but are also published as T. annulata. Moreover, a high level of sequence conservation was noticed in the 18S rRNA gene of true T. annulata and T. orientalis sequences.
Collapse
Affiliation(s)
- Anil Kumar Nehra
- grid.448922.10000 0004 5910 1412Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, 125004 Hisar, Haryana India
| | - Ansu Kumari
- grid.448922.10000 0004 5910 1412Department of Veterinary Medicine, Lala Lajpat Rai University of Veterinary and Animal Sciences, 125004 Hisar, Haryana India
| | - Aman Dev Moudgil
- grid.448922.10000 0004 5910 1412Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, 125004 Hisar, Haryana India
| | - Sukhdeep Vohra
- grid.448922.10000 0004 5910 1412Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, 125004 Hisar, Haryana India
| |
Collapse
|
5
|
Kumar B, Maharana BR, Thakre B, Brahmbhatt NN, Joseph JP. 18S rRNA Gene-Based Piroplasmid PCR: An Assay for Rapid and Precise Molecular Screening of Theileria and Babesia Species in Animals. Acta Parasitol 2022. [PMID: 36178614 DOI: 10.1007/s11686-022-00625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
PURPOSE The parasites of genera such as Babesia and Theileria are called piroplasmids due to the pear-shaped morphology of the multiplying parasite stages in the blood of the vertebrate host. Because of the enormous number of parasite species and the challenges of multiplex PCR, initial screening of samples using piroplasmid-specific PCR may be a more cost-effective and efficient technique to identify parasite species, especially during epidemiological studies. Accordingly, 18S rRNA PCR was standardized and optimized on common piroplasmids of different animals like cattle, buffaloes, sheep, goats, dogs, horses, and leopards. METHODS Bloods samples from 1250 animals were collected from different animals in Junagadh district of Gujarat, India. 18S rRNA PCR was standardized and optimized as a primary method for molecular screening of piroplasms in domestic and wild animals. The method was checked for its analytical sensitivity and specificity. Parasite species-specific PCR and sequencing was used to validate the test. Moreover, in-silico restriction enzyme (RE) analysis was also done to assess its applicability in PCR-RFLP. RESULTS Piroplasm infections were recorded in 63.3% of animals in Junagadh. The 18S rRNA PCR detected the piroplasmid DNA in as low as 39 picograms (pg) of whole blood genomic DNA isolated from microscopically Theileria positive blood samples and no reactivity was recorded from common but unrelated haemoparasites viz., Trypanosoma evansi, Hepatozoon spp., Anaplasma spp., and Ehrlichia canis was observed. The 18S rRNA PCR assay findings were confirmed by species-specific PCR and sequencing. Analysis of different sequences generated using 18S rRNA PCR revealed that the amplicon size of Babesia spp. is nearly 400 bp (393-408 bp) whereas Theileria spp. were more than 400 bp (418-424 bp). The percentage of sequence divergence among Babesia and Theileria spp. was 7.3-12.2% and 0.7-12.2%, respectively. In-silico restriction enzyme (RE) analysis reveals the presence of at least one site for a commercially available RE in 18S rRNA fragments of every parasite, which can differentiate it from its congeners. CONCLUSIONS The presented universal oligonucleotide-based PCR assay provides a highly sensitive, specific, cost-effective, and rapid diagnostic tool for the initial screening of piroplasmids infecting domestic and wild animals and is potentially helpful for large-scale epidemiological studies.
Collapse
Affiliation(s)
- Binod Kumar
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, 362001, India.
| | - Biswa Ranjan Maharana
- Referral Veterinary Diagnostic and Extension Centre, LUVAS, Uchani, Karnal, 132001, India
| | - Bhupendrakumar Thakre
- Department of Veterinary Parasitology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, 362001, India
| | - Nilima N Brahmbhatt
- Animal Diseases Diagnostic Laboratory, Veterinary Clinical Complex, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, 362001, India
| | - Joice P Joseph
- Department of Veterinary Medicine, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, 362001, India
| |
Collapse
|
6
|
18S rRNA Gene-Based Piroplasmid PCR: An Assay for Rapid and Precise Molecular Screening of Theileria and Babesia Species in Animals. Acta Parasitol 2022; 67:1697-1707. [PMID: 36178614 PMCID: PMC9523193 DOI: 10.1007/s11686-022-00625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/20/2022] [Indexed: 11/12/2022]
Abstract
Purpose The parasites of genera such as Babesia and Theileria are called piroplasmids due to the pear-shaped morphology of the multiplying parasite stages in the blood of the vertebrate host. Because of the enormous number of parasite species and the challenges of multiplex PCR, initial screening of samples using piroplasmid-specific PCR may be a more cost-effective and efficient technique to identify parasite species, especially during epidemiological studies. Accordingly, 18S rRNA PCR was standardized and optimized on common piroplasmids of different animals like cattle, buffaloes, sheep, goats, dogs, horses, and leopards. Methods Bloods samples from 1250 animals were collected from different animals in Junagadh district of Gujarat, India. 18S rRNA PCR was standardized and optimized as a primary method for molecular screening of piroplasms in domestic and wild animals. The method was checked for its analytical sensitivity and specificity. Parasite species-specific PCR and sequencing was used to validate the test. Moreover, in-silico restriction enzyme (RE) analysis was also done to assess its applicability in PCR–RFLP. Results Piroplasm infections were recorded in 63.3% of animals in Junagadh. The 18S rRNA PCR detected the piroplasmid DNA in as low as 39 picograms (pg) of whole blood genomic DNA isolated from microscopically Theileria positive blood samples and no reactivity was recorded from common but unrelated haemoparasites viz., Trypanosoma evansi, Hepatozoon spp., Anaplasma spp., and Ehrlichia canis was observed. The 18S rRNA PCR assay findings were confirmed by species-specific PCR and sequencing. Analysis of different sequences generated using 18S rRNA PCR revealed that the amplicon size of Babesia spp. is nearly 400 bp (393–408 bp) whereas Theileria spp. were more than 400 bp (418–424 bp). The percentage of sequence divergence among Babesia and Theileria spp. was 7.3–12.2% and 0.7–12.2%, respectively. In-silico restriction enzyme (RE) analysis reveals the presence of at least one site for a commercially available RE in 18S rRNA fragments of every parasite, which can differentiate it from its congeners. Conclusions The presented universal oligonucleotide-based PCR assay provides a highly sensitive, specific, cost-effective, and rapid diagnostic tool for the initial screening of piroplasmids infecting domestic and wild animals and is potentially helpful for large-scale epidemiological studies. Supplementary Information The online version contains supplementary material available at 10.1007/s11686-022-00625-2.
Collapse
|
7
|
Elsawy BSM, Nassar AM, Alzan HF, Bhoora RV, Ozubek S, Mahmoud MS, Kandil OM, Mahdy OA. Rapid Detection of Equine Piroplasms Using Multiplex PCR and First Genetic Characterization of Theileria haneyi in Egypt. Pathogens 2021; 10:pathogens10111414. [PMID: 34832570 PMCID: PMC8620363 DOI: 10.3390/pathogens10111414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/13/2023] Open
Abstract
Equine Piroplasmosis (EP) is an infectious disease caused by the hemoprotozoan parasites Theileria equi, Babesia caballi, and the recently identified species T. haneyi. Hereby, we used a multiplex PCR (mPCR) targeting the 18S rRNA gene of T. equi and B. caballi for the simultaneous detection of EP in Egyptian equids and examined the presence of T. haneyi infections in Egypt. Blood samples from 155 equids (79 horses and 76 donkeys) collected from different governorates of Egypt were examined by mPCR and PCR targeting T. hayeni. The mPCR method revealed a prevalence of T. equi of 20.3% in horses and of 13.1% in donkeys and a prevalence of B. caballi of 1.2% in horses. B. caballi was not detected in donkeys in the current study. The mPCR method also detected coinfections with both species (2.5% and 1.3% in horses and donkeys, respectively). Additionally, we report the presence of T. haneyi in Egypt for the first time in 53.1% of the horse and 38.1% of the donkey tested samples. Coinfection with T. haneyi and T. equi was found in 13.5% of the samples, while infection with the three EP species was found in 1.9% of the samples.
Collapse
Affiliation(s)
- Bassma S. M. Elsawy
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt; (B.S.M.E.); (M.S.M.); (O.M.K.)
- Tick and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahmed M. Nassar
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12622, Egypt;
| | - Heba F. Alzan
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt; (B.S.M.E.); (M.S.M.); (O.M.K.)
- Tick and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
- Correspondence: (H.F.A.); (O.A.M.); Tel.: +20-100-241-0507(O.A.M.)
| | - Raksha V. Bhoora
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa;
| | - Sezayi Ozubek
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Turkey
| | - Mona S. Mahmoud
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt; (B.S.M.E.); (M.S.M.); (O.M.K.)
- Tick and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Omnia M. Kandil
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt; (B.S.M.E.); (M.S.M.); (O.M.K.)
| | - Olfat A. Mahdy
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12622, Egypt;
- Correspondence: (H.F.A.); (O.A.M.); Tel.: +20-100-241-0507(O.A.M.)
| |
Collapse
|
8
|
Kovalchuk SN. Molecular characterization and phylogenetic study of Theileria sp. parasites detected in cattle from the Moscow region of Russia. Ticks Tick Borne Dis 2021; 13:101835. [PMID: 34601345 DOI: 10.1016/j.ttbdis.2021.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Theileriae are obligate intracellular protozoan parasites which are transmitted by ixodid ticks and infect both wild and domestic ruminants worldwide. Theileriosis causes significant economic losses to the livestock industry in many countries due to the high morbidity and mortality in cattle herds. In Russia, information concerning prevalence of Theileria spp. in cattle is very limited. This study reports on molecular characterization and phylogenetic analysis of Theileria spp. parasites detected in cattle from the Moscow region of Russia. Phylogenetic analysis based on the full length 18S rRNA gene revealed that the Russian Theileria parasites belong to the Theileria orientalis / Theileria buffeli / Theileria sergenti group and share a common genotype with T. buffeli Marula from Kenya, T. buffeli isolates from Japan and South Korea, T. orientalis isolate from Australia and T. sergenti isolate from Japan, which belong to the pathogenic Chitose genotype.
Collapse
Affiliation(s)
- Svetlana N Kovalchuk
- Institute of Innovative Biotechnologies in Animal Husbandry - the branch of L.K. Ernst Federal Research Center for Animal Husbandry, Kostyakova str., 12/4, Moscow, 127422 Russia
| |
Collapse
|
9
|
Nehra AK, Kumari A, Moudgil AD, Vohra S. Phylogenetic analysis, genetic diversity and geographical distribution of Babesia caballi based on 18S rRNA gene. Ticks Tick Borne Dis 2021; 12:101776. [PMID: 34271342 DOI: 10.1016/j.ttbdis.2021.101776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
The present investigation was aimed to study the presence of Babesia caballi clades upon phylogenetic analysis of all available V4 hypervariable 18S rRNA gene sequences in GenBank in addition to the intra- and interclade genetic diversity in B. caballi and the distribution of parasite clades in different countries. Out of altogether 155 small-subunit ribosomal RNA gene sequences of B. caballi available in the database, only 92 sequences with a complete V4 hypervariable region (>293 bp) were used in multiple sequence alignment. The phylogenetic tree placed all the sequences into two distinct clades with high bootstrap values which are designated as B. caballi clades A and B. Clade A was further divided into two subclades A1 and A2 with 98% bootstrap support. On the contrary, clade B contained multiple small subclades which either lacked bootstrap support or did not have enough bootstrap support to further group them into subclades. All the sequences of B. caballi were 91.5-100% identical with each other. Clade B manifested a comparatively higher genetic diversity (95.2-100% identity) amongst sequences as opposed to clade A (97.3-100% identity). Moreover, it indicated 91.5-93.5%, 92.9-94.6% and 91.5-94.6% nucleotide identity with B. caballi subclades A1, A2, and clade A, respectively. Significant nucleotide variations were observed in one region, between nucleotide positions 126-178, in some of the sequences. A total of 21 molecular signature residues were identified in the V4 hypervariable region. The alignment report of the V4 hypervariable region of 18S rRNA gene of clades A and B exhibited nucleotide variation at nine and 24 places, respectively. The distribution map of all the clades of B. caballi is also reported. The number of 18S rRNA gene sequences employed in the study is relatively high compared to previous studies. Therefore, a fair comparison of definite genetic variations between isolates/sequences from different countries was carried out.
Collapse
Affiliation(s)
- Anil Kumar Nehra
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
| | - Ansu Kumari
- Department of Veterinary Medicine, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
| | - Aman Dev Moudgil
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
| | - Sukhdeep Vohra
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
| |
Collapse
|
10
|
Shabangu N, Penzhorn BL, Oosthuizen MC, Vorster I, van Schalkwyk OL, Harrison-White RF, Matjila PT. A shared pathogen: Babesia rossi in domestic dogs, black-backed jackals (Canis mesomelas) and African wild dogs (Lycaon pictus) in South Africa. Vet Parasitol 2021; 291:109381. [PMID: 33667987 DOI: 10.1016/j.vetpar.2021.109381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022]
Abstract
In sub-Saharan Africa, babesiosis in domestic dogs is caused primarily by Babesia rossi. Black-backed jackals (Canis mesomelas), which are subclinical carriers of B. rossi, were a likely reservoir host from which infection passed to domestic dogs. The role of other indigenous canids, e.g. African wild dogs (Lycaon pictus), as reservoirs of B. rossi has not been elucidated. The question also arises whether genetic differences have arisen between B. rossi infecting domestic dogs and "ancestral" B. rossi in jackals. In a previous study we found that nearly one-third (27 of 91) of jackals were infected with B. rossi; this was confirmed by 18S rDNA sequence analysis. In this study, the near full-length B. rossi 18S rRNA gene was successfully amplified from 6 domestic dogs and 3 black-backed jackals. The obtained recombinant sequences were identical (100 %) to previously described B. rossi sequences of black-backed jackals in South Africa, and 99 % similar to B. rossi from dogs in South Africa and the Sudan. Although blood specimens from 5 (10 %) of 52 free-ranging African wild dogs (from Kruger National Park, South Africa, reacted with the B. rossi probe on RLB hybridisation, the presence of B. rossi could not be confirmed by amplification and sequencing, nor by multiplex, real-time PCR. Although African wild dogs they can be infected with B. rossi without showing clinical signs, our findings suggest that they are apparently not important reservoir hosts of B. rossi.
Collapse
Affiliation(s)
- Ntji Shabangu
- Vectors and Vector-borne Diseases Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Barend L Penzhorn
- Vectors and Vector-borne Diseases Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa; Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, South Africa; National Zoological Garden, South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
| | - Marinda C Oosthuizen
- Vectors and Vector-borne Diseases Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa; Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Ilse Vorster
- Vectors and Vector-borne Diseases Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | | | | | - P Tshepo Matjila
- Vectors and Vector-borne Diseases Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| |
Collapse
|
11
|
Zimmermann DE, Penzhorn BL, Vorster I, Troskie M, Oosthuizen MC. Babesia bicornis, Theileria bicornis and Theileria equi in metapopulations of two black rhinoceros (Diceros bicornis) subspecies in South Africa and their potential impact on conservation. Ticks Tick Borne Dis 2020; 12:101635. [PMID: 33373893 DOI: 10.1016/j.ttbdis.2020.101635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
The two black rhinoceros subspecies (Diceros bicornis bicornis and D. b. minor) in South African conservation areas are managed as separate metapopulations. Since infection with Babesia bicornis can be fatal in black rhinoceroses, occurrence of this and other piroplasms in the two metapopulations was determined to assess possible risk. Blood specimens were collected from 156 black rhinoceroses: 80 from D. b. bicornis and 76 from D. b. minor. DNA was extracted; the V4 hypervariable region of the parasite 18S rRNA gene was amplified and subjected to the Reverse Line Blot (RLB) hybridization assay. There was a significant difference in occurrence of piroplasms: 18/80 (23%) in D. b. bicornis and 39/76 (51%) in D. b. minor. Theileria bicornis occurred in significantly more of the D. b. minor population (36/76; 47%) than the D. b. bicornis population (1/80; 1%); with B. bicornis the difference was not significant: D. b. bicornis 5/80 (6%) and D. b. minor 9/76 (11%). Three individuals were infected with Theileria equi. Results were confirmed using molecular characterization of the near full-length parasite 18S rRNA gene of 13 selected specimens. We identified four (Tb1, Tb2, Tb3 and Tb4) 18S rDNA sequence types for T. bicornis, two for B. bicornis (Bb1 and Bb2) and one for T. equi (Teq1). We furthermore identified T. bicornis haplotypes H1, H3 and H4 in 10 rhinoceroses; H3 was the most common haplotype identified. Rhinoceroses inhabiting more arid areas are apparently free of T. bicornis and B. bicornis, probably due to the absence or scarcity of vectors. When individuals are relocated for metapopulation management purposes, appropriate prophylactic action should be taken to minimise the risk of babesiosis, which could be fatal.
Collapse
Affiliation(s)
- David E Zimmermann
- South African National Parks, Veterinary Wildlife Services, P.O. Box 110040, Hadison Park, 8306, Kimberley, South Africa; Ticks and Tick-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110, Onderstepoort, South Africa.
| | - Barend L Penzhorn
- Ticks and Tick-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110, Onderstepoort, South Africa; Research Associate, National Zoological Garden, South African National Biodiversity Institute, South Africa; Research Affiliate, Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110, Onderstepoort, South Africa.
| | - Ilse Vorster
- Ticks and Tick-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110, Onderstepoort, South Africa.
| | - Milana Troskie
- Ticks and Tick-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110, Onderstepoort, South Africa.
| | - Marinda C Oosthuizen
- Ticks and Tick-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110, Onderstepoort, South Africa; Research Affiliate, Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110, Onderstepoort, South Africa; Deputy-Dean, Research and Postgraduate Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110, Onderstepoort, South Africa.
| |
Collapse
|
12
|
Squarre D, Nakamura Y, Hayashida K, Kawai N, Chambaro H, Namangala B, Sugimoto C, Yamagishi J. Investigation of the piroplasm diversity circulating in wildlife and cattle of the greater Kafue ecosystem, Zambia. Parasit Vectors 2020; 13:599. [PMID: 33256809 PMCID: PMC7708252 DOI: 10.1186/s13071-020-04475-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2022] Open
Abstract
Background Piroplasms are vector-borne intracellular hemoprotozoan parasites that infect wildlife and livestock. Wildlife species are reservoir hosts to a diversity of piroplasms and play an important role in the circulation, maintenance and evolution of these parasites. The potential for likely spillover of both pathogenic and non-pathogenic piroplasm parasites from wildlife to livestock is underlined when a common ecological niche is shared in the presence of a competent vector. Method To investigate piroplasm diversity in wildlife and the cattle population of the greater Kafue ecosystem, we utilized PCR to amplify the 18S rRNA V4 hyper-variable region and meta-barcoding strategy using the Illumina MiSeq sequencing platform and amplicon sequence variant (ASV)-based bioinformatics pipeline to generate high-resolution data that discriminate sequences down to a single nucleotide difference. Results A parasite community of 45 ASVs corresponding to 23 species consisting of 4 genera of Babesia, Theileria, Hepatozoon and Colpodella, were identified in wildlife and the cattle population from the study area. Theileria species were detected in buffalo, impala, hartebeest, sable antelope, sitatunga, wild dog and cattle. In contrast, Babesia species were only observed in cattle and wild dog. Our results demonstrate possible spillover of these hemoprotozoan parasites from wildlife, especially buffalo, to the cattle population in the wildlife-livestock interface. Conclusion We demonstrated that the deep amplicon sequencing of the 18S rRNA V4 hyper-variable region for wildlife was informative. Our results illustrated the diversity of piroplasma and the specificity of their hosts. They led us to speculate a possible ecological cycle including transmission from wildlife to domestic animals in the greater Kafue ecosystem. Thus, this approach may contribute to the establishment of appropriate disease control strategies in wildlife-livestock interface areas.![]()
Collapse
Affiliation(s)
- David Squarre
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Wildlife Veterinary Unit, Department of National Parks and Wildlife, Chilanga, Zambia.,The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Yukiko Nakamura
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kyoko Hayashida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naoko Kawai
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Herman Chambaro
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Chilanga, Zambia
| | - Boniface Namangala
- Department of Paraclinical Studies, University of Zambia, Lusaka, Zambia
| | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan. .,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
13
|
Tirosh-Levy S, Gottlieb Y, Fry LM, Knowles DP, Steinman A. Twenty Years of Equine Piroplasmosis Research: Global Distribution, Molecular Diagnosis, and Phylogeny. Pathogens 2020; 9:E926. [PMID: 33171698 PMCID: PMC7695325 DOI: 10.3390/pathogens9110926] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022] Open
Abstract
Equine piroplasmosis (EP), caused by the hemoparasites Theileria equi, Theileria haneyi, and Babesia caballi, is an important tick-borne disease of equines that is prevalent in most parts of the world. Infection may affect animal welfare and has economic impacts related to limitations in horse transport between endemic and non-endemic regions, reduced performance of sport horses and treatment costs. Here, we analyzed the epidemiological, serological, and molecular diagnostic data published in the last 20 years, and all DNA sequences submitted to GenBank database, to describe the current global prevalence of these parasites. We demonstrate that EP is endemic in most parts of the world, and that it is spreading into more temperate climates. We emphasize the importance of using DNA sequencing and genotyping to monitor the spread of parasites, and point to the necessity of further studies to improve genotypic characterization of newly recognized parasite species and strains, and their linkage to virulence.
Collapse
Affiliation(s)
- Sharon Tirosh-Levy
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (Y.G.); (A.S.)
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (Y.G.); (A.S.)
| | - Lindsay M. Fry
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (L.M.F.); (D.P.K.)
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164, USA
| | - Donald P. Knowles
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (L.M.F.); (D.P.K.)
| | - Amir Steinman
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (Y.G.); (A.S.)
| |
Collapse
|
14
|
Camino E, Cruz-Lopez F, de Juan L, Dominguez L, Shiels B, Coultous RM. Phylogenetic analysis and geographical distribution of Theileria equi and Babesia caballi sequences from horses residing in Spain. Ticks Tick Borne Dis 2020; 11:101521. [PMID: 32993941 DOI: 10.1016/j.ttbdis.2020.101521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022]
Abstract
The intraerythrocytic protozoans Theileria equi and Babesia caballi are the causative agents of equine piroplasmosis (EP), one of the most important equine tick-borne diseases due to its significant impact on global international horse trade. Although EP is known to be endemic in Spain, previous phylogenetic studies have only been conducted for limited geographical regions. Therefore, the objective of this study was to evaluate the genetic diversity and distribution of these parasite species nationwide. This was performed by amplification of the 18S small subunit (SSU) rRNA gene from 100 EP positive equine blood samples using a nested PCR protocol, and sequencing the obtained amplicons. Seventy-seven T. equi and six B. caballi isolates were successfully sequenced and phylogenetic analysis revealed that the T. equi isolates grouped into the previously described clades A (n = 21/77), D (n = 1/77) and E (n = 55/77), while B. caballi isolates were placed into clades A (n = 5/6) and B (n = 1/6). Isolates from T. equi clade D and B. caballi clade B have not previously been reported in Spain. A greater intra-clade diversity (97.3-98.3 % identity) was observed between T. equi clade E isolates compared to those within clade A (99.7-100 % identity). Additionally, a multivariable logistic regression model was used to analyse associations between the clade of T. equi infection and available epidemiological data. Horses residing in Spanish northern regions were statistically more likely to be infected with T. equi clade E (p = 0.01). We conclude that while extensive sequence variation of equine piroplasms exists in Spanish infected horses, a requirement for increased equine movement controls between Spain and EP-endemic countries should be considered.
Collapse
Affiliation(s)
- Eliazar Camino
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain; Animal Health Department, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
| | - Fatima Cruz-Lopez
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain
| | - Lucia de Juan
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain; Animal Health Department, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Lucas Dominguez
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain; Animal Health Department, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Brian Shiels
- Institute of Biodiversity Animal Health and Comparative Medicine. College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Robert M Coultous
- Institute of Biodiversity Animal Health and Comparative Medicine. College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
15
|
Kheirandish F, Kayedi MH, Mostafavi E, Hosseini SZ, Rouzbahani AK, Hosseini-Chegeni A. The first molecular detection of a Theileria-like species (Apicomplexa: Piroplasmida) in Meriones persicus from western Iran. J Parasit Dis 2020; 44:180-185. [PMID: 32174723 PMCID: PMC7046869 DOI: 10.1007/s12639-019-01180-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/14/2019] [Indexed: 11/30/2022] Open
Abstract
The archived blood of rodents species such as Meriones, Mus, and Microtus species was investigated in order to detect any piroplasms species. In this study 18S rRNA target gene of piroplasm parasite was amplified by PCR in a Meriones persicus; so, the Locus 1 and Locus 2 of 18S rRNA were sequenced, successfully. A Theileria-like taxa was suspected in accordance with the BLAST analysis of 18S rRNA L1 and L2 with 96% and 91% sequence homology, respectively. The present study was the first report of a Theileria-like species in M. persicus from Iran.
Collapse
Affiliation(s)
- Farnaz Kheirandish
- Department of Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Hassan Kayedi
- Department of Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Zeinab Hosseini
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | |
Collapse
|
16
|
Clift SJ, Collins NE, Oosthuizen MC, Steyl JCA, Lawrence JA, Mitchell EP. The Pathology of Pathogenic Theileriosis in African Wild Artiodactyls. Vet Pathol 2019; 57:24-48. [PMID: 31854265 DOI: 10.1177/0300985819879443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The published literature on schizont-"transforming," or pathogenic theileriosis, in African wild artiodactyls is dated and based on limited information. Here the authors review the taxonomy, diagnosis, epidemiology, hematology, pathology, and aspects of control in various species. Molecular studies based on 18S and 16S rRNA gene sequences have shown that African wild artiodactyls are commonly infected with diverse Theileria spp., as well as nontheilerial hemoprotozoa and rickettsia-like bacteria, and coinfections with pathogenic and nonpathogenic Theileria species are often recorded. Although theileriosis is still confusingly referred to as cytauxzoonosis in many species, the validity of a separate Cytauxzoon genus in artiodactyls is debated. The epidemiology of theileriosis is complex; the likelihood of fatal disease depends on the interplay of parasite, vertebrate host, tick vector, and environmental factors. Roan calves (Hippotragus equinus) and stressed animals of all host species are more susceptible to fatal theileriosis. Even though regenerative anemia is common, peripheral blood piroplasm parasitemia does not correlate with disease severity. Other than anemia, common macroscopic lesions include icterus, hemorrhages (mucosal, serosal, and tissue), fluid effusions into body cavities, lung edema, and variably sized raised cream-colored foci of leukocyte infiltration in multiple organs. Histopathologic findings include vasocentric hyperproliferation and lysis of atypical leukocytes with associated intracellular schizonts, parenchymal necrosis, hemorrhage, thromboembolism, and edema. Immunophenotyping is required to establish the identity of the schizont-transformed leukocytes in wild ungulates. Throughout the review, we propose avenues for future research by comparing existing knowledge on selected aspects of theileriosis in domestic livestock with that in African wild artiodactyls.
Collapse
Affiliation(s)
- Sarah J Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Nicola E Collins
- Vectors and Vector-Borne Diseases Research Program, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Marinda C Oosthuizen
- Vectors and Vector-Borne Diseases Research Program, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Johan C A Steyl
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - John A Lawrence
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Emily P Mitchell
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
17
|
Diversity of piroplasmids among wild and domestic mammals and ectoparasites in Pantanal wetland, Brazil. Ticks Tick Borne Dis 2018; 9:245-253. [DOI: 10.1016/j.ttbdis.2017.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 01/14/2023]
|
18
|
Suong NT, Webb S, Banks J, Wakeman KC, Lane H, Jeffs A, Brosnahan C, Jones B, Fidler A. Partial 18S rRNA sequences of apicomplexan parasite 'X' (APX), associated with flat oysters Ostrea chilensis in New Zealand. DISEASES OF AQUATIC ORGANISMS 2017; 127:1-9. [PMID: 29256422 DOI: 10.3354/dao03175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Apicomplexa is a large phylum of parasitic protists renowned for significant negative health impacts on humans and livestock worldwide. Despite the prevalence and negative impacts of apicomplexans across many animal groups, relatively little attention has been given to apicomplexan parasites of invertebrates, especially marine invertebrates. Previous work has reported an apicomplexan parasite 'X' (APX), a parasite that has been histologically and ultrastructurally identified from the commercially important flat oyster Ostrea chilensis in New Zealand. This apicomplexan may exacerbate host vulnerability to the infectious disease bonamiosis. In this study, we report 18S rRNA sequences amplified from APX-infected O. chilensis tissues. Phylogenetic analyses clearly established that the 18S sequences were of apicomplexan origin; however, their detailed relationship to known apicomplexan groups is less resolved. Two specific probes, designed from the putative APX 18S rRNA sequence, co-localised with APX cells in in situ hybridisations, further supporting our hypothesis that the 18S sequences were from APX. These sequences will facilitate the future development of inexpensive and sensitive molecular diagnostic tests for APX, thereby assisting research focussed on the biology and ecology of this organism and its role in morbidity and mortality of O. chilensis.
Collapse
Affiliation(s)
- Nguyen Thao Suong
- Institute of Marine Science, University of Auckland, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang JL, Li TT, Liu GH, Zhu XQ, Yao C. Two Tales of Cytauxzoon felis Infections in Domestic Cats. Clin Microbiol Rev 2017; 30:861-885. [PMID: 28637681 PMCID: PMC5608878 DOI: 10.1128/cmr.00010-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytauxzoonosis is an emerging infectious disease that affects wild felids as well as the domestic cat; it is caused by the apicomplexan protozoan parasites belonging to the genus Cytauxzoon. Cytauxzoonfelis is the species of major concern, whose transmission occurs via the bite of an infected tick. Cytauxzoonosis of the domestic cat has historically been considered uniformly fatal, with a short course of illness, and most domestic cats die within 9 to 15 days postinfection. However, increasing evidence of domestic cats surviving C. felis infection suggests the existence of different strains with various levels of pathogenicity. Although wild felids are considered natural reservoirs for this parasite, a number of studies suggest that domestic cats that have survived nonlethal infections may serve as an additional reservoir. The current article comprehensively reviews the parasite and its life cycle, geographic distribution, genetic variability, and pathogenesis, as well as host immunology and the diagnosis, treatment, and prevention of infection in the domestic cat. This information should provide a basis for better understanding the parasite as well as the pathogenesis of the disease.
Collapse
Affiliation(s)
- Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
| | - Ting-Ting Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
| | - Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, People's Republic of China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| |
Collapse
|
20
|
Cheeseman KM, Weitzman JB. [What makes a parasite "transforming"? Insights into cancer from the agents of an exotic pathology, Theileria spp]. ACTA ACUST UNITED AC 2017; 110:55-60. [PMID: 28155040 DOI: 10.1007/s13149-017-0551-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/24/2017] [Indexed: 11/30/2022]
Abstract
Theileria are obligate eukaryotic intracellular parasites of cattle. The diseases they cause, Tropical theileriosis and East Coast Fever, cause huge economic loss in East African, Mediterranean and central and South-East Asian countries. These apicomplexan parasites are the only intracellular eukaryotic parasites known to transform their host cell and represent a unique model to study host-parasite interactions and mechanisms of cancer onset.Here, we review how Theileria parasites induce transformation of their leukocyte host cell and discuss similarities with tumorigenesis. We describe how genomic innovation, epigenetic changes and hijacking of signal transductions enable a eukaryotic parasite to transform its host cell.
Collapse
Affiliation(s)
- K M Cheeseman
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, 75013, Paris, France
| | - J B Weitzman
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, 75013, Paris, France.
| |
Collapse
|
21
|
Schreeg ME, Marr HS, Tarigo JL, Cohn LA, Bird DM, Scholl EH, Levy MG, Wiegmann BM, Birkenheuer AJ. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny. PLoS One 2016; 11:e0165702. [PMID: 27832128 PMCID: PMC5104439 DOI: 10.1371/journal.pone.0165702] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 10/17/2016] [Indexed: 12/02/2022] Open
Abstract
The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon) are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi) with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis) and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae) while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward understanding the phylogenetic relationships within the group.
Collapse
Affiliation(s)
- Megan E. Schreeg
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Henry S. Marr
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Jaime L. Tarigo
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
- University of Georgia, College of Veterinary Medicine, Athens, Georgia, United States of America
| | - Leah A. Cohn
- University of Missouri, College of Veterinary Medicine, Columbia, Missouri, United States of America
| | - David M. Bird
- North Carolina State University, College of Agriculture and Life Sciences, Raleigh, North Carolina, United States of America
| | - Elizabeth H. Scholl
- North Carolina State University, College of Agriculture and Life Sciences, Raleigh, North Carolina, United States of America
| | - Michael G. Levy
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Brian M. Wiegmann
- North Carolina State University, College of Agriculture and Life Sciences, Raleigh, North Carolina, United States of America
| | - Adam J. Birkenheuer
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| |
Collapse
|
22
|
Sivakumar T, Igarashi I, Yokoyama N. Babesia ovata: Taxonomy, phylogeny and epidemiology. Vet Parasitol 2016; 229:99-106. [PMID: 27809988 DOI: 10.1016/j.vetpar.2016.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022]
Abstract
Babesia ovata, which is transmitted by Haemaphysalis longicornis, is an intraerythrocytic protozoan parasite of cattle. Based on its morphology, B. ovata is classified as a large-type Babesia. The developmental stages of B. ovata have been described both in cattle and the tick vector. In infected adult female ticks, the parasite is transovarially transmitted to the tick eggs. The sexual reproduction of B. ovata has been demonstrated in the tick midgut. The diagnostic tools that are currently available for the specific detection of B. ovata in cattle include microscopy and polymerase chain reaction assays. The development of improved molecular and serological diagnostic tools has been constrained by the limited availability of genetic data. B. ovata has been reported in cattle populations in Japan, Korea, China, Mongolia and Thailand. B. ovata was thought to be a benign parasite; however, infections in immuno compromised or Theileria orientalis-infected animals are clinically significant. Thus, control strategies aimed at minimizing the prevalence of B. ovata are vital. The taxonomy of B. ovata is unclear, and the phylogenetic position has not been well defined. Consequently, non-B. ovata species have sometimes been classified as B. ovata. In this review, we provide an outline of the lifecycle, geographical distribution, and control of B. ovata, and critically discuss the taxonomy and phylogeny of this bovine Babesia.
Collapse
Affiliation(s)
- Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
23
|
Investigating the diversity of the 18S SSU rRNA hyper-variable region of Theileria in cattle and Cape buffalo (Syncerus caffer) from southern Africa using a next generation sequencing approach. Ticks Tick Borne Dis 2016; 7:869-879. [PMID: 27084674 DOI: 10.1016/j.ttbdis.2016.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 11/21/2022]
Abstract
Molecular classification and systematics of the Theileria is based on the analysis of the 18S rRNA gene. Reverse line blot or conventional sequencing approaches have disadvantages in the study of 18S rRNA diversity and a next-generation 454 sequencing approach was investigated. The 18S rRNA gene was amplified using RLB primers coupled to 96 unique sequence identifiers (MIDs). Theileria positive samples from African buffalo (672) and cattle (480) from southern Africa were combined in batches of 96 and sequenced using the GS Junior 454 sequencer to produce 825711 informative sequences. Sequences were extracted based on MIDs and analysed to identify Theileria genotypes. Genotypes observed in buffalo and cattle were confirmed in the current study, while no new genotypes were discovered. Genotypes showed specific geographic distributions, most probably linked with vector distributions. Host specificity of buffalo and cattle specific genotypes were confirmed and prevalence data as well as relative parasitemia trends indicate preference for different hosts. Mixed infections are common with African buffalo carrying more genotypes compared to cattle. Associative or exclusion co-infection profiles were observed between genotypes that may have implications for speciation and systematics: specifically that more Theileria species may exist in cattle and buffalo than currently recognized. Analysis of primers used for Theileria parva diagnostics indicate that no new genotypes will be amplified by the current primer sets confirming their specificity. T. parva SNP variants that occur in the 18S rRNA hypervariable region were confirmed. A next generation sequencing approach is useful in obtaining comprehensive knowledge regarding 18S rRNA diversity and prevalence for the Theileria, allowing for the assessment of systematics and diagnostic assays based on the 18S gene.
Collapse
|
24
|
Gebrekidan H, Gasser RB, Baneth G, Yasur-Landau D, Nachum-Biala Y, Hailu A, Jabbar A. Molecular characterization of Theileria orientalis from cattle in Ethiopia. Ticks Tick Borne Dis 2016; 7:742-747. [PMID: 27034193 DOI: 10.1016/j.ttbdis.2016.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 11/30/2022]
Abstract
This study reports the first molecular characterization of Theileria orientalis in local breeds of cattle in Ethiopia. A conventional PCR utilizing major piroplasm surface protein (MPSP) gene and an established multiplexed tandem PCR (MT-PCR) were used to characterize T. orientalis and to assess the infection intensity, respectively. Of 232 blood samples tested, T. orientalis DNA was detected in only 2.2% of samples using conventional PCR; two genotypes buffeli (1.3%; 3/232) and type 5 (0.9%; 2/232) of T. orientalis were detected. Phylogenetic analysis revealed that the buffeli MPSP sequences from Ethiopia were closely related to those reported from Kenya, Sri Lanka and Myanmar, and type 5 sequences from Ethiopia grouped with those from Korea, Japan, Vietnam and Thailand. A higher number of samples (3.9%; 9/232) were test-positive by MT-PCR and four genotypes (buffeli, chitose, ikeda and type 5) of T. orientalis were detected. The average intensity of infections with genotypes buffeli (DNA copy numbers 11,056) and type 5 (7508) were significantly higher (P<0.0001) than the pathogenic genotype ikeda (61 DNA copies). This first insight into T. orientalis from cattle in Ethiopia using MPSP gene provides a basis for future studies of T. orientalis in various agroclimatic zones and of the impact of oriental theilerosis on cattle in this and other countries of Africa.
Collapse
Affiliation(s)
- Hagos Gebrekidan
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Gad Baneth
- The Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Daniel Yasur-Landau
- The Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Yaarit Nachum-Biala
- The Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Asrat Hailu
- Department of Microbiology, Immunology and Parasitology, Faculty of Medicine, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria 3030, Australia.
| |
Collapse
|
25
|
Liu Q, Meli ML, Zhang Y, Meili T, Stirn M, Riond B, Weibel B, Hofmann-Lehmann R. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland. Vet Parasitol 2016; 221:24-9. [PMID: 27084467 DOI: 10.1016/j.vetpar.2016.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 01/08/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis.
Collapse
Affiliation(s)
- Qin Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Marina L Meli
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China.
| | - Theres Meili
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Martina Stirn
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Barbara Riond
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Beatrice Weibel
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| |
Collapse
|
26
|
Sumbria D, Singla LD, Kumar S, Sharma A, Dahiya RK, Setia R. Spatial distribution, risk factors and haemato-biochemical alterations associated with Theileria equi infected equids of Punjab (India) diagnosed by indirect ELISA and nested PCR. Acta Trop 2016; 155:104-12. [PMID: 26747007 DOI: 10.1016/j.actatropica.2015.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/24/2015] [Accepted: 12/26/2015] [Indexed: 11/16/2022]
Abstract
Equine piroplasmosis is a febrile, tick-borne disease of equids predominately caused by obligatory intra-erythrocytic protozoa Theileria equi in the Indian sub-continent. A cross-sectional study was carried out on 464 equids (426 horses and 38 donkeys/mules) in Punjab, India to assess the level of exposure to equine piroplasmosis by 18S rRNA gene nested polymerase chain reaction (nPCR) and equine merozoite antigen-2 (EMA2) indirect-ELISA (enzyme linked immunosorbent assay), to investigate risk factors and haemato-biochemical alterations associated with the infection. The endemicity of the disease was confirmed by positive PCR amplification in 21.77% and positive antibody titers in 49.78% equid samples. There was a fair agreement between these two diagnostic techniques (Kappa coefficient=0.326). The spatial distribution analysis revealed an increasing trend of T. equi prevalence from north-eastern to south-western region of Punjab by both the techniques correspondingly, which proffered a direct relation with temperature and inverse with humidity variables. The relatively prominent risk factor associated with sero-positivity was the presence of other domestic animals in the herd, while the propensity of finding a positive PCR amplification was higher in donkeys/mules, animal kept at unorganised farm or those used for commercial purposes as compared to their counterparts. There was a significant increase in globulins, gamma glutamyl-transferase, total bilirubin, direct bilirubin, indirect bilirubin, glucose levels and decrease in total erythrocyte count, haemoglobin, packed cell volume by animals, which were revealed positive by nPCR (may or may not positive by indirect-ELISA) and increase in creatinine, total bilirubin, direct bilirubin, glucose and decrease in total erythrocytes count by animals, which were revealed positive by indirect-ELISA (alone). To our knowledge, this study, for the first time, brings out a comprehensive report on the status on spatial distribution of T. equi in Punjab (India) state, thoroughly investigated by molecular and serological techniques, evaluating various environmental and demographic risk factors along with the haemato-biochemical alterations in the exposed animals.
Collapse
Affiliation(s)
- Deepak Sumbria
- Department of Veterinary Parasitology, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana-141004, Punjab, India.
| | - L D Singla
- Department of Veterinary Parasitology, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana-141004, Punjab, India
| | - Sanjay Kumar
- National Research Centre on Equines, Haryana, India
| | - Amrita Sharma
- Department of Veterinary Parasitology, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana-141004, Punjab, India
| | | | - Raj Setia
- Punjab Remote Sensing Centre, Ludhiana, Punjab, India
| |
Collapse
|
27
|
Oxidative stress control by apicomplexan parasites. BIOMED RESEARCH INTERNATIONAL 2015; 2015:351289. [PMID: 25722976 PMCID: PMC4324108 DOI: 10.1155/2015/351289] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/27/2014] [Indexed: 01/01/2023]
Abstract
Apicomplexan parasites cause infectious diseases that are either a severe public health problem or an economic burden. In this paper we will shed light on how oxidative stress can influence the host-pathogen relationship by focusing on three major diseases: babesiosis, coccidiosis, and toxoplasmosis.
Collapse
|
28
|
Rjeibi MR, Darghouth MA, Rekik M, Amor B, Sassi L, Gharbi M. First Molecular Identification and Genetic Characterization of Theileria lestoquardi in Sheep of the Maghreb Region. Transbound Emerg Dis 2014; 63:278-84. [PMID: 25208526 DOI: 10.1111/tbed.12271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Indexed: 11/29/2022]
Abstract
Theileria lestoquardi is the most prominent Theileria species in small ruminants that causes malignant theileriosis of sheep in Africa and Asia. In the present survey, blood samples and ticks were collected in Kebili (southern Tunisia) from 166 Queue Fine de l'Ouest sheep. Giemsa-stained blood smears, immunofluorescent antibody test (IFAT) and PCR were performed. The DNA was extracted from blood and analysed by PCR targeting 18S rRNA gene of Theileria spp. and then sequenced. A total number of 140 ticks were collected from a total number of 166 sheep during the four seasons. The ticks belonged to two genera and 4 species; the most frequent tick was Hyalomma excavatum 84.3% (118/140) and then Rhipicephalus spp. 15.7% (22/140). Only two animals had positive Giemsa-stained blood smears, and they were also positive by IFAT. The amplicons had 99.3 and 99.6% homology with the BLAST published T. lestoquardi amplicons. To our knowledge, this is the first report of T. lestoquardi in small ruminants within the Maghreb region.
Collapse
Affiliation(s)
- M R Rjeibi
- Laboratoire de Parasitologie, Université de la Manouba, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet, Tunisia
| | - M A Darghouth
- Laboratoire de Parasitologie, Université de la Manouba, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet, Tunisia
| | - M Rekik
- International Center for Agricultural Research in the Dry Areas (ICARDA), Amman, Jordan
| | - B Amor
- Laboratoire de Parasitologie, Université de la Manouba, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet, Tunisia
| | - L Sassi
- Laboratoire de Parasitologie, Université de la Manouba, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet, Tunisia
| | - M Gharbi
- Laboratoire de Parasitologie, Université de la Manouba, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet, Tunisia
| |
Collapse
|
29
|
Sivakumar T, Hayashida K, Sugimoto C, Yokoyama N. Evolution and genetic diversity of Theileria. INFECTION GENETICS AND EVOLUTION 2014; 27:250-63. [PMID: 25102031 DOI: 10.1016/j.meegid.2014.07.013] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022]
Abstract
Theileria parasites infect a wide range of domestic and wild ruminants worldwide, causing diseases with varying degrees of severity. A broad classification, based on the parasite's ability to transform the leukocytes of host animals, divides Theileria into two groups, consisting of transforming and non-transforming species. The evolution of transforming Theileria has been accompanied by drastic changes in its genetic makeup, such as acquisition or expansion of gene families, which are thought to play critical roles in the transformation of host cells. Genetic variation among Theileria parasites is sometimes linked with host specificity and virulence in the parasites. Immunity against Theileria parasites primarily involves cell-mediated immune responses in the host. Immunodominance and major histocompatibility complex class I phenotype-specificity result in a host immunity that is tightly focused and strain-specific. Immune escape in Theileria is facilitated by genetic diversity in its antigenic determinants, which potentially results in a loss of T cell receptor recognition in its host. In the recent past, several reviews have focused on genetic diversity in the transforming species, Theileriaparva and Theileriaannulata. In contrast, genetic diversity in Theileriaorientalis, a benign non-transforming parasite, which occasionally causes disease outbreaks in cattle, has not been extensively examined. In this review, therefore, we provide an outline of the evolution of Theileria, which includes T. orientalis, and discuss the possible mechanisms generating genetic diversity among parasite populations. Additionally, we discuss the potential implications of a genetically diverse parasite population in the context of Theileria vaccine development.
Collapse
Affiliation(s)
- Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan; Veterinary Research Institute, Peradeniya, Sri Lanka
| | - Kyoko Hayashida
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
| |
Collapse
|
30
|
Chaisi ME, Collins NE, Oosthuizen MC. Phylogeny of Theileria buffeli genotypes identified in the South African buffalo (Syncerus caffer) population. Vet Parasitol 2014; 204:87-95. [PMID: 25002308 DOI: 10.1016/j.vetpar.2014.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 11/18/2022]
Abstract
Theileria buffeli/orientalis is a group of benign and mildly pathogenic species of cattle and buffalo in various parts of the world. In a previous study, we identified T. buffeli in blood samples originating from the African buffalo (Syncerus caffer) in the Hluhluwe-iMfolozi Game Park (HIP) and the Addo Elephant Game Park (AEGP) in South Africa. The aim of this study was to characterise the 18S rRNA gene and complete internal transcribed spacer (ITS1-5.8S-ITS2) region of T. buffeli samples, and to establish the phylogenetic position of this species based on these loci. The 18S rRNA gene and the complete ITS region were amplified from DNA extracted from blood samples originating from buffalo in HIP and AEGP. The PCR products were cloned and the resulting recombinants sequenced. We identified novel T. buffeli-like 18S rRNA and ITS genotypes from buffalo in the AEGP, and novel Theileria sinensis-like 18S rRNA genotypes from buffalo in the HIP. Phylogenetic analyses indicated that the T. buffeli-like sequences were similar to T. buffeli sequences from cattle and buffalo in China and India, and the T. sinensis-like sequences were similar to T. sinensis 18S rRNA sequences of cattle and yak in China. There was extensive sequence variation between the novel T. buffeli genotypes of the African buffalo and previously described T. buffeli and T. sinensis genotypes. The presence of organisms with T. buffeli-like and T. sinensis-like genotypes in the African buffalo could be of significant importance, particularly to the cattle industry in South Africa as these animals might act as sources of infections to naïve cattle. This is the first report on the characterisation of the full-length 18S rRNA gene and ITS region of T. buffeli and T. sinensis genotypes in South Africa. Our study provides invaluable information towards the classification of this complex group of benign and mildly pathogenic species.
Collapse
Affiliation(s)
- Mamohale E Chaisi
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa; Department of Biology, National University of Lesotho, Faculty of Science and Technology, Roma 180, Lesotho.
| | - Nicola E Collins
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Marinda C Oosthuizen
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| |
Collapse
|
31
|
Thompson C, Baravalle ME, Valentini B, Mangold A, Torioni de Echaide S, Ruybal P, Farber M, Echaide I. Typification of virulent and low virulence Babesia bigemina clones by 18S rRNA and rap-1c. Exp Parasitol 2014; 141:98-105. [PMID: 24681200 DOI: 10.1016/j.exppara.2014.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 02/24/2014] [Accepted: 03/04/2014] [Indexed: 11/29/2022]
Abstract
The population structure of original Babesia bigemina isolates and reference strains with a defined phenotypic profile was assessed using 18S rRNA and rap-1c genes. Two reference strains, BbiS2P-c (virulent) and BbiS1A-c (low virulence), were biologically cloned in vitro. The virulence profile of the strains and clones was assessed in vivo. One fully virulent and one low-virulence clone were mixed in identical proportions to evaluate their growth efficiency in vitro. Each clone was differentiated by two microsatellites and the gene gp45. The 18S rRNA and rap-1c genes sequences from B. bigemina biological clones and their parental strains, multiplied exclusively in vivo or in vitro, were compared with strain JG-29. The virulence of clones derived from the BbiS2P-c strain was variable. Virulent clone Bbi9P1 grew more efficiently in vitro than did the low-virulence clone Bbi2A1. The haplotypes generated by the nucleotide polymorphism, localized in the V4 region of the 18S rRNA, allowed the identification of three genotypes. The rap-1c haplotypes allowed defining four genotypes. Parental and original strains were defined by multiple haplotypes identified in both genes. The rap-1c gene, analyzed by high-resolution melting (HRM), allowed discrimination between two genotypes according to their phenotype, and both were different from JG-29. B. bigemina biological clones made it possible to define the population structure of isolates and strains. The polymorphic regions of the 18S rRNA and rap-1c genes allowed the identification of different subpopulations within original B. bigemina isolates by the definition of several haplotypes and the differentiation of fully virulent from low virulence clones.
Collapse
Affiliation(s)
- C Thompson
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina.
| | - M E Baravalle
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - B Valentini
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - A Mangold
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - S Torioni de Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - P Ruybal
- Instituto Nacional de Tecnología Agropecuaria, Centro Nacional de Investigaciones Agropecuarias Castelar, Los Reseros y Las Cabañas, CP 1712 Castelar, Buenos Aires, Argentina
| | - M Farber
- Instituto Nacional de Tecnología Agropecuaria, Centro Nacional de Investigaciones Agropecuarias Castelar, Los Reseros y Las Cabañas, CP 1712 Castelar, Buenos Aires, Argentina
| | - I Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 km 227, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| |
Collapse
|
32
|
He L, Zhang Y, Zhang QL, Zhang WJ, Feng HH, Khan MK, Hu M, Zhou YQ, Zhao JL. Mitochondrial genome of Babesia orientalis, apicomplexan parasite of water buffalo (Bubalus babalis, Linnaeus, 1758) endemic in China. Parasit Vectors 2014; 7:82. [PMID: 24580772 PMCID: PMC3941609 DOI: 10.1186/1756-3305-7-82] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apicomplexan parasites of the genus Babesia, Theileria and Plasmodium are very closely related organisms. Interestingly, their mitochondrial (mt) genomes are highly divergent. Among Babesia, Babesia orientalis is a new species recently identified and specifically epidemic to the southern part of China, causing severe disease to water buffalo. However, no information on the mt genome of B. orientalis was available. METHODS Four pairs of primers were designed based on the full genome sequence of B. orientalis (unpublished data) and by aligning reported mt genomes of B. bovis, B. bigemina, and T. parva. The entire mt genome was amplified by four sets of PCR. The obtained mt genome was annotated by aligning with published apicomplexan mt genomes and Artemis software v11. Phylogenetic analysis was performed by using cox1 and cob amino acid sequences. RESULTS The complete mt genome of B. orientalis (Wuhan strain) was sequenced and characterized. The entire mt genome is 5996 bp in length with a linear form, containing three protein-coding genes including cytochrome c oxidase I (cox1), cytochrome b (cob) and cytochrome c oxidase III (cox3) and six rRNA large subunit gene fragments. The gene arrangement in B. orientalis mt genome is similar to those of B. bovis, B. gibsoni and Theileria parva, but different from those of T. orientalis, T. equi and Plasmodium falciparum. Comparative analysis indicated that cox1 and cob genes were more conserved than cox3. Phylogenetic analysis based on amino acid sequences of cox1, cob and cox1 + cob, respectively, revealed that B. orientalis fell into Babesia clade with the closest relationship to B. bovis. CONCLUSIONS The availability of the entire mt genome sequences of B. orientalis provides valuable information for future phylogenetic, population genetics and molecular epidemiological studies of apicomplexan parasites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun-Long Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
33
|
Regner EL, Thompson CS, Iglesias AA, Guerrero SA, Arias DG. Biochemical characterization of thioredoxin reductase from Babesia bovis. Biochimie 2013; 99:44-53. [PMID: 24239559 DOI: 10.1016/j.biochi.2013.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
This paper addresses the identification, cloning, expression, purification and functional characterization of thioredoxin reductase from Babesia bovis, the etiological agent of babesiosis. The work deals with in vitro steady state kinetic studies and other complementary analyses of the thioredoxin reductase found in the pathogenic protist. Thioredoxin reductase from B. bovis was characterized as a homodimeric flavoprotein that catalyzes the NADPH-dependent reduction of Trx with a high catalytic efficiency. Moreover, the enzyme exhibited a disulfide reductase activity using DTNB as substrate, being this activity highly sensitive to inhibition by Eosin B. The thioredoxin reductase/thioredoxin system can reduce oxidized glutathione and S-nitrosoglutathione. Our in vitro data suggest that antioxidant defense in B. bovis could be supported by this enzyme. We have performed an enzymatic characterization, searching for targets for rational design of inhibitors. This work contributes to the better understanding of the redox biochemistry occurring in the parasite.
Collapse
Affiliation(s)
- Erika L Regner
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje "El Pozo" CC 242, S3000ZAA Santa Fe, Argentina
| | - Carolina S Thompson
- Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria, Rafaela, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje "El Pozo" CC 242, S3000ZAA Santa Fe, Argentina
| | - Sergio A Guerrero
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje "El Pozo" CC 242, S3000ZAA Santa Fe, Argentina
| | - Diego G Arias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje "El Pozo" CC 242, S3000ZAA Santa Fe, Argentina.
| |
Collapse
|
34
|
Wise LN, Kappmeyer LS, Mealey RH, Knowles DP. Review of equine piroplasmosis. J Vet Intern Med 2013; 27:1334-46. [PMID: 24033559 DOI: 10.1111/jvim.12168] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/15/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022] Open
Abstract
Equine piroplasmosis is caused by one of 2 erythrocytic parasites Babesia caballi or Theileria equi. Although the genus of the latter remains controversial, the most recent designation, Theileria, is utilized in this review. Shared pathogenesis includes tick-borne transmission and erythrolysis leading to anemia as the primary clinical outcome. Although both parasites are able to persist indefinitely in their equid hosts, thus far, only B. caballi transmits across tick generations. Pathogenesis further diverges after transmission to equids in that B. caballi immediately infects erythrocytes, whereas T.equi infects peripheral blood mononuclear cells. The recent re-emergence of T.equi in the United States has increased awareness of these tick-borne pathogens, especially in terms of diagnosis and control. This review focuses in part on factors leading to the re-emergence of infection and disease of these globally important pathogens.
Collapse
Affiliation(s)
- L N Wise
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA; Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Pullman, WA
| | | | | | | |
Collapse
|
35
|
|
36
|
Dawood KE, Morgan JA, Busfield F, Srivastava M, Fletcher TI, Sambono J, Jackson LA, Venus B, Philbey AW, Lew-Tabor AE. Observation of a novel Babesia spp. in Eastern Grey Kangaroos (Macropus giganteus) in Australia. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2012; 2:54-61. [PMID: 24533316 PMCID: PMC3862514 DOI: 10.1016/j.ijppaw.2012.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/04/2012] [Accepted: 12/13/2012] [Indexed: 11/18/2022]
Abstract
The roles and epidemiological features of tick-borne protozoans are not well elicited in wildlife. Babesia spp. are documented in many domestic animals, including cattle, horses, pigs, dogs and cats. Three cases affecting eastern grey kangaroos are described. The kangaroos exhibited neurological signs, depression and marked anaemia, and microscopic examination of blood smears revealed intraerythrocytic piroplasms. One to seven intraerythrocytic spherical, oval, pyriform and irregularly-shaped parasites consistent with Babesia spp. were seen in the blood smears and the percentage of infected erythrocytes was estimated to be approximately 7% in each case. Data suggest that the tick vector for this kangaroo Babesia sp. is a Haemaphysalis species. For Case 2, ultrastructural examination of the erythrocytes of the renal capillaries showed parasites resembling Babesia spp. and 18 of 33 erythrocytes were infected. DNA sequencing of the amplified 18S rDNA confirmed that the observed intraerythrocytic piroplasms belong to the genus Babesia. The phylogenetic position of this new kangaroo Babesia sp. (de novo Babesia macropus), as a sister species to the new Australian woylie Babesia sp., suggests a close affinity to the described Afro–Eurasian species Babesia orientalis and Babesia occultans suggesting perhaps a common ancestor for the Babesia in kangaroos.
Collapse
Affiliation(s)
- Kaiser E. Dawood
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Woodbridge Road, Menangle, NSW 2568, Australia
- Corresponding author. Present address: School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia. Postal address: P.O. Box: 895, Fairfield, NSW 1860, Australia. Tel.: +61 401930939.
| | - Jess A.T. Morgan
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, 306 Carmody Road, St. Lucia, Qld 4072, Australia
| | - Frances Busfield
- Moruya Veterinary Hospital, 86-88 Queens St. Moruya, NSW 2537, Australia
| | - Mukesh Srivastava
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Woodbridge Road, Menangle, NSW 2568, Australia
| | - Taryn I. Fletcher
- Tick Fever Centre, Queensland Department of Agriculture, Fisheries & Forestry, 280 Grindle Road, Wacol, Qld 4076, Australia
| | - Jacqueline Sambono
- Tick Fever Centre, Queensland Department of Agriculture, Fisheries & Forestry, 280 Grindle Road, Wacol, Qld 4076, Australia
| | - Louise A. Jackson
- Biosecurity Queensland, Queensland Department of Agriculture, Fisheries & Forestry, 39 Kessels Road, Coopers Plains, Qld 4108, Australia
| | - Bronwyn Venus
- Animal Science, Queensland Department of Agriculture, Fisheries & Forestry, 306 Carmody Road, St. Lucia, Qld 4072, Australia
| | - Adrian W. Philbey
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Woodbridge Road, Menangle, NSW 2568, Australia
| | - Ala E. Lew-Tabor
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, 306 Carmody Road, St. Lucia, Qld 4072, Australia
| |
Collapse
|
37
|
Kappmeyer LS, Thiagarajan M, Herndon DR, Ramsay JD, Caler E, Djikeng A, Gillespie JJ, Lau AO, Roalson EH, Silva JC, Silva MG, Suarez CE, Ueti MW, Nene VM, Mealey RH, Knowles DP, Brayton KA. Comparative genomic analysis and phylogenetic position of Theileria equi. BMC Genomics 2012; 13:603. [PMID: 23137308 PMCID: PMC3505731 DOI: 10.1186/1471-2164-13-603] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/29/2012] [Indexed: 12/03/2022] Open
Abstract
Background Transmission of arthropod-borne apicomplexan parasites that cause disease and result in death or persistent infection represents a major challenge to global human and animal health. First described in 1901 as Piroplasma equi, this re-emergent apicomplexan parasite was renamed Babesia equi and subsequently Theileria equi, reflecting an uncertain taxonomy. Understanding mechanisms by which apicomplexan parasites evade immune or chemotherapeutic elimination is required for development of effective vaccines or chemotherapeutics. The continued risk of transmission of T. equi from clinically silent, persistently infected equids impedes the goal of returning the U. S. to non-endemic status. Therefore comparative genomic analysis of T. equi was undertaken to: 1) identify genes contributing to immune evasion and persistence in equid hosts, 2) identify genes involved in PBMC infection biology and 3) define the phylogenetic position of T. equi relative to sequenced apicomplexan parasites. Results The known immunodominant proteins, EMA1, 2 and 3 were discovered to belong to a ten member gene family with a mean amino acid identity, in pairwise comparisons, of 39%. Importantly, the amino acid diversity of EMAs is distributed throughout the length of the proteins. Eight of the EMA genes were simultaneously transcribed. As the agents that cause bovine theileriosis infect and transform host cell PBMCs, we confirmed that T. equi infects equine PBMCs, however, there is no evidence of host cell transformation. Indeed, a number of genes identified as potential manipulators of the host cell phenotype are absent from the T. equi genome. Comparative genomic analysis of T. equi revealed the phylogenetic positioning relative to seven apicomplexan parasites using deduced amino acid sequences from 150 genes placed it as a sister taxon to Theileria spp. Conclusions The EMA family does not fit the paradigm for classical antigenic variation, and we propose a novel model describing the role of the EMA family in persistence. T. equi has lost the putative genes for host cell transformation, or the genes were acquired by T. parva and T. annulata after divergence from T. equi. Our analysis identified 50 genes that will be useful for definitive phylogenetic classification of T. equi and closely related organisms.
Collapse
Affiliation(s)
- Lowell S Kappmeyer
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA 99164-7030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA. Babesia: a world emerging. INFECTION GENETICS AND EVOLUTION 2012; 12:1788-809. [PMID: 22871652 DOI: 10.1016/j.meegid.2012.07.004] [Citation(s) in RCA: 382] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/06/2012] [Accepted: 07/08/2012] [Indexed: 11/15/2022]
Abstract
Babesia are tick-transmitted hemoprotozooans that infect mammals and birds, and which are acknowledged for their major impact on farm and pet animal health and associated economic costs worldwide. Additionally, Babesia infections of wildlife can be fatal if associated with stressful management practices; and human babesiosis, also transmitted by blood transfusion, is an increasing public-health concern. Due to the huge diversity of species reported to serve as Babesia hosts, all vertebrates might be potential carriers, as long as they are adequate hosts for Babesia-vector ticks. We here provide a comprehensive overview of the most relevant Babesia species, and a discussion of the classical taxonomic criteria. Babesia, Cytauxzoon and Theileria parasites are closely related and collectively referred to as piroplasmids. A possible scenario for the history of piroplasmids is presented in the context of recent findings, and its implications for future research avenues are outlined. Phylogenetic trees of all available 18S rRNA and hsp70 genes were generated, based on which we present a thoroughly revised molecular classification, comprising five monophyletic Babesia lineages, one Cytauxzoon clade, and one Theileria clade. Updated 18S rRNA and beta-tubulin gene trees of the B. microti isolates agree with those previously reported. To reconcile estimates of the origin of piroplasmids and ticks (~300 Ma, respectively), and mammalian radiation (60 Ma), we hypothesize that the dixenous piroplasmid life cycle evolved with the origin of ticks. Thus, the observed time gap between tick origin and mammalian radiation indicates the existence of hitherto unknown piroplasmid lineages and/or species in extant vertebrate taxa, including reptiles and possibly amphibians. The development and current status of the molecular taxonomy of Babesia, with emphasis on human-infecting species, is discussed. Finally, recent results from population genetic studies of Babesia parasites, and their implications for the development of pathogenicity, drug resistance and vaccines, are summarized.
Collapse
Affiliation(s)
- Leonhard Schnittger
- Institute of Pathobiology, Center of Research in Veterinary and Agronomic Sciences, INTA-Castelar, Argentina.
| | | | | | | |
Collapse
|
39
|
Lack JB, Reichard MV, Van Den Bussche RA. Phylogeny and evolution of the Piroplasmida as inferred from 18S rRNA sequences. Int J Parasitol 2012; 42:353-63. [PMID: 22429769 DOI: 10.1016/j.ijpara.2012.02.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 11/17/2022]
Abstract
The order Piroplasmida consists of several genera of tick-borne parasites that infect mammals, and to a lesser extent birds, and are therefore of medical and economic importance. Despite their importance, considerable confusion exists concerning the relationship among piroplasmid species, specifically concerning the number of genera and the intergeneric relationships. To examine evolutionary relationships among piroplasmids, we conducted phylogenetic analyses of 192 18S rDNA sequences from the genera Theileria, Babesia and Cytauxzoon. Our analyses revealed eight clades potentially representing distinct genera, and we distinguish the Duncani Group and Microti Group as genetically distinct groups of species requiring detailed analysis of morphology and life-history to allow formal generic description. The piroplasmid phylogeny revealed considerable host diversity and limited host specificity, suggesting piroplasmids have undergone frequent host switches during their evolution. Our analyses provide the first reported evolutionary timescale for piroplasmids independent of the assumption of parasite-host cospeciation, which is invalid for piroplasmids. Evolutionary rate analyses revealed considerable substitution rate heterogeneity, which we attribute to host switching and diversification. Finally, we call for a comprehensive phylogenetic, morphological and life-history analysis for these medically relevant taxa to resolve relationships and understand host specificity.
Collapse
MESH Headings
- Cluster Analysis
- Computational Biology
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Evolution, Molecular
- Genes, rRNA
- Phylogeny
- Piroplasmida/classification
- Piroplasmida/genetics
- RNA, Protozoan/genetics
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Justin B Lack
- Department of Zoology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | |
Collapse
|
40
|
Short MA, Clark CK, Harvey JW, Wenzlow N, Hawkins IK, Allred DR, Knowles DP, Corn JL, Grause JF, Hennager SG, Kitchen DL, Traub-Dargatz JL. Outbreak of equine piroplasmosis in Florida. J Am Vet Med Assoc 2012; 240:588-95. [DOI: 10.2460/javma.240.5.588] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Brothers P, Collins N, Oosthuizen M, Bhoora R, Troskie M, Penzhorn B. Occurrence of blood-borne tick-transmitted parasites in common tsessebe (Damaliscus lunatus) antelope in Northern Cape Province, South Africa. Vet Parasitol 2011; 183:160-5. [DOI: 10.1016/j.vetpar.2011.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 06/13/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
|
42
|
Chaisi ME, Sibeko KP, Collins NE, Potgieter FT, Oosthuizen MC. Identification of Theileria parva and Theileria sp. (buffalo) 18S rRNA gene sequence variants in the African Buffalo (Syncerus caffer) in southern Africa. Vet Parasitol 2011; 182:150-62. [PMID: 21700394 DOI: 10.1016/j.vetpar.2011.05.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/10/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
Abstract
Theileria parva is the causative agent of Corridor disease in cattle in South Africa. The African buffalo (Syncerus caffer) is the reservoir host, and, as these animals are important for eco-tourism in South Africa, it is compulsory to test and certify them disease free prior to translocation. A T. parva-specific real-time polymerase chain reaction (PCR) test based on the small subunit ribosomal RNA (18S rRNA) gene is one of the tests used for the diagnosis of the parasite in buffalo and cattle in South Africa. However, because of the high similarity between the 18S rRNA gene sequences of T. parva and Theileria sp. (buffalo), the latter is also amplified by the real-time PCR primers, although it is not detected by the T. parva-specific hybridization probes. Preliminary sequencing studies have revealed a small number of sequence differences within the 18S rRNA gene in both species but the extent of this sequence variation is unknown. The aim of the current study was to sequence the 18S rRNA genes of T. parva and Theileria sp. (buffalo), and to determine whether all identified genotypes can be correctly detected by the real-time PCR assay. The reverse line blot (RLB) hybridization assay was used to identify T. parva and Theileria sp. (buffalo) positive samples from buffalo blood samples originating from the Kruger National Park, Hluhluwe-iMfolozi Park, the Greater Limpopo Transfrontier Park, and a private game ranch in the Hoedspruit area. T. parva and Theileria sp. (buffalo) were identified in 42% and 28%, respectively, of 252 samples, mainly as mixed infections. The full-length 18S rRNA gene of selected samples was amplified, cloned and sequenced. From a total of 20 sequences obtained, 10 grouped with previously published T. parva sequences from GenBank while 10 sequences grouped with a previously published Theileria sp. (buffalo) sequence. All these formed a monophyletic group with known pathogenic Theileria species. Our phylogenetic analyses confirm the distinction between Theileria sp. (buffalo) and T. parva and indicate the existence of a single group of T. parva and two Theileria sp. (buffalo) 18S rRNA gene variants in the African buffalo. Despite the observed variation in the full-length parasite 18S rRNA gene sequences, the area in the V4 hypervariable region where the RLB and real-time PCR hybridization probes were developed was relatively conserved. The T. parva specific real-time PCR assay was able to successfully detect all T. parva variants and, although amplicons were obtained from Theileria sp. (buffalo) DNA, none of the Theileria sp. (buffalo) 18S rRNA sequence variants were detected by the T. parva-specific hybridization probes.
Collapse
Affiliation(s)
- Mamohale E Chaisi
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | | | | | | | | |
Collapse
|
43
|
Diversity in the 18S SSU rRNA V4 hyper-variable region of Theileria spp. in Cape buffalo (Syncerus caffer) and cattle from southern Africa. Parasitology 2011; 138:766-79. [PMID: 21349232 DOI: 10.1017/s0031182011000187] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sequence variation within the 18S SSU rRNA V4 hyper-variable region can affect the accuracy of real-time hybridization probe-based diagnostics for the detection of Theileria spp. infections. This is relevant for assays that use non-specific primers, such as the real-time hybridization assay for T. parva (Sibeko et al. 2008). To assess the effect of sequence variation on this test, the Theileria 18S gene from 62 buffalo and 49 cattle samples was cloned and ∼1000 clones sequenced. Twenty-six genotypes were detected which included known and novel genotypes for the T. buffeli, T. mutans, T. taurotragi and T. velifera clades. A novel genotype related to T. sp. (sable) was also detected in 1 bovine sample. Theileria genotypic diversity was higher in buffalo compared to cattle. Polymorphism within the T. parva hyper-variable region was confirmed by aberrant real-time melting peaks and supported by sequencing of the S5 ribosomal gene. Analysis of the S5 gene suggests that this gene can be a marker for species differentiation. T. parva, T. sp. (buffalo) and T. sp. (bougasvlei) remain the only genotypes amplified by the primer set of the hybridization assay. Therefore, the 18S sequence diversity observed does not seem to affect the current real-time hybridization assay for T. parva.
Collapse
|
44
|
Mahmmod Y, El-Balkemy F, Yuan Z, El-Mekkawy M, Monazie A, Zhu X. Field Evaluation of PCR Assays for the Diagnosis of Tropical Theileriosis in Cattle and Water Buffaloes in Egypt. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/javaa.2010.696.699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Bhoora R, Quan M, Franssen L, Butler CM, van der Kolk JH, Guthrie AJ, Zweygarth E, Jongejan F, Collins NE. Development and evaluation of real-time PCR assays for the quantitative detection of Babesia caballi and Theileria equi infections in horses from South Africa. Vet Parasitol 2009; 168:201-11. [PMID: 20031328 DOI: 10.1016/j.vetpar.2009.11.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 11/30/2022]
Abstract
A quantitative real-time polymerase chain reaction (qPCR) assay using a TaqMan minor groove binder (MGB) probe was developed for the detection of Babesia caballi infection in equids from South Africa. Nine previously published sequences of the V4 hypervariable region of the B. caballi 18S rRNA gene were used to design primers and probes to target unique, conserved regions. The B. caballi TaqMan MGB qPCR assay was shown to be efficient and specific. The detection limit, defined as the concentration at which 95% of positive samples can be detected, was determined to be 0.000114% parasitized erythrocytes (PE). We further evaluated a previously reported Theileria equi-specific qPCR assay and showed that it was able to detect the 12 T. equi 18S rRNA sequence variants previously identified in South Africa. Both qPCR assays were tested on samples from two ponies experimentally infected with either T. equi or B. caballi. The qPCR assays were more sensitive than the indirect fluorescent antibody test (IFAT) and the reverse-line blot (RLB) during the early onset of the disease. The assays were subsequently tested on field samples collected from 41 horses, resident on three stud farms in the Northern Cape Province, South Africa. The IFAT detected circulating T. equi and B. caballi antibody in, respectively, 83% and 70% of the samples. The RLB detected T. equi parasite DNA in 73% of the samples, but none of the samples were positive for B. caballi, although 19 T. equi-positive samples also hybridized to the Babesia genus-specific probe. This could indicate a mixed T. equi and B. caballi infection in these samples, with either the B. caballi parasitaemia at a level below the detection limit of the B. caballi RLB probe, or the occurrence of a novel Babesia genotype or species. In contrast, the qPCR assays correlated fairly well with the IFAT. The B. caballi TaqMan MGB qPCR assay was able to detect B. caballi parasite DNA in 78% of the samples. The T. equi-specific qPCR assay could positively detect T. equi DNA in 80% of the samples. These results suggest that the qPCR assays are more sensitive than the RLB assay for the detection of T. equi and B. caballi infections in field samples.
Collapse
Affiliation(s)
- Raksha Bhoora
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
He L, Liu Q, Quan M, Zhou DN, Zhou YQ, Zhao JL. Molecular cloning and phylogenetic analysis of Babesia orientalis heat shock protein 70. Vet Parasitol 2009; 162:183-91. [PMID: 19375234 DOI: 10.1016/j.vetpar.2009.03.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 03/13/2009] [Accepted: 03/23/2009] [Indexed: 11/15/2022]
Abstract
The heat shock protein 70 (hsp70) gene of Babesia orientalis was obtained from a cDNA expression library by immunoscreening with B. orientalis infected buffalo sera. The nucleotide sequence of the cDNA was 2192bp with an open reading frame (ORF) of 1944bp encoding a polypeptide of 648 amino acid residues. Phylogenetic analysis of the 1944bp sequence together with 30 inter-erythrocytic protozoa hsp70 nucleotide sequences available from GenBank was performed. The results showed that B. orientalis was occurred within the Babesia clade, and most closely related to B. ovis and B. bovis. Similar topologies were obtained from trees based on apicomplexa parasite 18S rRNA sequence. Meanwhile, the BoHsp70 gene was cloned into pET-32a and subsequently expressed in Escherichia coli Rosetta strain as a Trx-fusion protein. The recombinant hsp70 of B. orientalis (rBoHsp70) was purified and evaluated as an antigen in the western blot. The serum from B. orientalis infected buffalo recognized the 92kDa rBoHsp70 expressed in E. coli Rosetta (DE3) by western blotting. The rabbit antiserum against rBoHsp70 recognized a specific 70kDa band in lysates of B. orientalis infected buffalo erythrocytes. These results suggested that hsp70 gene was well conserved among inter-erythrocytic protozoa and the BoHsp70 might be a diagnostic and candidate vaccine antigen.
Collapse
Affiliation(s)
- Lan He
- Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
47
|
Sequence heterogeneity in the 18S rRNA gene within Theileria equi and Babesia caballi from horses in South Africa. Vet Parasitol 2008; 159:112-20. [PMID: 19019541 DOI: 10.1016/j.vetpar.2008.10.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/19/2008] [Accepted: 10/03/2008] [Indexed: 11/21/2022]
Abstract
A molecular epidemiological survey of the protozoal parasites that cause equine piroplasmosis was conducted using samples collected from horses and zebra from different geographical locations in South Africa. A total of 488 samples were tested for the presence of Theileria equi and/or Babesia caballi using the reverse line blot hybridization assay. Ten percent of the samples hybridized to the Theileria/Babesia genus-specific probe and not to the B. caballi or T. equi species-specific probes, suggesting the presence of a novel species or genotype. The small subunit of rRNA gene (18S; approximately 1600bp) was amplified and sequenced from 33 of these 488 samples. Sequences were compared with published sequences from the public sequence databases. Twelve distinct T. equi and six B. caballi 18S rRNA sequences were identified. Alignments demonstrated extensive sequence variation in the V4 hypervariable region of the 18S rRNA gene within T. equi. Sequence variation was also found in B. caballi 18S rRNA genes, although there was less variation than observed for T. equi. Phylogenetic analysis based on 18S rRNA gene sequences revealed three T. equi clades and two B. caballi clades in South Africa. The extent of sequence heterogeneity detected within T. equi and B. caballi 18S rRNA genes was unexpected since concerted evolution is thought to maintain homogeneity within repeated gene families, including rRNA genes, in eukaryotes. The findings reported here show that careful examination of variants of the 18S rRNA gene of T. equi and B. caballi is required prior to the development of molecular diagnostic tests to detect these parasites in horses. Species-specific probes must be in designed in regions of the gene that are both conserved within and unique to each species.
Collapse
|
48
|
Cloning, expression, and characterization of Babesia gibsoni dihydrofolate reductase-thymidylate synthase: inhibitory effect of antifolates on its catalytic activity and parasite proliferation. Antimicrob Agents Chemother 2008; 52:4072-80. [PMID: 18794380 DOI: 10.1128/aac.00384-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a well-validated antifolate drug target in certain pathogenic apicomplexans, but not in the genus Babesia, including Babesia gibsoni. Therefore, we isolated, cloned, and expressed the wild-type B. gibsoni dhfr-ts gene in Escherichia coli and evaluated the inhibitory effect of antifolates on its enzyme activity, as well as on in vitro parasite growth. The full-length gene consists of a 1,548-bp open reading frame encoding a 58.8-kDa translated peptide containing DHFR and TS domains linked together in a single polypeptide chain. Each domain contained active-site amino acid residues responsible for the enzymatic activity. The expressed soluble recombinant DHFR-TS protein was approximately 57 kDa after glutathione S-transferase (GST) cleavage, similar to an approximately 58-kDa native enzyme identified from the parasite merozoite. The non-GST fusion recombinant DHFR enzyme revealed K(m) values of 4.70 +/- 0.059 (mean +/- standard error of the mean) and 9.75 +/- 1.64 microM for dihydrofolic acid (DHF) and NADPH, respectively. Methotrexate was a more-potent inhibitor of the enzymatic activity (50% inhibition concentration [IC(50)] = 68.6 +/- 5.20 nM) than pyrimethamine (IC(50) = 55.0 +/- 2.08 microM) and trimethoprim (IC(50) = 50 +/- 12.5 microM). Moreover, the antifolates' inhibitory effects on DHFR enzyme activity paralleled their inhibition of the parasite growth in vitro, indicating that the B. gibsoni DHFR could be a model for studying antifolate compounds as potential drug candidates. Therefore, the B. gibsoni DHFR-TS is a molecular antifolate drug target.
Collapse
|
49
|
Matjila PT, Leisewitz AL, Oosthuizen MC, Jongejan F, Penzhorn BL. Detection of a Theileria species in dogs in South Africa. Vet Parasitol 2008; 157:34-40. [PMID: 18687528 DOI: 10.1016/j.vetpar.2008.06.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 06/19/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
Abstract
A Theileria species was detected by PCR in blood samples collected from dogs in the Pietermaritzburg area and was also found in dogs presented at the Outpatients Clinic of the Onderstepoort Veterinary Academic Hospital (OVAH), in the Pretoria area, South Africa. In the Pietermaritzburg area, 79 of the 192 samples were positive, while 3 out of 1137 of the Onderstepoort samples were positive. Three positive samples from Pietermaritzburg were co-infected with Ehrlichia canis. PCR positive samples were further analysed by the Reverse Line Blot (RLB) and sequence analysis. Phylogenetic analysis of the 18S rRNA full-length gene sequences of one sample (VT12) from Pietermaritzburg and two samples from OVAH (BC281 and BC295) revealed a close relationship with sequences of Theileria species (sable). Clinical signs of the dogs that were examined at Pietermaritzburg and OVAH included an immune-mediated condition with severe thrombocytopenia. These findings identify a Theileria sp. in dogs for the first time in South Africa and add yet another microorganism to the growing list of haemoprotozoan parasites infecting dogs worldwide. The clinical significance of this infection in dogs is poorly resolved.
Collapse
Affiliation(s)
- P T Matjila
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag x04, Onderstepoort 0110, South Africa.
| | | | | | | | | |
Collapse
|
50
|
INOKUMA H, NAGATA M, HOSOI E, ITAMOTO K, OKUDA M. Divergence of p33/34 Gene of Theileria Found in Cervus nippon in Japan. J Vet Med Sci 2008; 70:401-5. [DOI: 10.1292/jvms.70.401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Miwa NAGATA
- Faculty of Agriculture, Yamaguchi University
| | - Eiji HOSOI
- Faculty of Agriculture, Yamaguchi University
| | | | | |
Collapse
|