1
|
Culleton R, Pain A, Snounou G. Plasmodium malariae: the persisting mysteries of a persistent parasite. Trends Parasitol 2023; 39:113-125. [PMID: 36517330 DOI: 10.1016/j.pt.2022.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Plasmodium malariae is a 'neglected malaria parasite' in as much as the amount of research conducted on it pales into insignificance when compared to that pertaining to Plasmodium falciparum and Plasmodium vivax, its more notorious and pathogenic cousins. There has, however, been an increase in interest in this parasite over the past decade. Principally, this is because of the increasing use of sensitive molecular detection techniques that have revealed a wider than previously recorded prevalence in some regions (particularly in Africa), and high numbers of chronic, asymptomatic infections.
Collapse
Affiliation(s)
- Richard Culleton
- Division of Molecular Parasitology, Proteo-Science Centre, Ehime University, Matsuyama, Japan; Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Arnab Pain
- Pathogen Genomics Group, Bioscience Programme, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Kingdom of Saudi Arabia
| | - Georges Snounou
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA-HB), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France.
| |
Collapse
|
2
|
Oriero EC, Amenga-Etego L, Ishengoma DS, Amambua-Ngwa A. Plasmodium malariae, current knowledge and future research opportunities on a neglected malaria parasite species. Crit Rev Microbiol 2021; 47:44-56. [PMID: 33507842 DOI: 10.1080/1040841x.2020.1838440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasmodium malariae is often reported as a benign malaria parasite. There are limited data on its biology and disease burden in sub-Saharan Africa (sSA) possibly due to the unavailability of specific and affordable tools for routine diagnosis and large epidemiology studies. In addition, P. malariae occurs at low parasite densities and in co-infections with other species, predominately P. falciparum. The paucity of data on P. malariae infections limits the capacity to accurately determine its contribution to malaria and the effect of control interventions against P. falciparum on its prevalence. Here, we summarise the current knowledge on P. malariae epidemiology in sSA - overall prevalence ranging from 0-32%, as detected by different diagnostic methods; seroprevalence ranging from 0-56% in three countries (Mozambique, Benin and Zimbabwe), and explore the future application of next-generation sequencing technologies as a tool for enriching P. malariae genomic epidemiology. This will provide insights into important adaptive mechanisms of this neglected non-falciparum species, including antimalarial drug resistance, local and regional parasite transmission patterns and genomic signatures of selection. Improved diagnosis and genomic surveillance of non-falciparum malaria parasites in Africa would be helpful in evaluating progress towards elimination of all human Plasmodium species.
Collapse
Affiliation(s)
- Eniyou C Oriero
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at LSHTM, Fajara, The Gambia
| | - Lucas Amenga-Etego
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Deus S Ishengoma
- Tanga Research Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at LSHTM, Fajara, The Gambia
| |
Collapse
|
3
|
Selective whole genome amplification of Plasmodium malariae DNA from clinical samples reveals insights into population structure. Sci Rep 2020; 10:10832. [PMID: 32616738 PMCID: PMC7331648 DOI: 10.1038/s41598-020-67568-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/05/2020] [Indexed: 02/03/2023] Open
Abstract
The genomic diversity of Plasmodium malariae malaria parasites is understudied, partly because infected individuals tend to present with low parasite densities, leading to difficulties in obtaining sufficient parasite DNA for genome analysis. Selective whole genome amplification (SWGA) increases the relative levels of pathogen DNA in a clinical sample, but has not been adapted for P. malariae parasites. Here we design customized SWGA primers which successfully amplify P. malariae DNA extracted directly from unprocessed clinical blood samples obtained from patients with P. malariae-mono-infections from six countries, and further test the efficacy of SWGA on mixed infections with other Plasmodium spp. SWGA enables the successful whole genome sequencing of samples with low parasite density (i.e. one sample with a parasitaemia of 0.0064% resulted in 44% of the genome covered by ≥ 5 reads), leading to an average 14-fold increase in genome coverage when compared to unamplified samples. We identify a total of 868,476 genome-wide SNPs, of which 194,709 are unique across 18 high-quality isolates. After exclusion of the hypervariable subtelomeric regions, a high-quality core subset of 29,899 unique SNPs is defined. Population genetic analysis suggests that P. malariae parasites display clear geographical separation by continent. Further, SWGA successfully amplifies genetic regions of interest such as orthologs of P. falciparum drug resistance-associated loci (Pfdhfr, Pfdhps, Pfcrt, Pfk13 and Pfmdr1), and several non-synonymous SNPs were detected in these genes. In conclusion, we have established a robust SWGA approach that can assist whole genome sequencing of P. malariae, and thereby facilitate the implementation of much-needed large-scale multi-population genomic studies of this neglected malaria parasite. As demonstrated in other Plasmodia, such genetic diversity studies can provide insights into the biology underlying the disease and inform malaria surveillance and control measures.
Collapse
|
4
|
Mathema VB, Nakeesathit S, Pagornrat W, Smithuis F, White NJ, Dondorp AM, Imwong M. Polymorphic markers for identification of parasite population in Plasmodium malariae. Malar J 2020; 19:48. [PMID: 31992308 PMCID: PMC6988369 DOI: 10.1186/s12936-020-3122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 11/17/2022] Open
Abstract
Background Molecular genotyping in Plasmodium serves many aims including providing tools for studying parasite population genetics and distinguishing recrudescence from reinfection. Microsatellite typing, insertion-deletion (INDEL) and single nucleotide polymorphisms is used for genotyping, but only limited information is available for Plasmodium malariae, an important human malaria species. This study aimed to provide a set of genetic markers to facilitate the study of P. malariae population genetics. Methods Markers for microsatellite genotyping and pmmsp1 gene polymorphisms were developed and validated in symptomatic P. malariae field isolates from Myanmar (N = 37). Fragment analysis was used to determine allele sizes at each locus to calculate multiplicity of infections (MOI), linkage disequilibrium, heterozygosity and construct dendrograms. Nucleotide diversity (π), number of haplotypes, and genetic diversity (Hd) were assessed and a phylogenetic tree was constructed. Genome-wide microsatellite maps with annotated regions of newly identified markers were constructed. Results Six microsatellite markers were developed and tested in 37 P. malariae isolates which showed sufficient heterozygosity (0.530–0.922), and absence of linkage disequilibrium (IAS=0.03, p value > 0.05) (N = 37). In addition, a tandem repeat (VNTR)-based pmmsp1 INDEL polymorphisms marker was developed and assessed in 27 P. malariae isolates showing a nucleotide diversity of 0.0976, haplotype gene diversity of 0.698 and identified 14 unique variants. The size of VNTR consensus repeat unit adopted as allele was 27 base pairs. The markers Pm12_426 and pmmsp1 showed greatest diversity with heterozygosity scores of 0.920 and 0.835, respectively. Using six microsatellites markers, the likelihood that any two parasite strains would have the same microsatellite genotypes was 8.46 × 10−4 and was further reduced to 1.66 × 10−4 when pmmsp1 polymorphisms were included. Conclusions Six novel microsatellites genotyping markers and a set of pmmsp1 VNTR-based INDEL polymorphisms markers for P. malariae were developed and validated. Each marker could be independently or in combination employed to access genotyping of the parasite. The newly developed markers may serve as a useful tool for investigating parasite diversity, population genetics, molecular epidemiology and for distinguishing recrudescence from reinfection in drug efficacy studies.
Collapse
Affiliation(s)
- Vivek Bhakta Mathema
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Supatchara Nakeesathit
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watcharee Pagornrat
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Frank Smithuis
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Medical Action Myanmar, Yangon, Myanmar.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
5
|
Grande R, Antinori S, Meroni L, Menegon M, Severini C. A case of Plasmodium malariae recurrence: recrudescence or reinfection? Malar J 2019; 18:169. [PMID: 31088460 PMCID: PMC6515619 DOI: 10.1186/s12936-019-2806-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Plasmodium malariae is the most neglected of the six human malaria species and it is still unknown which is the mechanism underlying the long latency of this Plasmodium. CASE PRESENTATION A case of PCR-confirmed P. malariae recurrence in a 52-year old Italian man was observed 5 months after a primary attack. In the interval between the two observed episodes of malaria the patient denied any further stay in endemic areas except for a visit to Libya, a country considered malaria-free. Genomic DNA of the P. malariae strain using five microsatellites (PM2, PM9, PM11, PM25, PM34) and the antigen marker of circumsporozoite (csp) was amplified and sequenced. Analysis of polymorphisms of the P. malariae csp central repeat region showed differences between the strains responsible of the first and second episode of malaria. A difference in the allele size was also observed for the sequence analysis of PM2 microsatellites. CONCLUSIONS Plasmodium malariae is a challenging human malaria parasite and even with the use of molecular techniques the pathogenesis of recurrent episodes cannot be precisely explained.
Collapse
Affiliation(s)
- Romualdo Grande
- Clinical Microbiology, Virology and Bioemergency, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Spinello Antinori
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy.
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy.
| | - Luca Meroni
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Michela Menegon
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Carlo Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
6
|
Zhong D, Koepfli C, Cui L, Yan G. Molecular approaches to determine the multiplicity of Plasmodium infections. Malar J 2018; 17:172. [PMID: 29685152 PMCID: PMC5914063 DOI: 10.1186/s12936-018-2322-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Multiplicity of infection (MOI), also termed complexity of infection (COI), is defined as the number of genetically distinct parasite strains co-infecting a single host, which is an important indicator of malaria epidemiology. PCR-based genotyping often underestimates MOI. Next generation sequencing technologies provide much more accurate and genome-wide characterization of polyclonal infections. However, complete haplotype characterization of multiclonal infections remains a challenge due to PCR artifacts and sequencing errors, and requires efficient computational tools. In this review, the advantages and limitations of current molecular approaches to determine multiplicity of malaria parasite infection are discussed.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| | - Cristian Koepfli
- Program in Public Health, University of California, Irvine, CA, 92617, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| |
Collapse
|
7
|
Tannous S, Ghanem E. A bite to fight: front-line innate immune defenses against malaria parasites. Pathog Glob Health 2018; 112:1-12. [PMID: 29376476 DOI: 10.1080/20477724.2018.1429847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Malaria infection caused by Plasmodium parasites remains a major health burden worldwide especially in the tropics and subtropics. Plasmodium exhibits a complex life cycle whereby it undergoes a series of developmental stages in the Anopheles mosquito vector and the vertebrate human host. Malaria severity is mainly attributed to the genetic complexity of the parasite which is reflected in the sophisticated mechanisms of invasion and evasion that allow it to overcome the immune responses of both its invertebrate and vertebrate hosts. In this review, we aim to provide an updated, clear and concise summary of the literature focusing on the interactions of the vertebrate innate immune system with Plasmodium parasites, namely sporozoites, merozoites, and trophozoites. The roles of innate immune factors, both humoral and cellular, in anti-Plasmodium defense are described with particular emphasis on the contribution of key innate players including neutrophils, macrophages, and natural killer cells to the clearance of liver and blood stage parasites. A comprehensive understanding of the innate immune responses to malaria parasites remains an important goal that would dramatically help improve the design of original treatment strategies and vaccines, both of which are urgently needed to relieve the burden of malaria especially in endemic countries.
Collapse
Affiliation(s)
- Stephanie Tannous
- a Faculty of Natural and Applied Sciences, Department of Sciences , Notre Dame University , Louaize , Lebanon
| | - Esther Ghanem
- a Faculty of Natural and Applied Sciences, Department of Sciences , Notre Dame University , Louaize , Lebanon
| |
Collapse
|
8
|
Srisutham S, Saralamba N, Sriprawat K, Mayxay M, Smithuis F, Nosten F, Pukrittayakamee S, Day NPJ, Dondorp AM, Imwong M. Genetic diversity of three surface protein genes in Plasmodium malariae from three Asian countries. Malar J 2018; 17:24. [PMID: 29325573 PMCID: PMC5765603 DOI: 10.1186/s12936-018-2176-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/08/2018] [Indexed: 01/07/2023] Open
Abstract
Background Genetic diversity of the three important antigenic proteins, namely thrombospondin-related anonymous protein (TRAP), apical membrane antigen 1 (AMA1), and 6-cysteine protein (P48/45), all of which are found in various developmental stages of Plasmodium parasites is crucial for targeted vaccine development. While studies related to the genetic diversity of these proteins are available for Plasmodium falciparum and Plasmodium vivax, barely enough information exists regarding Plasmodium malariae. The present study aims to demonstrate the genetic variations existing among these three genes in P. malariae by analysing their diversity at nucleotide and protein levels. Methods Three surface protein genes were isolated from 45 samples collected in Thailand (N = 33), Myanmar (N = 8), and Lao PDR (N = 4), using conventional polymerase chain reaction (PCR) assay. Then, the PCR products were sequenced and analysed using BioEdit, MEGA6, and DnaSP programs. Results The average pairwise nucleotide diversities (π) of P. malariae trap, ama1, and p48/45 were 0.00169, 0.00413, and 0.00029, respectively. The haplotype diversities (Hd) of P. malariae trap, ama1, and p48/45 were 0.919, 0.946, and 0.130, respectively. Most of the nucleotide substitutions were non-synonymous, which indicated that the genetic variations of these genes were maintained by positive diversifying selection, thus, suggesting their role as a potential target of protective immune response. Amino acid substitutions of P. malariae TRAP, AMA1, and P48/45 could be categorized to 17, 20, and 2 unique amino-acid variants, respectively. For further vaccine development, carboxyl terminal of P48/45 would be a good candidate according to conserved amino acid at low genetic diversity (π = 0.2–0.3). Conclusions High mutational diversity was observed in P. malariae trap and ama1 as compared to p48/45 in P. malariae samples isolated from Thailand, Myanmar, and Lao PDR. Taken together, these results suggest that P48/45 might be a good vaccine candidate against P. malariae infection because of its sufficiently low genetic diversity and highly conserved amino acids especially on the carboxyl end. Electronic supplementary material The online version of this article (10.1186/s12936-018-2176-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suttipat Srisutham
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Naowarat Saralamba
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mae Sot, Thailand
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic.,Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Lao People's Democratic Republic.,Centre for Tropical Medicine and Global Health, Churchill Hospital, University of Oxford, Oxford, UK
| | - Frank Smithuis
- Medical Action Myanmar, Yangon, Myanmar.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7LF, UK
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7LF, UK
| | - Sasithon Pukrittayakamee
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Churchill Hospital, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Churchill Hospital, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
9
|
Lalremruata A, Jeyaraj S, Engleitner T, Joanny F, Lang A, Bélard S, Mombo-Ngoma G, Ramharter M, Kremsner PG, Mordmüller B, Held J. Species and genotype diversity of Plasmodium in malaria patients from Gabon analysed by next generation sequencing. Malar J 2017; 16:398. [PMID: 28974215 PMCID: PMC5627438 DOI: 10.1186/s12936-017-2044-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/22/2017] [Indexed: 11/22/2022] Open
Abstract
Background Six Plasmodium species are known to naturally infect humans. Mixed species infections occur regularly but morphological discrimination by microscopy is difficult and multiplicity of infection (MOI) can only be evaluated by molecular methods. This study investigated the complexity of Plasmodium infections in patients treated for microscopically detected non-falciparum or mixed species malaria in Gabon. Methods Ultra-deep sequencing of nucleus (18S rRNA), mitochondrion, and apicoplast encoded genes was used to evaluate Plasmodium species diversity and MOI in 46 symptomatic Gabonese patients with microscopically diagnosed non-falciparum or mixed species malaria. Results Deep sequencing revealed a large complexity of confections in patients with uncomplicated malaria, both on species and genotype levels. Mixed infections involved up to four parasite species (Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale curtisi, and P. ovale wallikeri). Multiple genotypes from each species were determined from the asexual 18S rRNA gene. 17 of 46 samples (37%) harboured multiple genotypes of at least one Plasmodium species. The number of genotypes per sample (MOI) was highest in P. malariae (n = 4), followed by P. ovale curtisi (n = 3), P. ovale wallikeri (n = 3), and P. falciparum (n = 2). The highest combined genotype complexity in samples that contained mixed-species infections was seven. Conclusions Ultra-deep sequencing showed an unexpected breadth of Plasmodium species and within species diversity in clinical samples. MOI of P. ovale curtisi, P. ovale wallikeri and P. malariae infections were higher than anticipated and contribute significantly to the burden of malaria in Gabon. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2044-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Albert Lalremruata
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Sankarganesh Jeyaraj
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,PSG Institute of Advanced Studies, Coimbatore, 641 004, India
| | - Thomas Engleitner
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Fanny Joanny
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Annika Lang
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Sabine Bélard
- Department of Pediatric Pneumology and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | | | - Michael Ramharter
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter G Kremsner
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany. .,German Centre for Infection Research, partner site Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| |
Collapse
|
10
|
Singh US, Siwal N, Pande V, Das A. Can Mixed Parasite Infections Thwart Targeted Malaria Elimination Program in India? BIOMED RESEARCH INTERNATIONAL 2017; 2017:2847548. [PMID: 28900620 PMCID: PMC5576395 DOI: 10.1155/2017/2847548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
Abstract
India is highly endemic to malaria with prevalence of all five species of human malaria parasites of Plasmodium genus. India is set for malaria elimination by 2030. Since cases of mixed Plasmodium species infections remain usually undetected but cause huge disease burden, in order to understand the distributional prevalence of both monospecies infections and mixed species infections in India, we collated published data on the differential infection incidences of the five different malaria parasites based on PCR diagnostic assay. About 11% of total cases were due to mixed species infection. Among several interesting observations on both single and mixed parasitic infections, incidences of Plasmodium falciparum monoinfection were found to be significantly higher than P. vivax monoinfection. Also, P. malariae seems to be emerging as a potential malaria threat in India. Putting all the facts together, it appears that the dream of achieving malaria elimination in India will not be completely successful without dealing with mixed species infection.
Collapse
Affiliation(s)
- Upasana Shyamsunder Singh
- Division of Genomic Epidemiology, ICMR-Centre for Research in Medical Entomology, No. 4, Sarojini Street, Chinna Chokkikulam, Madurai 625002, India
| | - Nisha Siwal
- Division of Genomic Epidemiology, ICMR-Centre for Research in Medical Entomology, No. 4, Sarojini Street, Chinna Chokkikulam, Madurai 625002, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital 263001, India
| | - Aparup Das
- Division of Genomic Epidemiology, ICMR-Centre for Research in Medical Entomology, No. 4, Sarojini Street, Chinna Chokkikulam, Madurai 625002, India
| |
Collapse
|
11
|
Chatterjee S, Mukhopadhyay P, Bandyopadhyay R, Dhal P, Biswal D, Bandyopadhyay PK. Molecular characterization and phylogenetic analysis of Plasmodium vivax, Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae and Plasmodium cynomolgi. J Parasit Dis 2016; 41:230-236. [PMID: 28316417 DOI: 10.1007/s12639-016-0783-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/13/2016] [Indexed: 10/21/2022] Open
Abstract
18S ribosomal RNA gene sequences of different species of Plasmodium were aligned and analyzed to determine the molecular diversity among different species of Plasmodium. AT content of P. cynomolgi, P. ovale, P. falciparum, P. vivax and P. malariae ranged from 62.30 to 63.15, 63.90 to 65.29, 66.67 to 68.40, 61.66 to 63.25 and 64.09 to 76.36 in case respectively. GC content of P. cynomolgi, P. ovale, P. falciparum, P. vivaxand P. malariae ranged from 36.85 to 37.70, 34.71 to 36.43, 31.60 to 33.27, 23.64 to 35.91 and 36.75 to 38.34 respectively. Molecular weight (Da) of P. cynomolgi, P. ovale, P. falciparum, P. vivax and P. malariae ranged from 1,160,127.00 to 1,400,332.00, 437,273.00 to 481,438.00, 668,021.00 to 685,243.00, 540,378.00 to 1,176,962.00 and 132,788.00 to 305,211.00 respectively. Relative melting temperature (Tm) of P. cynomolgi and P. ovale varied from 0.36799 to 0.36837 and 0.36712 to 0.36814 respectively. In P. falciparum and P. vivax relative Tm ranged from 0.36545 to 0.36626 and 0.36802 to 0.36866 respectively. Relative Tm of P. malariae varied from 0.36174 to 0.36790.
Collapse
Affiliation(s)
- Soumendranath Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, Burdwan University, Burdwan, West Bengal India
| | - Priyanka Mukhopadhyay
- Parasitology and Microbiology Research Laboratory, Department of Zoology, Burdwan University, Burdwan, West Bengal India
| | | | - Paltu Dhal
- Parasitology and Microbiology Research Laboratory, Department of Zoology, Burdwan University, Burdwan, West Bengal India
| | - Debraj Biswal
- Parasitology and Microbiology Research Laboratory, Department of Zoology, Burdwan University, Burdwan, West Bengal India
| | - Prabir Kumar Bandyopadhyay
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Nadia, Kalyani, West Bengal India
| |
Collapse
|
12
|
Limited Polymorphism of the Kelch Propeller Domain in Plasmodium malariae and P. ovale Isolates from Thailand. Antimicrob Agents Chemother 2016; 60:4055-62. [PMID: 27114275 PMCID: PMC4914644 DOI: 10.1128/aac.00138-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/18/2016] [Indexed: 11/20/2022] Open
Abstract
Artemisinin resistance in Plasmodium falciparum, the agent of severe malaria, is currently a major obstacle to malaria control in Southeast Asia. A gene named "kelch13" has been associated with artemisinin resistance in P. falciparum The orthologue of the kelch gene in P. vivax was identified and a small number of mutations were found in previous studies. The kelch orthologues in the other two human malaria parasites, P. malariae and P. ovale, have not yet been studied. Therefore, in this study, the orthologous kelch genes of P. malariae, P. ovale wallikeri, and P. ovale curtisi were isolated and analyzed for the first time. The homologies of the kelch genes of P. malariae and P. ovale were 84.8% and 82.7%, respectively, compared to the gene in P. falciparum kelch polymorphisms were studied in 13 P. malariae and 5 P. ovale isolates from Thailand. There were 2 nonsynonymous mutations found in these samples. One mutation was P533L, which was found in 1 of 13 P. malariae isolates, and the other was K137R, found in 1 isolate of P. ovale wallikeri (n = 4). This result needs to be considered in the context of widespread artemisinin used within the region; their functional consequences for artemisinin sensitivity in P. malariae and P. ovale will need to be elucidated.
Collapse
|
13
|
Setzer TJ. Malaria detection in the field of paleopathology: a meta-analysis of the state of the art. Acta Trop 2014; 140:97-104. [PMID: 25149357 DOI: 10.1016/j.actatropica.2014.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 08/06/2014] [Accepted: 08/09/2014] [Indexed: 01/10/2023]
Abstract
An integrative literature review was conducted to identify the current state of the art regarding malaria research in human remains and to identify novel methods to test for malaria infections in archaeological samples. This review was comprised of two surveys. The first survey established methods used currently to detect malaria in human remains from archaeological contexts. The second survey identified diagnostic approaches in the field of medicine. Techniques in medicine that could have applications with samples from archaeological contexts, such as preserved soft tissue and skeletal remains, are presented.
Collapse
|
14
|
Orjuela-Sánchez P, Brandi MC, Ferreira MU. Microsatellite analysis of malaria parasites. Methods Mol Biol 2013; 1006:247-58. [PMID: 23546796 DOI: 10.1007/978-1-62703-389-3_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microsatellites have been increasingly used to investigate the population structure of malaria parasites, to map genetic loci contributing to phenotypes such as drug resistance and virulence in laboratory crosses and genome-wide association studies and to distinguish between treatment failures and new infections in clinical trials. Here, we provide optimized protocols for genotyping highly polymorphic microsatellites sampled from across the genomes of the human malaria parasites Plasmodium falciparum and P. vivax that have been extensively used in research laboratories worldwide.
Collapse
Affiliation(s)
- Pamela Orjuela-Sánchez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
15
|
Guimarães LO, Bajay MM, Wunderlich G, Bueno MG, Röhe F, Catão-Dias JL, Neves A, Malafronte RS, Curado I, Kirchgatter K. The genetic diversity of Plasmodium malariae and Plasmodium brasilianum from human, simian and mosquito hosts in Brazil. Acta Trop 2012; 124:27-32. [PMID: 22705349 DOI: 10.1016/j.actatropica.2012.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 05/29/2012] [Accepted: 05/31/2012] [Indexed: 11/28/2022]
Abstract
Plasmodium malariae is a protozoan parasite that causes malaria in humans and is genetically indistinguishable from Plasmodium brasilianum, a parasite infecting New World monkeys in Central and South America. P. malariae has a wide and patchy global distribution in tropical and subtropical regions, being found in South America, Asia, and Africa. However, little is known regarding the genetics of these parasites and the similarity between them could be because until now there are only a very few genomic sequences available from simian Plasmodium species. This study presents the first molecular epidemiological data for P. malariae and P. brasilianum from Brazil obtained from different hosts and uses them to explore the genetic diversity in relation to geographical origin and hosts. By using microsatellite genotyping, we discovered that of the 14 human samples obtained from areas of the Atlantic forest, 5 different multilocus genotypes were recorded, while in a sample from an infected mosquito from the same region a different haplotype was found. We also analyzed the longitudinal change of circulating plasmodial genetic profile in two untreated non-symptomatic patients during a 12-months interval. The circulating genotypes in the two samples from the same patient presented nearly identical multilocus haplotypes (differing by a single locus). The more frequent haplotype persisted for almost 3 years in the human population. The allele Pm09-299 described previously as a genetic marker for South American P. malariae was not found in our samples. Of the 3 non-human primate samples from the Amazon Region, 3 different multilocus genotypes were recorded indicating a greater diversity among isolates of P. brasilianum compared to P. malariae and thus, P. malariae might in fact derive from P. brasilianum as has been proposed in recent studies. Taken together, our data show that based on the microsatellite data there is a relatively restricted polymorphism of P. malariae parasites as opposed to other geographic locations.
Collapse
Affiliation(s)
- L O Guimarães
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias/Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pettay DT, Wham DC, Pinzón JH, LaJeunesse TC. Genotypic diversity and spatial-temporal distribution of Symbiodinium clones in an abundant reef coral. Mol Ecol 2011; 20:5197-212. [PMID: 22082053 PMCID: PMC5957298 DOI: 10.1111/j.1365-294x.2011.05357.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetic data are rapidly advancing our understanding of various biological systems including the ecology and evolution of coral-algal symbioses. The fine-scale interactions between individual genotypes of host and symbiont remain largely unstudied and constitute a major gap in knowledge. By applying microsatellite markers developed for both host and symbiont, we investigated the intracolony diversity, prevalence and stability of Symbiodinium glynni (type D1) multilocus genotypes in association with dense populations of Pocillopora at two sites in the Gulf of California. The genetic diversity and allelic frequencies in reef populations of S. glynni remained stable over 3 years. Common clone genotypes persisted over this period, and no temporal population subdivision (Φ(PT) = 0.021 and -0.003) was detected. Collections from circular plots showed no statistical correlation between related Pocillopora individuals and their associations with particular S. glynni genotypes, with no spatial structuring or clonal aggregation across a reef for the symbiont. From permanent linear transects, samples were analysed from multiple locations within a colony and some were resampled approximately 1 year later. Many of these multisampled colonies (approximately 53%) were dominated by a single S. glynni genotype and tended to associate with the same symbiont genotype(s) over time, while colony ramets often possessed unrelated symbiont genotypes. In contrast to the species level, associations between genotypes of Pocillopora and S. glynni are apparently more flexible over space and time. The abundance of sexually recombinant genotypes of S. glynni combined with greater flexibility might provide adaptive mechanisms for these symbioses to evolve rapidly to changes in environmental conditions and allow particular symbiont genotypes to spread through a host population.
Collapse
Affiliation(s)
- Daniel T Pettay
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
17
|
Prevalence and implications of multiple-strain infections. THE LANCET. INFECTIOUS DISEASES 2011; 11:868-78. [DOI: 10.1016/s1473-3099(11)70241-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Bruce MC, Macheso A, McConnachie A, Molyneux ME. Comparative population structure of Plasmodium malariae and Plasmodium falciparum under different transmission settings in Malawi. Malar J 2011; 10:38. [PMID: 21314950 PMCID: PMC3050775 DOI: 10.1186/1475-2875-10-38] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 02/11/2011] [Indexed: 11/10/2022] Open
Abstract
Background Described here is the first population genetic study of Plasmodium malariae, the causative agent of quartan malaria. Although not as deadly as Plasmodium falciparum, P. malariae is more common than previously thought, and is frequently in sympatry and co-infection with P. falciparum, making its study increasingly important. This study compares the population parameters of the two species in two districts of Malawi with different malaria transmission patterns - one seasonal, one perennial - to explore the effects of transmission on population structures. Methods Six species-specific microsatellite markers were used to analyse 257 P. malariae samples and 257 P. falciparum samples matched for age, gender and village of residence. Allele sizes were scored to within 2 bp for each locus and haplotypes were constructed from dominant alleles in multiple infections. Analysis of multiplicity of infection (MOI), population differentiation, clustering of haplotypes and linkage disequilibrium was performed for both species. Regression analyses were used to determine association of MOI measurements with clinical malaria parameters. Results Multiple-genotype infections within each species were common in both districts, accounting for 86.0% of P. falciparum and 73.2% of P. malariae infections and did not differ significantly with transmission setting. Mean MOI of P. falciparum was increased under perennial transmission compared with seasonal (3.14 vs 2.59, p = 0.008) and was greater in children compared with adults. In contrast, P. malariae mean MOI was similar between transmission settings (2.12 vs 2.11) and there was no difference between children and adults. Population differentiation showed no significant differences between villages or districts for either species. There was no evidence of geographical clustering of haplotypes. Linkage disequilibrium amongst loci was found only for P. falciparum samples from the seasonal transmission setting. Conclusions The extent of similarity between P. falciparum and P. malariae population structure described by the high level of multiple infection, the lack of significant population differentiation or haplotype clustering and lack of linkage disequilibrium is surprising given the differences in the biological features of these species that suggest a reduced potential for out-crossing and transmission in P. malariae. The absence of a rise in P. malariae MOI with increased transmission or a reduction in MOI with age could be explained by differences in the duration of infection or degree of immunity compared to P. falciparum.
Collapse
Affiliation(s)
- Marian C Bruce
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Level 5, Glasgow Biomedical Research Centre, Glasgow University, 120 University Place, Glasgow, G12 8TA, UK.
| | | | | | | |
Collapse
|
19
|
Jinnai M, Kawabuchi-Kurata T, Tsuji M, Nakajima R, Hirata H, Fujisawa K, Shiraki H, Asakawa M, Nasuno T, Ishihara C. Molecular evidence of the multiple genotype infection of a wild Hokkaido brown bear (Ursus arctos yesoensis) by Babesia sp. UR1. Vet Parasitol 2010; 173:128-33. [DOI: 10.1016/j.vetpar.2010.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/19/2010] [Accepted: 06/21/2010] [Indexed: 11/24/2022]
|
20
|
Vardo-Zalik AM. Clonal diversity of a malaria parasite, Plasmodium mexicanum, and its transmission success from its vertebrate-to-insect host. Int J Parasitol 2009; 39:1573-9. [PMID: 19523471 DOI: 10.1016/j.ijpara.2009.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/13/2009] [Accepted: 05/15/2009] [Indexed: 11/18/2022]
Abstract
Infections of the lizard malaria parasite Plasmodium mexicanum are often genetically complex within their fence lizard host (Sceloporus occidentalis) harbouring two or more clones of parasite. The role of clonal diversity in transmission success was studied for P. mexicanum by feeding its sandfly vectors (Lutzomyia vexator and Lutzomyia stewarti) on experimentally infected lizards. Experimental infections consisted of one, two, three or more clones, assessed using three microsatellite markers. After 5days, vectors were dissected to assess infection status, oocyst burden and genetic composition of the oocysts. A high proportion (92%) of sandflies became infected and carried high oocyst burdens (mean of 56 oocysts) with no influence of clonal diversity on these two measures of transmission success. Gametocytemia was positively correlated with transmission success and the more common vector (L. vexator) developed more oocysts on midguts. A high proportion ( approximately 74%) of all alleles detected in the lizard blood was found in infected vectors. The relative proportion of clones within mixed infections, determined by peak heights on pherograms produced by the genetic analyser instrument, was very similar for the lizard's blood and infections in the vectors. These results demonstrate that P. mexicanum achieves high transmission success, with most clones making the transition from vertebrate-to-insect host, and thus explains in part the high genetic diversity of the parasite among all hosts at the study site.
Collapse
Affiliation(s)
- A M Vardo-Zalik
- Program in Public Health, College of Health Sciences, University of California at Irvine, Room 3501 Hewitt Hall, Irvine, CA 92697-4050, USA.
| |
Collapse
|
21
|
Vardo-Zalik AM, Schall JJ. Clonal diversity alters the infection dynamics of a malaria parasite (Plasmodium mexicanum) in its vertebrate host. Ecology 2009; 90:529-36. [PMID: 19323236 DOI: 10.1890/07-1866.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ecological and evolutionary theory predicts that genetic diversity of microparasites within infected hosts will influence the parasite replication rate, parasitemia, transmission strategy, and virulence. We manipulated clonal diversity (number of genotypes) of the malaria parasite, Plasmodium mexicanum, in its natural lizard host and measured important features of the infection dynamics, the first such study for any natural Plasmodium-host association. Hosts harboring either a single P. mexicanum clone or various combinations of clones (scored via three microsatellite markers) were established. Production of asexually replicating stages (meronts) and maximal meront parasitemia did not differ by clonal diversity, nor did timing of first production of transmission stages (gametocytes). However, mean rate of gametocyte increase and maximal gametocyte parasitemia were greater for hosts with mixed-clone infections. Characteristics of infections were more variable in hosts with mixed-clone infections than with single-clone infections except for first production of gametocytes. One or more of the parasite reproductive traits were extreme in 20 of 52 hosts with mixed-clone infections. This was not associated with specific clones, but diversity itself. The overall pattern from studies of clonal diversity for human, rodent, and now reptile malaria parasites confirms that the genetic diversity of infections in the vertebrate host is of central importance for the ecology of Plasmodium.
Collapse
Affiliation(s)
- Anne M Vardo-Zalik
- Department of Biology, University of Vermont, Burlington, Vermont 05405, USA.
| | | |
Collapse
|
22
|
Vardo-Zalik AM, Ford AF, Schall JJ. Detecting number of clones, and their relative abundance, of a malaria parasite (Plasmodium mexicanum) infecting its vertebrate host. Parasitol Res 2009; 105:209-15. [PMID: 19277713 DOI: 10.1007/s00436-009-1385-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
Abstract
Microsatellites, short tandem repeats of nucleotides in the genome, are useful markers to detect clonal diversity within Plasmodium infections. However, accuracy in determining number of clones and their relative proportions based on standard genetic analyzer instruments is poorly known. DNA extracted from lizards infected with a malaria parasite, Plasmodium mexicanum, provided template to genotype the parasite based on three microsatellite markers. Replicate genotyping of the same natural infections demonstrated strong repeatability of data from the instrument. Mixing DNA extracted from several infected lizards simulated mixed-clone infections with known clonal diversity and relative proportions of clones (N = 56 simulations). The instrument readily detected at least four alleles (clones), even when DNA concentrations among clones differed up to tenfold, but alleles of similar size can be missed because they fall within the "stutter" artifact, and rarely does an allele fail to be detected. For simulations of infections that changed their relative proportions over time, changes in relative peak heights on the instrument output closely followed the known changes in relative proportions. Such data are useful for a broad range of studies on the ecology of malaria parasites.
Collapse
|
23
|
Clonal diversity within infections and the virulence of a malaria parasite, Plasmodium mexicanum. Parasitology 2008; 135:1363-72. [PMID: 18937882 DOI: 10.1017/s0031182008004964] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Both verbal and mathematical models of parasite virulence predict that genetic diversity of microparasite infections will influence the level of costs suffered by the host. We tested this idea by manipulating the number of co-existing clones of Plasmodium mexicanum in its natural vertebrate host, the fence lizard Sceloporus occidentalis. We established replicate infections of P. mexicanum made up of 1, 2, 3, or >3 clones (scored using 3 microsatellite loci) to observe the influence of clone number on several measures of parasite virulence. Clonal diversity did not affect body growth or production of immature erythrocytes. Blood haemoglobin concentration was highest for the most genetically complex infections (equal to that of non-infected lizards), and blood glucose levels and rate of blood clotting was highest for the most diverse infections (with greater glucose and more rapid clotting than non-infected animals). Neither specific clones nor parasitaemia were associated with virulence. In this first experiment that manipulated the clonal diversity of a natural Plasmodium-host system, the cost of infection with 1 or 2 clones of P. mexicanum was similar to that previously reported for infected lizards, but the most complex infections had either no cost or could be beneficial for the host.
Collapse
|
24
|
Arez AP, do Rosário VE. The relevance of molecular markers in the analysis of malaria parasite populations. Transbound Emerg Dis 2008; 55:226-32. [PMID: 18666966 DOI: 10.1111/j.1865-1682.2008.01025.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malaria is one of the main human public health problems in the tropical world and is possibly becoming an emerging disease too in regions where it has been controlled. It has been an excellent model in the area of molecular studies, with scientific validation of techniques, application of data mainly in studies of parasite diversity and information on a number of different aspects associated with infection and disease. The transfer of the gathered knowledge and experience in malaria to other infections is of great use and we briefly review a number of molecular markers, methodologies and techniques mostly used for Plasmodium detection, as well as identification or characterization of parasite populations. Selection of appropriate techniques depends on the questions raised and the studies' objectives--the antigen-coding genes, microsatellite loci and drug-resistance associated markers being the three most analysed classes of markers. The need of validation and standardization of laboratory protocols is addressed and discussed as it may determine the comparison of data between different studies and laboratories, with relevance in field-collected samples or studies.
Collapse
Affiliation(s)
- A P Arez
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Rua da Junqueira, 96, 1349-008 Lisbon, Portugal.
| | | |
Collapse
|
25
|
Bruce MC, Macheso A, Kelly-Hope LA, Nkhoma S, McConnachie A, Molyneux ME. Effect of transmission setting and mixed species infections on clinical measures of malaria in Malawi. PLoS One 2008; 3:e2775. [PMID: 18648666 PMCID: PMC2467490 DOI: 10.1371/journal.pone.0002775] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 06/20/2008] [Indexed: 12/05/2022] Open
Abstract
Background In malaria endemic regions people are commonly infected with multiple species of malaria parasites but the clinical impact of these Plasmodium co-infections is unclear. Differences in transmission seasonality and transmission intensity between endemic regions have been suggested as important factors in determining the effect of multiple species co-infections. Principal Findings In order to investigate the impact of multiple-species infections on clinical measures of malaria we carried out a cross-sectional community survey in Malawi, in 2002. We collected clinical and parasitological data from 2918 participants aged >6 months, and applied a questionnaire to measure malaria morbidity. We examined the effect of transmission seasonality and intensity on fever, history of fever, haemoglobin concentration ([Hb]) and parasite density, by comparing three regions: perennial transmission (PT), high intensity seasonal transmission (HIST) and low intensity seasonal transmission (LIST). These regions were defined using multi-level modelling of PCR prevalence data and spatial and geo-climatic measures. The three Plasmodium species (P. falciparum, P. malariae and P. ovale) were randomly distributed amongst all children but not adults in the LIST and PT regions. Mean parasite density in children was lower in the HIST compared with the other two regions. Mixed species infections had lower mean parasite density compared with single species infections in the PT region. Fever rates were similar between transmission regions and were unaffected by mixed species infections. A history of fever was associated with single species infections but only in the HIST region. Reduced mean [Hb] and increased anaemia was associated with perennial transmission compared to seasonal transmission. Children with mixed species infections had higher [Hb] in the HIST region. Conclusions Our study suggests that the interaction of Plasmodium co-infecting species can have protective effects against some clinical outcomes of malaria but that this is dependent on the seasonality and intensity of malaria transmission.
Collapse
Affiliation(s)
- Marian C Bruce
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, Glasgow University, Glasgow, United Kingdom.
| | | | | | | | | | | |
Collapse
|
26
|
Vardo AM, Schall JJ. Clonal diversity of a lizard malaria parasite, Plasmodium mexicanum, in its vertebrate host, the western fence lizard: role of variation in transmission intensity over time and space. Mol Ecol 2007; 16:2712-20. [PMID: 17594442 DOI: 10.1111/j.1365-294x.2007.03355.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Within the vertebrate host, infections of a malaria parasite (Plasmodium) could include a single genotype of cells (single-clone infections) or two to several genotypes (multiclone infections). Clonal diversity of infection plays an important role in the biology of the parasite, including its life history, virulence, and transmission. We determined the clonal diversity of Plasmodium mexicanum, a lizard malaria parasite at a study region in northern California, using variable microsatellite markers, the first such study for any malaria parasite of lizards or birds (the most common hosts for Plasmodium species). Multiclonal infections are common (50-88% of infections among samples), and measures of genetic diversity for the metapopulation (expected heterozygosity, number of alleles per locus, allele length variation, and effective population size) all indicated a substantial overall genetic diversity. Comparing years with high prevalence (1996-1998 = 25-32% lizards infected), and years with low prevalence (2001-2005 = 6-12%) found fewer alleles in samples taken from the low-prevalence years, but no reduction in overall diversity (H = 0.64-0.90 among loci). In most cases, rare alleles appeared to be lost as prevalence declined. For sites chronically experiencing low transmission intensity (prevalence approximately 1%), overall diversity was also high (H = 0.79-0.91), but there were fewer multiclonal infections. Theory predicts an apparent excess in expected heterozygosity follows a genetic bottleneck. Evidence for such a distortion in genetic diversity was observed after the drop in parasite prevalence under the infinite alleles mutation model but not for the stepwise mutation model. The results are similar to those reported for the human malaria parasite, Plasmodium falciparum, worldwide, and support the conclusion that malaria parasites maintain high genetic diversity in host populations despite the potential for loss in alleles during the transmission cycle or during periods/locations when transmission intensity is low.
Collapse
Affiliation(s)
- A M Vardo
- Department of Biology, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|