1
|
Kim HJ, Han B, Lee HI, Ju JW, Shin HI. Current Status of Trypanosoma grosi and Babesia microti in Small Mammals in the Republic of Korea. Animals (Basel) 2024; 14:989. [PMID: 38612228 PMCID: PMC11010837 DOI: 10.3390/ani14070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Small mammals, such as rodents and shrews, are natural reservoir hosts of zoonotic diseases, including parasitic protozoa. To assess the risk of rodent-borne parasitic protozoa in the Republic of Korea (ROK), this study investigated the status of parasitic protozoa, namely Trypanosoma, Babesia, and Theileria, in small mammals. In total, 331 blood samples from small mammals were analyzed for parasites using PCR and sequenced. Samples were positive for Trypanosoma grosi (23.9%; n = 79) and Babesia microti (10%; n = 33) but not Theileria. Small mammals from Seogwipo-si showed the highest infection rate of T. grosi (48.4%), while the highest B. microti infection rate was observed in those from Gangneung-si (25.6%). Sequence data revealed T. grosi to be of the AKHA strain. Phylogenetic analysis of B. microti revealed the US and Kobe genotypes. B. microti US-type-infected small mammals were detected throughout the country, but the Kobe type was only detected in Seogwipo-si. To our knowledge, this is the first nationwide survey that confirmed T. grosi and B. microti infections at the species level in small mammals in the ROK and identified the Kobe type of B. microti. These results provide valuable information for further molecular epidemiological studies on these parasites.
Collapse
Affiliation(s)
| | | | | | | | - Hyun-Il Shin
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaenmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju 28159, Republic of Korea; (H.J.K.); (B.H.); (H.-I.L.); (J.-W.J.)
| |
Collapse
|
2
|
Votýpka J, Stříbrná E, Modrý D, Bryja J, Bryjová A, Lukeš J. Unexpectedly high diversity of trypanosomes in small sub-saharan mammals. Int J Parasitol 2022; 52:647-658. [PMID: 35882298 DOI: 10.1016/j.ijpara.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
The extremely species-rich genus Trypanosoma has recently been divided into 16 subgenera, most of which show fairly high host specificity, including the subgenus Herpetosoma parasitizing mainly rodents. Although most Herpetosoma spp. are highly host-specific, the best-known representative, Trypanosoma lewisi, has a cosmopolitan distribution and low host specificity. The present study investigates the general diversity of small mammal trypanosomes in East and Central Africa and the penetration of invasive T. lewisi into communities of native rodents. An extensive study of blood and tissue samples from Afrotropical micromammals (1,528 rodents, 135 shrews, and five sengis belonging to 37 genera and 133 species) captured in the Central African Republic, Ethiopia, Kenya, Malawi, Mozambique, Tanzania, and Zambia revealed 187 (11.2%) trypanosome-positive individuals. The prevalence of trypanosomes in host genera ranged from 2.1% in Aethomys to 37.1% in Lemniscomys. The only previously known trypanosome detected in our dataset was T. lewisi, newly found in Ethiopia, Kenya, and Tanzania in a wide range of native rodent hosts. Besides T. lewisi, 18S rRNA sequencing revealed 48 additional unique Herpetosoma genotypes representing at least 15 putative new species, which doubles the known sequence-based diversity of this subgenus, and approaches the true species richness in the study area. The other two genotypes represent two new species belonging to the subgenera Ornithotrypanum and Squamatrypanum. The trypanosomes of white-toothed shrews (Crocidura spp.) form a new phylogroup of Herpetosoma, unrelated to flagellates previously detected in insectivores. With 13 documented species, Ethiopia was the richest region for trypanosome diversity, which corresponds to the very diverse environments and generally high biodiversity of this country. We conclude that besides T. lewisi, the subgenus Herpetosoma is highly host-specific (e.g., species parasitizing the rodent genera Acomys and Gerbilliscus). Furthermore, several newly detected trypanosome species are specific to their endemic hosts, such as brush-furred mice (Lophuromys), dormice (Graphiurus), and white-toothed shrews (Crocidura).
Collapse
Affiliation(s)
- Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Eva Stříbrná
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - David Modrý
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic; Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | - Josef Bryja
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Anna Bryjová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
3
|
Rosyadi I, Setsuda A, Eliakunda M, Takano A, Maeda K, Saito-Ito A, Suzuki K, Sato H. Genetic diversity of cervid Trypanosoma theileri in Honshu sika deer ( Cervus nippon) in Japan. Parasitology 2021; 148:1636-1647. [PMID: 34311794 PMCID: PMC11010218 DOI: 10.1017/s0031182021001360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/07/2022]
Abstract
The taxonomy of ruminant Trypanosoma theileri and its relatives (Kinetoplastida: Trypanosomatidae) is controversial, with recent phylogenetic studies segregating T. theileri in cattle and other ruminants worldwide into two major genetic lineages (the TthI and TthII clades) based on genetic markers. In the present study, T. theileri-like trypanosomes isolated from Honshu sika deer (Cervus nippon) in the western Japan (YMG isolate) were genetically characterized using a number of genetic markers. Sika deer trypanosomes of the YMG isolate were genetically different from the Trypanosoma sp. TSD1 isolate previously recorded from Hokkaido sika deer in northern Japan, with the former trypanosome isolate being genetically closer to European cervid trypanosomes and the bovine T. theileri TthII lineage. In contrast, the latter isolate exhibited greater relatedness to North American cervid trypanosomes and the bovine T. theileri TthI lineage, although a clear genetic distinction between these was apparent. Furthermore, trypanosomes in Honshu sika deer from the central part of Japan harboured additional genetic diversity and were closer to either TSD1 or YMG isolates, while distinct from known T. theileri-related genotypes. Importantly, cervids and wild ruminants worldwide might harbour divergent descendants of a T. theileri ancestor, which exhibit rigid host specificity to either bovines or cervid species.
Collapse
Affiliation(s)
- Imron Rosyadi
- Laboratory of Parasitology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
| | - Aogu Setsuda
- Department of Pathological and Preventive Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
| | - Mafie Eliakunda
- Department of Pathological and Preventive Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
| | - Ai Takano
- Department of Pathological and Preventive Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
- Division of Pathogenic Microorganisms, Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
| | - Ken Maeda
- Department of Pathological and Preventive Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
- Division of Pathogenic Microorganisms, Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
| | - Atsuko Saito-Ito
- Section of Microbiology, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo650-8530, Japan
| | - Kazuo Suzuki
- Hikiiwa Park Center, 1629 Inari-cho, Tanabe, Wakayama646-0051, Japan
| | - Hiroshi Sato
- Laboratory of Parasitology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
- Department of Pathological and Preventive Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
- Division of Pathogenic Microorganisms, Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
| |
Collapse
|
4
|
Goodrich I, McKee C, Kosoy M. Trypanosoma (Herpetosoma) diversity in rodents and lagomorphs of New Mexico with a focus on epizootological aspects of infection in Southern Plains woodrats (Neotoma micropus). PLoS One 2020; 15:e0244803. [PMID: 33382847 PMCID: PMC7775056 DOI: 10.1371/journal.pone.0244803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Protozoan parasites of the genus Trypanosoma infect a broad diversity of vertebrates and several species cause significant illness in humans. However, understanding of the phylogenetic diversity, host associations, and infection dynamics of Trypanosoma species in naturally infected animals is incomplete. This study investigated the presence of Trypanosoma spp. in wild rodents and lagomorphs in northern New Mexico, United States, as well as phylogenetic relationships among these parasites. A total of 458 samples from 13 rodent and one lagomorph species collected between November 2002 and July 2004 were tested by nested PCR targeting the 18S ribosomal RNA gene (18S rRNA). Trypanosoma DNA was detected in 25.1% of all samples, with the highest rates of 50% in Sylvilagus audubonii, 33.1% in Neotoma micropus, and 32% in Peromyscus leucopus. Phylogenetic analysis of Trypanosoma sequences revealed five haplotypes within the subgenus Herpetosoma (T. lewisi clade). Focused analysis on the large number of samples from N. micropus showed that Trypanosoma infection varied by age class and that the same Trypanosoma haplotype could be detected in recaptured individuals over multiple months. This is the first report of Trypanosoma infections in Dipodomys ordii and Otospermophilus variegatus, and the first detection of a haplotype phylogenetically related to T. nabiasi in North America in S. audubonii. This study lends important new insight into the diversity of Trypanosoma species, their geographic ranges and host associations, and the dynamics of infection in natural populations.
Collapse
Affiliation(s)
- Irina Goodrich
- Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Clifton McKee
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michael Kosoy
- Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| |
Collapse
|
5
|
Mafie E, Saito-Ito A, Kasai M, Hatta M, Rivera PT, Ma XH, Chen ER, Sato H, Takada N. Integrative taxonomic approach of trypanosomes in the blood of rodents and soricids in Asian countries, with the description of three new species. Parasitol Res 2019; 118:97-109. [PMID: 30353232 DOI: 10.1007/s00436-018-6120-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/15/2018] [Indexed: 11/26/2022]
Abstract
Trypanosoma lewisi (Kinetoplastea: Trypanosomatida: Trypanosomatidae) with a cosmopolitan distribution is the type species of the subgenus Herpetosoma, which includes ca. 50 nominal species isolated mainly from rodents. Since members of Herpetosoma in different host species have an almost identical morphology of bloodstream forms, these trypanosomes are referred to as 'T. lewisi-like', and the molecular genetic characterization of each species is necessary to verify their taxonomy. In the present study, we collected blood samples from 89 murid rodents of 15 species and 11 soricids of four species in Indonesia, Philippines, Vietnam, Taiwan, and mainland China for the detection of hemoprotozoan infection. T. lewisi and T. lewisi-like trypanosomes were found in the blood smears of 10 murid animals, which included Bandicota indica (two rats), Rattus argentiventer (one rat), and Rattus tiomanicus (two rats) in Indonesia; Rattus rattus (one rat) in the Philippines; and Niviventer confucianus (four rats) in mainland China. Furthermore, large- or medium-sized non-T. lewisi-like trypanosomes were detected in two soricids, Crocidura dracula in Vietnam and Anourosorex yamashinai in Taiwan, respectively. Molecular genetic characterization of the small subunit (SSU) ribosomal RNA gene (rDNA) and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) gene indicated that the trypanosomes from all the murid hosts had identical SSU rDNA or gGAPDH gene nucleotide sequences except for those in N. confucianus in mainland China. These N. confucianus-infecting trypanosomes also showed several unique morphological features such as smaller bodies, anteriorly positioned nuclei, and larger rod-shaped kinetoplasts when compared with T. lewisi trypomastigotes. Trypanosoma (Herpetosoma) niviventerae n. sp. is erected for this new species. Similarly, based on morphological and molecular genetic characterization, Trypanosoma sapaensis n. sp. and Trypanosoma anourosoricis n. sp. are proposed for the trypanosomes in C. dracula in Vietnam and A. yamashinai in Taiwan, respectively. More effort directed toward the morphological and molecular genetic characterization of the trypanosomes of rodents and soricids is required to fully understand the real biodiversity of their hemoflagellates.
Collapse
Affiliation(s)
- Eliakunda Mafie
- Laboratory of Parasitology, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Atsuko Saito-Ito
- Section of Parasitology, Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
- Section of Microbiology, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo, 650-8530, Japan
| | - Masatoshi Kasai
- Section of Parasitology, Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Mochammad Hatta
- Department of Medical Microbiology, Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Pilarita T Rivera
- Department of Parasitology, College of Public Health, University of the Philippines Manila, 625 Pedro Gil Street, 1000, Manila, Philippines
| | - Xiao-Hang Ma
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Eng-Rin Chen
- Department of Parasitology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, Taiwan
| | - Hiroshi Sato
- Laboratory of Parasitology, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
- Faculty of Veterinary Medicine, Airlangga University, Campus C, Mulyorejo, Surabaya, 60115, Indonesia.
| | - Nobuhiro Takada
- Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| |
Collapse
|
6
|
Mafie E, Rupa FH, Takano A, Suzuki K, Maeda K, Sato H. First record of Trypanosoma dionisii of the T. cruzi clade from the Eastern bent-winged bat (Miniopterus fuliginosus) in the Far East. Parasitol Res 2018; 117:673-680. [DOI: 10.1007/s00436-017-5717-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/11/2017] [Indexed: 01/25/2023]
|
7
|
Diagnosis and genetic analysis of the worldwide distributed Rattus-borne Trypanosoma (Herpetosoma) lewisi and its allied species in blood and fleas of rodents. INFECTION GENETICS AND EVOLUTION 2017; 63:380-390. [PMID: 28882517 DOI: 10.1016/j.meegid.2017.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 02/01/2023]
Abstract
Trypanosoma (Herpetosoma) lewisi is a cosmopolitan parasite of rodents strongly linked to the human dispersal of Rattus spp. from Asia to the rest of the world. This species is highly phylogenetically related to trypanosomes from other rodents (T. lewisi-like), and sporadically infects other mammals. T. lewisi may opportunistically infect humans, and has been considered an emergent rat-borne zoonosis associated to poverty. We developed the THeCATL-PCR based on Cathepsin L (CATL) sequences to specifically detect T. (Herpetosoma) spp., and assess their genetic diversity. This method exhibited high sensitivity using blood samples, and is the first molecular method employed to search for T. lewisi in its flea vectors. THeCATL-PCR surveys using simple DNA preparation from blood preserved in ethanol or filter paper detected T. lewisi in Rattus spp. from human dwellings in South America (Brazil and Venezuela), East Africa (Mozambique), and Southeast Asia (Thailand, Cambodia and Lao PDR). In addition, native rodents captured in anthropogenic and nearby human settlements in natural habitats harbored T. (Herpetosoma) spp. PCR-amplified CATL gene fragments (253bp) distinguish T. lewisi and T. lewisi-like from other trypanosomes, and allow for assessment of genetic diversity and relationships among T. (Herpetosoma) spp. Our molecular surveys corroborated worldwide high prevalence of T. lewisi, incriminating Mastomys natalensis as an important carrier of this species in Africa, and supported its spillover from invader Rattus spp. to native rodents in Brazil and Mozambique. THeCATL-PCR provided new insights on the accurate diagnosis and genetic repertoire of T. (Herpetosoma) spp. in rodent and non-rodent hosts, revealing a novel species of this subgenus in an African gerbil. Phylogenetic analysis based on CATL sequences from T. (Herpetosoma) spp. and other trypanosomes (amplified using pan-trypanosome primers) uncovered rodents harboring, beyond mammal trypanosomes of different subgenera, some species that clustered in the lizard-snake clade of trypanosomes.
Collapse
|
8
|
Wen YZ, Lun ZR, Zhu XQ, Hide G, Lai DH. Further evidence from SSCP and ITS DNA sequencing support Trypanosoma evansi and Trypanosoma equiperdum as subspecies or even strains of Trypanosoma brucei. INFECTION GENETICS AND EVOLUTION 2016; 41:56-62. [PMID: 27016375 DOI: 10.1016/j.meegid.2016.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
The subgenus Trypanozoon includes three species Trypanosoma brucei, Trypanosoma evansi and Trypanosoma equiperdum, which are morphologically identical and indistinguishable even using some molecular methods. In this study, PCR-based single strand conformation polymorphism (PCR-SSCP) was used to analyze the ribosomal DNA of the Trypanozoon species. Data indicate different patterns of ITS2 fragments between T. brucei, T. evansi and T. equiperdum by SSCP. Furthermore, analysis of total ITS sequences within these three members of the subgenus Trypanozoon showed a high degree of homology using phylogenetic analysis but were polyphyletic in haplotype networks. These data provide novel nuclear evidence to further support the notion that T. evansi and T. equiperdum should be subspecies or even strains of T. brucei.
Collapse
Affiliation(s)
- Yan-Zi Wen
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; Ecosystems & Environment Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK; Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Geoff Hide
- Ecosystems & Environment Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK; Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
9
|
Charles RA, Kjos S, Ellis AE, Barnes JC, Yabsley MJ. Southern plains woodrats (Neotoma micropus) from southern Texas are important reservoirs of two genotypes of Trypanosoma cruzi and host of a putative novel Trypanosoma species. Vector Borne Zoonotic Dis 2013; 13:22-30. [PMID: 23127189 PMCID: PMC3540927 DOI: 10.1089/vbz.2011.0817] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas' disease, is an important public health and veterinary pathogen. Although human cases are rare in the United States, infections in wildlife, and in some areas domestic dogs, are common. In 2008 and 2010, we investigated T. cruzi prevalence in possible vertebrate reservoirs in southern Texas, with an emphasis on southern plains woodrats (Neotoma micropus). Infection status was determined using a combination of culture isolation, polymerase chain reaction (PCR), and serologic testing. Based on PCR and/or culture, T. cruzi was detected in 35 of 104 (34%) woodrats, 3 of 4 (75%) striped skunks (Mephitis mephitis), 12 of 20 (60%) raccoons (Procyon lotor), and 5 of 28 (18%) other rodents including a hispid cotton rat (Sigmodon hispidus), rock squirrel (Otospermophilus variegatus), black rat (Rattus rattus), and two house mice (Mus musculus). Additionally, another Trypanosoma species was detected in 41 woodrats, of which 27 were co-infected with T. cruzi. Genetic characterization of T. cruzi revealed that raccoon, rock squirrel, and cotton rat isolates were genotype TcIV, while woodrats and skunks were infected with TcI and TcIV. Based on the Chagas Stat-Pak assay, antibodies were detected in 27 woodrats (26%), 13 raccoons (65%), 4 skunks (100%), and 5 other rodents (18%) (two white-ankled mice [Peromyscus pectoralis laceianus], two house mice, and a rock squirrel). Seroprevalence based on indirect immunofluorescence antibody testing was higher for both woodrats (37%) and raccoons (90%), compared with the Chagas Stat-Pak. This is the first report of T. cruzi in a hispid cotton rat, black rat, rock squirrel, and white-ankled mouse. These data indicate that based on culture and PCR testing, the prevalence of T. cruzi in woodrats is comparable with other common reservoirs (i.e., raccoons and opossums) in the United States. However, unlike raccoons and opossums, which tend to be infected with a particular genotype, southern plains woodrats were infected with TcI and TcIV at near equal frequencies.
Collapse
Affiliation(s)
- Roxanne A. Charles
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, Georgia
| | - Sonia Kjos
- Marshfield Clinic Research Foundation, Marshfield, Wisconsin
| | - Angela E. Ellis
- Athens Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - John C. Barnes
- Southwest Texas Veterinary Medical Center, Uvalde, Texas
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, Athens, Georgia
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia
| |
Collapse
|
10
|
Tang HJ, Lan YG, Wen YZ, Zhang XC, Desquesnes M, Yang TB, Hide G, Lun ZR. Detection of Trypanosoma lewisi from wild rats in Southern China and its genetic diversity based on the ITS1 and ITS2 sequences. INFECTION GENETICS AND EVOLUTION 2012; 12:1046-51. [DOI: 10.1016/j.meegid.2012.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 11/12/2022]
|
11
|
Guan G, Niu Q, Yang J, Li Y, Gao J, Luo J, Yin H. Trypanosoma (Herpetosoma) grosi: first isolation from Chinese striped field mouse (Apodemus agrarius). Parasitol Int 2010; 60:101-4. [PMID: 21059401 DOI: 10.1016/j.parint.2010.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 10/18/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
Abstract
A "lewisi-like" Trypanosoma parasite was isolated from the blood of Chinese striped field mice (Apodemus agrarius) trapped in the fields in the Gannan Tibet area, Gansu province, China. The parasite was successfully cultivated in vitro in HL-1 medium supplemented 20% fetal bovine serum (FBS). Full formed spheromastigote, metacyclic trypomastigote and trypomastigote structures were all visible in films made from the culture. A nucleotide fragment of 2159-bp length was amplified from genomic DNA of the parasite using specific primers for the 18S rRNA gene of trypanosomes. The alignment indicated that this parasite had higher identities with T. (Herpetosoma) grosi (more than 99.6%) than other Herpetosoma species (less than 98.5%), which suggest that the parasite should be classified as T. (Herpetosoma) grosi. This is the first time in China that an isolation of T. (Herpetosoma) grosi is reported although several strains of T. (Herpetosoma) lewisi have been isolated from rodents of family Muridae in various provinces. Thus, it was designated as T. (Herpetosoma) grosi Cha1 and deposited in the center of parasite strain collection and preservation in our laboratory for future study. In addition, this culture method will be used to isolate, maintain and study the long-term development of this parasite in vitro.
Collapse
Affiliation(s)
- Guiquan Guan
- Key Laboratory of Veterinary Parasitology in Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, PR China
| | | | | | | | | | | | | |
Collapse
|
12
|
Maia da Silva F, Marcili A, Ortiz PA, Epiphanio S, Campaner M, Catão-Dias JL, Shaw JJ, Camargo EP, Teixeira MMG. Phylogenetic, morphological and behavioural analyses support host switching of Trypanosoma (Herpetosoma) lewisi from domestic rats to primates. INFECTION GENETICS AND EVOLUTION 2010; 10:522-9. [PMID: 20156599 DOI: 10.1016/j.meegid.2010.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/03/2010] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
Abstract
We characterized four Brazilian trypanosomes isolated from domestic rats and three from captive non-human primates that were morphologically similar to T. lewisi, a considered non-pathogenic species restricted to rodents and transmitted by fleas, despite its potential pathogenicity for infants. These isolates were identified as T. lewisi by barcoding using V7V8 SSU rDNA sequences. In inferred phylogenetic trees, all isolates clustered tightly with reference T. lewisi and T. lewisi-like trypanosomes from Europe, Asia and Africa and despite their high sequence conservation formed a homogeneous clade separate from other species of the subgenus T. (Herpetosoma). With the aim of clearly resolving the relationships between the Brazilian isolates from domestic rats and primates, we compared sequences from more polymorphic ITS rDNA. Results corroborated that isolates from Brazilian rats and monkeys were indeed of the same species and quite close to T. lewisi isolates of humans and rats from different geographical regions. Morphology of the monkey isolates and their behaviour in culture and in experimentally infected rats were also compatible with T. lewisi. However, infection with T. lewisi is rare among monkeys. We have examined more than 200 free-ranging and 160 captive monkeys and found only three infected individuals among the monkeys held in captivity. The findings of this work suggest that proximity of monkeys and infected rats and their exposure to infected fleas may be responsible for the host switching of T. lewisi from their natural rodent species to primates. This and previous studies reporting T. lewisi in humans suggest that this trypanosome can cause sporadic and opportunistic flea-borne infection in primates.
Collapse
Affiliation(s)
- F Maia da Silva
- Departamento de Parasitologia, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sato H, Takano A, Kawabata H, Une Y, Watanabe H, Mukhtar MM. Trypanosoma cf. varani in an imported ball python (Python reginus) from Ghana. J Parasitol 2010; 95:1029-33. [PMID: 20050011 DOI: 10.1645/ge-1816.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Peripheral blood from a ball python (Python reginus) imported from Ghana was cultured in Barbour-Stoenner-Kelly (BSK) medium for Borrelia spp. isolation, resulting in the prominent appearance of free, and clusters of, trypanosomes in a variety of morphological forms. The molecular phylogenetic characterization of these cultured trypanosomes, using the small subunit rDNA, indicated that this python was infected with a species closely related to Trypanosoma varani Wenyon, 1908, originally described in the Nile monitor lizard (Varanus niloticus) from Sudan. Furthermore, nucleotide sequences of glycosomal glyceraldehyde-3-phosphate dehydrogenase gene of both isolates showed few differences. Giemsa-stained blood smears, prepared from the infected python 8 mo after the initial observation of trypanosomes in hemoculture, contained trypomastigotes with a broad body and a short, free flagellum; these most closely resembled the original description of T. varani, or T. voltariae Macfie, 1919 recorded in a black-necked spitting cobra (Naja nigricollis) from Ghana. It is highly possible that lizards and snakes could naturally share an identical trypanosome species. Alternatively, lizards and snakes in the same region might have closely related, but distinct, Trypanosoma species as a result of sympatric speciation. From multiple viewpoints, including molecular phylogenetic analyses, reappraisal of trypanosome species from a wide range of reptiles in Africa is needed to clarify the relationship of recorded species, or to unmask unrecorded species.
Collapse
Affiliation(s)
- Hiroshi Sato
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Sato H, Leo N, Katakai Y, Takano JI, Akari H, Nakamura SI, Une Y. Prevalence and molecular phylogenetic characterization of Trypanosoma (Megatrypanum) minasense in the peripheral blood of small neotropical primates after a quarantine period. J Parasitol 2009; 94:1128-38. [PMID: 18576832 DOI: 10.1645/ge-1513.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 02/27/2008] [Indexed: 11/10/2022] Open
Abstract
Neotropical primates of the Cebidae and Callitrichidae, in their natural habitats, are frequently infected with a variety of trypanosomes including Trypanosoma cruzi, which causes a serious zoonosis, Chagas' disease. The state of trypanosome infection after a 30-day quarantine period was assessed in 85 squirrel monkeys (Saimiri sciureus) and 15 red-handed tamarins (Saguinus midas), that were wild-caught and exported to Japan as companion animals or laboratory animals, for biomedical research, respectively. In addition to many microfilariae of Mansonella (Tetrapetalonema) mariae at a prevalence of 25.9%, and Dipetalonema caudispina at a prevalence of 3.5%, a few trypomastigotes of Trypanosoma (Megatrypanum) minasense were detected in Giemsa-stained thin films of blood from 20 squirrel monkeys at a prevalence of 23.5%. Although few T. minasense trypomastigotes were found in Giemsa-stained blood films from tamarins, a buffy-coat examination detected trypanosomes in 12 red-handed tamarins (80.0%), and PCR amplification of a highly variable region of the small subunit ribosomal RNA genes (SSU rDNA) for Trypanosoma spp. detected the infection in 14 of the 15 tamarins (93.3%). Nucleotide sequences of the amplicons were identical for trypanosomes from tamarins and squirrel monkeys, indicating a high prevalence but low parasitemia of T. minasense in imported Neotropical nonhuman primates. Based on the SSU rDNA and 5.8S rDNA, the molecular phylogenetic characterization of T. minasense indicated that T. minasense is closely related to trypanosomes with Trypanosoma theileri-like morphology and is distinct from Trypanosoma (Tejeraia) rangeli, as well as from T. cruzi. Using some blood samples from these monkeys, amplification and subsequent sequencing of the glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) gene fragments detected 4 trypanosome genotypes, including 2 types of T. cruzi clade, 1 type of T. rangeli clade, and 1 T. rangeli-related type, but failed to indicate its phylogenetic position based on the gGAPDH gene. Furthermore, species ordinarily classified in the Megatrypanum by morphological criteria do not form a clade in any molecular phylogenetic trees based on rDNA or gGAPDH genes.
Collapse
Affiliation(s)
- Hiroshi Sato
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Sukmee T, Siripattanapipong S, Mungthin M, Worapong J, Rangsin R, Samung Y, Kongkaew W, Bumrungsana K, Chanachai K, Apiwathanasorn C, Rujirojindakul P, Wattanasri S, Ungchusak K, Leelayoova S. A suspected new species of Leishmania, the causative agent of visceral leishmaniasis in a Thai patient. Int J Parasitol 2008; 38:617-22. [DOI: 10.1016/j.ijpara.2007.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 12/28/2007] [Indexed: 10/22/2022]
|
16
|
Young ND, Crosbie PBB, Adams MB, Nowak BF, Morrison RN. Neoparamoeba perurans n. sp., an agent of amoebic gill disease of Atlantic salmon (Salmo salar). Int J Parasitol 2007; 37:1469-81. [PMID: 17561022 DOI: 10.1016/j.ijpara.2007.04.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/23/2007] [Accepted: 04/26/2007] [Indexed: 11/21/2022]
Abstract
Amoebic gill disease (AGD) is a potentially fatal disease of some marine fish. Two amphizoic amoebae Neoparamoeba pemaquidensis and Neoparamoeba branchiphila have been cultured from AGD-affected fish, yet it is not known if one or both are aetiological agents. Here, we PCR amplified the 18S rRNA gene of non-cultured, gill-derived (NCGD) amoebae from AGD-affected Atlantic salmon (Salmo salar) using N. pemaquidensis and N. branchiphila-specific oligonucleotides. Variability in PCR amplification led to comparisons of 18S rRNA and 28S rRNA gene sequences from NCGD and clonal cultured, gill-derived (CCGD) N. pemaquidensis and N. branchiphila. Phylogenetic analyses inferred from either 18S or 28S rRNA gene sequences unambiguously segregated a lineage consisting of NCGD amoebae from other members of the genus Neoparamoeba. Species-specific oligonucleotide probes that hybridise 18S rRNA were designed, validated and used to probe gill tissue from AGD-affected Atlantic salmon. The NCGD amoebae-specific probe bound AGD-associated amoebae while neither N. pemaquidensis nor N. branchiphila were associated with AGD-lesions. Together, these data indicate that NCGD amoebae are a new species, designated Neoparamoeba perurans n.sp. and this is the predominant aetiological agent of AGD of Atlantic salmon cultured in Tasmania, Australia.
Collapse
Affiliation(s)
- N D Young
- School of Aquaculture, Aquafin CRC, University of Tasmania, Locked Bag 1370, Launceston, Tasmania, Australia.
| | | | | | | | | |
Collapse
|
17
|
Patterns of co-evolution between trypanosomes and their hosts deduced from ribosomal RNA and protein-coding gene phylogenies. Mol Phylogenet Evol 2007; 44:15-25. [PMID: 17513135 DOI: 10.1016/j.ympev.2007.03.023] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 11/17/2022]
Abstract
Trypanosomes (genus Trypanosoma) are widespread blood parasites of vertebrates, usually transmitted by arthropod or leech vectors. Most trypanosomes have lifecycles that alternate between a vertebrate host, where they exist in the bloodstream, and an invertebrate host, where they develop in the alimentary tract. This raises the question of whether one type of host has had greater influence on the evolution of the genus. Working from the generally accepted view that trypanosomes are monophyletic, here we examine relationships between trypanosomes using phylogenies based on the genes for the small subunit ribosomal RNA (SSU rRNA) and the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH). New analysis of a combined dataset of both these genes provides strong support for many known clades of trypanosomes. It also resolves the deepest split within the genus between the Aquatic clade, which mainly contains trypanosomes of aquatic and amphibious vertebrates, and a clade of trypanosomes from terrestrial vertebrates. There is also strengthened support for two deep clades, one comprising a wide selection of mammalian trypanosomes and a tsetse fly-transmitted reptilian trypanosome, and the other combining two bird trypanosome subclades. Considering the vertebrate and invertebrate hosts of each clade, it is apparent that co-speciation played little role in trypanosome evolution. However most clades are associated with a type of vertebrate or invertebrate host, or both, indicating that 'host fitting' has been the principal mechanism for evolution of trypanosomes.
Collapse
|
18
|
Sato H, Al-Adhami BH, Une Y, Kamiya H. Trypanosoma (Herpetosoma) kuseli sp. n. (Protozoa: Kinetoplastida) in Siberian flying squirrels (Pteromys volans). Parasitol Res 2007; 101:453-61. [PMID: 17334786 DOI: 10.1007/s00436-007-0504-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 02/15/2007] [Indexed: 10/23/2022]
Abstract
All trypanosome species classified in the subgenus Herpetosoma in sciurid hosts have been recorded from ground and tree squirrels to date, but not from any flying squirrels. We describe in this paper a novel trypanosome species, Trypanosoma (Herpetosoma) kuseli sp. n., from Siberian flying squirrels (Pteromys volans) imported from China, and compare it with T. (H.) otospermophili in Richardson's ground squirrels (Spermophilus richardsonii) and Columbian ground squirrels (Spermophilus columbianus) from the USA. Due to a short free flagellum, the new species appeared stumpy compared with T. otospermophili (length of free flagellum 7.0 +/- 0.8 microm, total length 32.1 +/- 0.8 microm, n = 13 and length of free flagellum 15.5 +/- 1.6 microm, total length 35.9 +/- 1.0 microm, n = 13, respectively). Another conspicuous morphological feature of the new species was an anteriorly positioned kinetoplast, found approximately at the midpoint between the nucleus and the posterior end. These characters have not been recorded from any squirrel Herpetosoma trypanosome species. Comparison of the nucleotide sequences of the small and large subunit rRNA genes indicated that T. kuseli sp. n. was more homologous to T. otospermophili than murid Herpetosoma species, such as T. grosi, T. lewisi, T. musculi, T. microti and T. evotomys.
Collapse
Affiliation(s)
- H Sato
- Faculty of Agriculture, Laboratory of Veterinary Parasitology, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| | | | | | | |
Collapse
|