1
|
Faltýnková A, Kudlai O, Pantoja C, Jouet D, Skírnisson K. Prey-mimetism in cercariae of Apatemon (Digenea, Strigeidae) in freshwater in northern latitudes. Parasitol Res 2023; 122:815-831. [PMID: 36670312 DOI: 10.1007/s00436-023-07779-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/08/2023] [Indexed: 01/22/2023]
Abstract
Cercariae, the free-living larval stages of trematodes, have adopted an amazing variety of transmission strategies. One of them is prey-mimetism, i.e. cercariae mimicking prey to attract motile hosts to be eaten. In a period between 2002 and 2019, we examined small planorbid snails, Bathyomphalus contortus, Gyraulus parvus and Planorbis planorbis from lakes in Finland and Iceland and from the Curonian Lagoon in Lithuania. Cercariae with conspicuously enlarged tails and unusual swimming behaviour, likely mimicking invertebrate prey, were detected and studied by the use of morphological and molecular (cox1, ITS1-5.8S-ITS2 and 28S rDNA) methods. Cercariae of two species belonging to the genus Apatemon (Strigeidae) were recognised. We consider Apatemon sp. 5 ex P. planorbis from the Curonian Lagoon identical to Cercaria globocaudata U. Szidat, 1940. Cercariae ex G. parvus from Iceland and ex B. contortus from Finland were conspecific, and we named them Apatemon sp. 6; these cercariae could not be associated with any known species. For the first time, we verified that cercariae of the Bulbocauda group belong to the genus Apatemon. We provide a mini-review on records of furcocercariae of the family Strigeidae with enlarged tails reported in freshwaters of the northern hemisphere and reveal that it is not only Apatemon but also Australapatemon and most likely Strigea which belong to the Bulbocauda group, rendering it a purely ecological assemblage. Understanding which invertebrate swimming behaviour these cercariae are mimicking will enhance our knowledge of the processes behind trematode transmission and will help to assess evolutionary pathways of host-finding strategies in trematodes.
Collapse
Affiliation(s)
- Anna Faltýnková
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno, 613 00, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Olena Kudlai
- Institute of Ecology, Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania.
| | - Camila Pantoja
- Institute of Ecology, Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Damien Jouet
- BioSpecT EA7506, Faculty of Pharmacy, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096, Reims Cedex, France
| | - Karl Skírnisson
- Laboratory of Parasitology, Institute for Experimental Pathology, Keldur, University of Iceland, IS-112, Reykjavík, Iceland
| |
Collapse
|
2
|
Heneberg P, Sitko J. Cryptic speciation among Tylodelphys spp.: the major helminth pathogens of fish and amphibians. Parasitol Res 2021; 120:1687-1697. [PMID: 33655349 DOI: 10.1007/s00436-021-07082-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
Larvae of Tylodelphys Diesing, 1950 are major digenean pathogens of fish and amphibians. Tylodelphys spp. may induce mass mortality of fish and increase their susceptibility to predation. Even though Tylodelphys spp. cause substantial damage to aquaculture systems, surprisingly little is known regarding the taxonomy of this commercially important genus with a limited number of visible autapomorphic identification features. The authors obtained the DNA sequences and analyzed the molecular phylogenetics of Tylodelphys spp. adults isolated from bird hosts of Czech origin and provide comparative measurements of the analyzed species. They identified a previously unknown species complex that is subject to cryptic speciation and was previously morphologically identified as Tylodelphys excavata (Rudolphi, 1803) sensu lato. This species complex consists of three morphologically similar but genetically well-separated species. Tylodelphys excavata sensu stricto remains the dominant Tylodelphys isolated from Ciconia ciconia, which also serves as a satellite host of Tylodelphys circibuteonis Odening, 1962, which is the resurrected species for which birds of prey serve as core hosts. The authors describe Tylodelphys nigriciconis sp. n. Heneberg & Sitko as a new species identified in Ciconia nigra. By providing the first sequences of Tylodelphys podicipina Kozicka and Niewiadomska, 1960, they also show that Tylodelphys immer Dubois, 1961 is a junior synonym of T. podicipina. Further research is needed to match the provided molecular data with the DNA of larval Tylodelphys from outbreaks in commercially exploited fish species.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University, Prague, Czechia.
| | - Jiljí Sitko
- Moravian Ornithological Station, Comenius Museum, Přerov, Czechia
| |
Collapse
|
3
|
Grecias L, Hebert FO, Alves VA, Barber I, Aubin-Horth N. Host behaviour alteration by its parasite: from brain gene expression to functional test. Proc Biol Sci 2020; 287:20202252. [PMID: 33171082 PMCID: PMC7735270 DOI: 10.1098/rspb.2020.2252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Many parasites with complex life cycles modify their intermediate hosts' behaviour, presumably to increase transmission to their final host. The threespine stickleback (Gasterosteus aculeatus) is an intermediate host in the cestode Schistocephalus solidus life cycle, which ends in an avian host, and shows increased risky behaviours when infected. We studied brain gene expression profiles of sticklebacks infected with S. solidus to determine the proximal causes of these behavioural alterations. We show that infected fish have altered expression levels in genes involved in the inositol pathway. We thus tested the functional implication of this pathway and successfully rescued normal behaviours in infected sticklebacks using lithium exposure. We also show that exposed but uninfected fish have a distinct gene expression profile from both infected fish and control individuals, allowing us to separate gene activity related to parasite exposure from consequences of a successful infection. Finally, we find that selective serotonin reuptake inhibitor-treated sticklebacks and infected fish do not have similarly altered gene expression, despite their comparable behaviours, suggesting that the serotonin pathway is probably not the main driver of phenotypic changes in infected sticklebacks. Taken together, our results allow us to predict that if S. solidus directly manipulates its host, it could target the inositol pathway.
Collapse
Affiliation(s)
- Lucie Grecias
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Francois Olivier Hebert
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Verônica Angelica Alves
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Iain Barber
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, UK
| | - Nadia Aubin-Horth
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| |
Collapse
|
4
|
Ubels JL, DeJong RJ, Hoolsema B, Wurzberger A, Nguyen TT, Blankespoor HD, Blankespoor CL. Impairment of retinal function in yellow perch (Perca flavescens) by Diplostomum baeri metacercariae. Int J Parasitol Parasites Wildl 2018; 7:171-179. [PMID: 29988865 PMCID: PMC6032499 DOI: 10.1016/j.ijppaw.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 01/27/2023]
Abstract
Histologic studies of fish from Douglas Lake, Cheboygan County, Michigan, USA show that Diplostomum spp. infect the lens of spottail shiners (Notropis hudsonius) and common shiners (Luxilus cornutus). In contrast, infection was confined to the choroidal vasculature of yellow perch (Perca flavescens), and the morphology of the pigment epithelium and retina in regions adjacent to the metacercariae was abnormal. The difference in location of metacercariae within the host suggested that different Diplostomum species may infect shiners and perch in Douglas Lake. Species diversity was investigated by sequencing the barcode region of the cytochrome oxidase I gene of metacercariae. Four species of Diplostomum were identified, all four of which were present in shiner lenses; however, only Diplostomum baeri was present in the perch choroid. To determine whether infection of perch eyes affects the response of the retina to a light stimulus, electroretinograms (ERG) were recorded. The amplitude of the b-wave of the ERG was reduced and the b-wave latency was increased in infected perch, as compared to uninfected eyes, and the flicker-fusion frequency was also reduced. Infection of the yellow perch choroid by Diplostomum baeri, which shows strong host and tissue specificity, has an adverse effect on retinal function, lending support to the hypothesis that parasite-induced impairment of host vision may afford Diplostomum baeri the evolutionary benefit of increasing the likelihood of transmission, via host fish predation, to its definitive avian host.
Collapse
Affiliation(s)
- John L. Ubels
- Department of Biology, Calvin College, Grand Rapids, MI, USA
- University of Michigan Biological Station, Pellston, MI, USA
| | | | | | - Amy Wurzberger
- Department of Biology, Calvin College, Grand Rapids, MI, USA
| | | | - Harvey D. Blankespoor
- University of Michigan Biological Station, Pellston, MI, USA
- Department of Biology, Hope College, Holland, MI, USA
- Swimmer's Itch Solutions, LLC, Adrian, MI, USA
| | - Curtis L. Blankespoor
- University of Michigan Biological Station, Pellston, MI, USA
- Swimmer's Itch Solutions, LLC, Adrian, MI, USA
- Jackson College, Jackson, MI, USA
| |
Collapse
|
5
|
Rahn AK, Vitt S, Drolshagen L, Scharsack JP, Rick IP, Bakker TCM. Parasitic infection of the eye lens affects shoaling preferences in three-spined stickleback. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Parasitism, personality and cognition in fish. Behav Processes 2017; 141:205-219. [DOI: 10.1016/j.beproc.2016.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022]
|
7
|
Consequences of eye fluke infection on anti-predator behaviours in invasive round gobies in Kalmar Sound. Parasitol Res 2017; 116:1653-1663. [PMID: 28386680 PMCID: PMC5429365 DOI: 10.1007/s00436-017-5439-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/28/2017] [Indexed: 11/02/2022]
Abstract
Larvae of the eye fluke, Diplostomum, emerge from snails and infect fish by penetrating skin or gills, then move to the lens where they may impair the vision of the fish. For the fluke to reproduce, a bird must eat the infected fish, and it has been suggested that they therefore actively manipulate the fish's behaviour to increase the risk of predation. We found that round gobies Neogobius melanostomus, a species that was recently introduced to the Kalmar Sound of the Baltic Sea, had an eye fluke prevalence of 90-100%. We investigated how the infection related to behavioural variation in round gobies. Our results showed that the more intense the parasite-induced cataract, the weaker the host's response was to simulated avian attack. The eye flukes did not impair other potentially important anti-predator behaviours, such as shelter use, boldness and the preference for shade. Our results are in accordance with the suggestion that parasites induce changes in host behaviour that will facilitate transfer to their final host.
Collapse
|
8
|
Gopko M, Mikheev VN, Taskinen J. Deterioration of basic components of the anti-predator behavior in fish harboring eye fluke larvae. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2300-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Grécias L, Hébert FO, Berger CS, Barber I, Aubin-Horth N. Can the behaviour of threespine stickleback parasitized with Schistocephalus solidus be replicated by manipulating host physiology? J Exp Biol 2016; 220:237-246. [DOI: 10.1242/jeb.151456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/23/2016] [Indexed: 12/25/2022]
Abstract
Sticklebacks infected by the parasitic flatworm Schistocephalus solidus show dramatic changes in phenotype, including a loss of species-typical behavioural responses to predators. The timing of host behaviour change coincides with the development of infectivity of the parasite to the final host (a piscivorous bird), making it an ideal model for studying the mechanisms of infection-induced behavioural modification. However, whether the loss of host anti-predator behaviour results from direct manipulation by the parasite, or is a by-product (e.g. host immune response) or side-effect of infection (e.g. energetic loss), remains controversial. To understand the physiological mechanisms that generate these behavioural changes, we quantified the behavioural profiles of experimentally infected fish and attempted to replicate these in non-parasitized fish by exposing them to treatments including immunity activation and fasting, or by pharmacologically inhibiting the stress axis. All fish were screened for the following behaviours: activity, water depth preference, sociability, phototaxis, anti-predator response and latency to feed. We were able to change individual behaviours with certain treatments. Our results suggest that the impact of S. solidus on the stickleback might be of a multifactorial nature. The behaviour changes observed in infected fish may be due to the combined effects of modifying the serotonergic axis, the lack of energy, and the activation of the immune system.
Collapse
Affiliation(s)
- Lucie Grécias
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - François-Olivier Hébert
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - Chloé Suzanne Berger
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - Iain Barber
- Department of Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
| | - Nadia Aubin-Horth
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| |
Collapse
|
10
|
Host Manipulation by Parasites: A Look Back Before Moving Forward. Trends Parasitol 2015; 31:563-570. [DOI: 10.1016/j.pt.2015.07.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 01/12/2023]
|
11
|
Chibwana FD, Nkwengulila G, Locke SA, McLaughlin JD, Marcogliese DJ. Completion of the life cycle of Tylodelphys mashonense (Sudarikov, 1971) (Digenea: Diplostomidae) with DNA barcodes and rDNA sequences. Parasitol Res 2015; 114:3675-82. [DOI: 10.1007/s00436-015-4595-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
12
|
Grobbelaar A, van As LL, van As JG, Butler HJB. Pathology of eyes and brain of fish infected with diplostomids, southern Africa. AFRICAN ZOOLOGY 2015. [DOI: 10.1080/15627020.2015.1055701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Shaw JC, Øverli Ø. Brain-encysting trematodes and altered monoamine activity in naturally infected killifish Fundulus parvipinnis. JOURNAL OF FISH BIOLOGY 2012; 81:2213-2222. [PMID: 23252735 DOI: 10.1111/j.1095-8649.2012.03439.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This paper presents novel evidence to address mechanisms by which trematode parasites effect behavioural changes in naturally infected fish hosts. California killifish Fundulus parvipinnis infected with the brain-encysting trematode Euhaplorchis californiensis display conspicuous swimming behaviours that render them 30 times more likely to be eaten by birds, the parasite's final host. Prevalence of E. californiensis reaches nearly 100% in most F. parvipinnis populations, with parasite biomass constituting almost 2% of F. parvipinnis biomass in some locations. Despite having thousands of cysts on their brains, infected fish grow and mature at rates comparable to those of uninfected populations. The lack of general pathology combined with the specificity of the altered behaviours suggests that the behavioural changes are due to parasite manipulation. The monoamine neurotransmitters serotonin and dopamine, which control locomotion and social behaviour in fishes and other vertebrates, were examined to explore the underlying mechanisms of this behaviour modification. Whereas previous studies were similarly conducted with experimentally infected fish, in this study, brain dopaminergic and serotonergic activity were analysed in naturally infected fish to assess how E. californiensis may alter F. parvipinnis monoamines in a naturally occurring system. A parasite density-associated decrease in serotonergic activity occurred in the hippocampus of naturally infected fish, as well as a decrease in dopaminergic activity in the raphe nuclei, suggesting that E. californiensis inhibits serotonin and dopamine signaling in naturally infected F. parvipinnis. The neurochemical profile of infected fish is consistent with the hypothesis that E. californiensis affects brain monoaminergic systems in order to induce impulse-driven, active, and aggressive behaviour in its hosts.
Collapse
Affiliation(s)
- J C Shaw
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-6150, USA.
| | | |
Collapse
|
14
|
LOCKE SEANA, DANIEL MCLAUGHLIN J, MARCOGLIESE DAVIDJ. DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater fishes in the St. Lawrence River, Canada. Mol Ecol 2010; 19:2813-27. [DOI: 10.1111/j.1365-294x.2010.04713.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Locke SA, McLaughlin JD, Dayanandan S, Marcogliese DJ. Diversity and specificity in Diplostomum spp. metacercariae in freshwater fishes revealed by cytochrome c oxidase I and internal transcribed spacer sequences. Int J Parasitol 2010; 40:333-43. [DOI: 10.1016/j.ijpara.2009.08.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 11/28/2022]
|
16
|
A manipulative parasite increasing an antipredator response decreases its vulnerability to a nonhost predator. Anim Behav 2009. [DOI: 10.1016/j.anbehav.2009.01.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Manipulative parasites in the world of veterinary science: implications for epidemiology and pathology. Vet J 2009; 184:9-13. [PMID: 19243982 DOI: 10.1016/j.tvjl.2009.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/18/2008] [Accepted: 01/24/2009] [Indexed: 11/20/2022]
Abstract
One of the most complex and least understood transmission strategies displayed by pathogenic parasites is that of manipulation of host behaviour. A wide variety of parasites alter their host's behaviour, including species of medical and veterinary importance, such as Diplostomum spathaceum, Echinococcus spp. and Toxoplasma gondii. The manipulative ability of these parasites has implications for pathology and transmission dynamics. Domestic animals are hosts for manipulative pathogens, either by being the target host and acquiring the parasite as a result of vector-host manipulation, or by having their behaviour changed by manipulative parasites. This review uses several well-known pathogens to demonstrate how host manipulation by parasites is potentially important in epidemiology.
Collapse
|
18
|
Sitjà-Bobadilla A. Living off a fish: a trade-off between parasites and the immune system. FISH & SHELLFISH IMMUNOLOGY 2008; 25:358-372. [PMID: 18722790 DOI: 10.1016/j.fsi.2008.03.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 03/14/2008] [Accepted: 03/27/2008] [Indexed: 05/26/2023]
Abstract
Research in fish immune system and parasite invasion mechanisms has advanced the knowledge of the mechanisms whereby parasites evade or cope with fish immune response. The main mechanisms of immune evasion employed by fish parasites are reviewed and considered under ten headings. 1) Parasite isolation: parasites develop in immuno-privileged host tissues, such as brain, gonads, or eyes, where host barriers prevent or limit the immune response. 2) Host isolation: the host cellular immune response isolates and encapsulates the parasites in a dormant stage without killing them. 3) Intracellular disguise: typical of intracellular microsporidians, coccidians and some myxosporeans. 4) Parasite migration, behavioural and environmental strategies: parasites migrate to host sites the immune response has not yet reached or where it is not strong enough to kill them, or they accommodate their life cycles to the season or the age in which the host immune system is down-regulated. 5) Antigen-based strategies such as mimicry or masking, variation and sharing of parasite antigens. 6) Anti-immune mechanisms: these allow parasites to resist innate humoral factors, to neutralize host antibodies or to scavenge reactive oxygen species within macrophages. 7) Immunodepression: parasites either suppress the fish immune systems by reducing the proliferative capacity of lymphocytes or the phagocytic activity of macrophages, or they induce apoptosis of host leucocytes. 8) Immunomodulation: parasites secrete or excrete substances which modulate the secretion of host immune factors, such as cytokines, to their own benefit. 9) Fast development: parasites proliferate faster than the ability of the host to mount a defence response. 10) Exploitation of the host immune reaction. Knowledge of the evasion strategies adopted by parasites will help us to understand host-parasite interactions and may therefore help in the discovery of novel immunotherapeutic agents or targeted vaccines, and permit the selection of host-resistant strains.
Collapse
Affiliation(s)
- A Sitjà-Bobadilla
- Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, Torre de la Sal s/n, 12595 Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
19
|
Infection with acanthocephalans increases the vulnerability of Gammarus pulex (Crustacea, Amphipoda) to non-host invertebrate predators. Parasitology 2008; 135:627-32. [DOI: 10.1017/s003118200800423x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYPhenotypic alterations induced by parasites in their intermediate hosts often result in enhanced trophic transmission to appropriate final hosts. However, such alterations may also increase the vulnerability of intermediate hosts to predation by non-host species. We studied the influence of both infection with 3 different acanthocephalan parasites (Pomphorhynchus laevis, P. tereticollis, and Polymorphus minutus) and the availability of refuges on the susceptibility of the amphipod Gammarus pulex to predation by 2 non-host predators in microcosms. Only infection with P. laevis increased the vulnerability of amphipods to predation by crayfish, Orconectes limosus. In contrast, in the absence of refuges, the selectivity of water scorpions, Nepa cinerea, for infected prey was significant and did not differ according to parasite species. When a refuge was available for infected prey, however, water scorpion selectivity for infected prey differed between parasite species. Both P. tereticollis- and P. laevis-infected gammarids were more vulnerable than uninfected ones, whereas the reverse was true of P. minutus-infected gammarids. These results suggest that the true consequences of phenotypic changes associated with parasitic infection in terms of increased trophic transmission of parasites deserve further assessment.
Collapse
|