1
|
Neuroprotective Treatments for Digestive Forms of Chagas Disease in Experimental Models: A Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9397290. [PMID: 36199427 PMCID: PMC9527410 DOI: 10.1155/2022/9397290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/12/2022] [Indexed: 12/09/2022]
Abstract
Chagas disease is an anthropozoonosis caused by the protozoan Trypanosoma cruzi and is characterized as a neglected disease. It is currently endemic in 21 countries on the Latin American continent, including Bolivia, Argentina, and Paraguay. Unfortunately, there are no optimally effective treatments that can reduce the damage caused in the digestive form of the disease, such as the neuronal destruction of the myenteric plexus of both the esophagus and the colon. Therefore, the objective of this systematic review was to report the possible pharmacological neuroprotective agents that were tested in murine models of the digestive form of Chagas disease. Inclusion criteria are in vivo experimental studies that used different murine models for digestive forms of Chagas disease related to pharmacological interventions with neuroprotective potential, without year and language restriction. On the other hand, the exclusion criteria were studies that did not approach murine models with the digestive form of the disease or did not use neuroprotective treatments, among others. The search in the PubMed, Web of Science, Embase, and LILACS databases was performed on September 4, 2021. In addition, a manual search was performed using the references of the included articles. The risk of bias assessment of the studies was performed based on the SYRCLE tool guidelines, and the data from the selected articles are presented in this review as a narrative description and in tables. Eight articles were included, 4 of which addressed treatment with acetylsalicylic acid, 3 with cyclophosphamide, and 1 with Lycopodium clavatum 13c. In view of the results of the studies, most of them show neuroprotective activity of the treatments, with the potential to reduce the number of damaged neurons, as well as positive changes in the structure of these cells. However, more studies are needed to understand the mechanisms triggered by each drug, as well as their safety and immunogenicity. Systematic review registration is as follows: PROSPERO database (CRD42022289746).
Collapse
|
2
|
The Colombian Strain of Trypanosoma cruzi Induces a Proinflammatory Profile, Neuronal Death, and Collagen Deposition in the Intestine of C57BL/6 Mice Both during the Acute and Early Chronic Phase. Mediators Inflamm 2022; 2022:7641357. [PMID: 35069009 PMCID: PMC8769873 DOI: 10.1155/2022/7641357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to evaluate the histopathological changes caused by infection with the Colombian strain of Trypanosoma cruzi (T. cruzi) in the acute and chronic experimental phases. C57Bl/6 mice were infected with 1000 trypomastigote forms of the Colombian strain of T. cruzi. After 30 days (acute phase) and 90 days (early chronic phase) of infection, the animals were euthanized, and the colon was collected and divided into two parts: proximal and distal. The distal portion was used for histopathological analysis, whereas the proximal portion was used for quantification of pro- and anti-inflammatory cytokines. In addition, the weight of the animals and parasitemia were assessed. The infection induced gradual weight loss in the animals. In addition, the infection induced an increase in interferon gamma (IFNγ) and tumor necrosis factor-alpha (TNF-α) in the intestine in the acute phase, in which this increase continued until the early chronic phase. The same was observed in relation to the presence of intestinal inflammatory infiltrates. In relation to interleukin (IL)-10, there was an increase only in the early chronic phase. The Colombian strain infection was also able to induce neuronal loss in the myenteric plexus and deposition of the collagen fibers during the acute phase. The Colombian strain of T. cruzi is capable of causing histopathological changes in the intestine of infected mice, especially in inducing neuronal destructions. Thus, this strain can also be used to study the intestinal form of Chagas disease in experimental models.
Collapse
|
3
|
do Carmo Neto JR, Braga YLL, da Costa AWF, Lucio FH, do Nascimento TC, dos Reis MA, Celes MRN, de Oliveira FA, Machado JR, da Silva MV. Biomarkers and Their Possible Functions in the Intestinal Microenvironment of Chagasic Megacolon: An Overview of the (Neuro)inflammatory Process. J Immunol Res 2021; 2021:6668739. [PMID: 33928170 PMCID: PMC8049798 DOI: 10.1155/2021/6668739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
The association between inflammatory processes and intestinal neuronal destruction during the progression of Chagasic megacolon is well established. However, many other components play essential roles, both in the long-term progression and control of the clinical status of patients infected with Trypanosoma cruzi. Components such as neuronal subpopulations, enteric glial cells, mast cells and their proteases, and homeostasis-related proteins from several organic systems (serotonin and galectins) are differentially involved in the progression of Chagasic megacolon. This review is aimed at revealing the characteristics of the intestinal microenvironment found in Chagasic megacolon by using different types of already used biomarkers. Information regarding these components may provide new therapeutic alternatives and improve the understanding of the association between T. cruzi infection and immune, endocrine, and neurological system changes.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arthur Wilson Florêncio da Costa
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fernanda Hélia Lucio
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thais Cardoso do Nascimento
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marlene Antônia dos Reis
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Mara Rubia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Flávia Aparecida de Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
4
|
do Carmo Neto JR, Vinicius da Silva M, Braga YLL, Florencio da Costa AW, Fonseca SG, Nagib PRA, Nunes Celes MR, Oliveira MAP, Machado JR. Correlation between intestinal BMP2, IFNγ, and neural death in experimental infection with Trypanosoma cruzi. PLoS One 2021; 16:e0246692. [PMID: 33561140 PMCID: PMC7872263 DOI: 10.1371/journal.pone.0246692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Megacolon is one of the main late complications of Chagas disease, affecting approximately 10% of symptomatic patients. However, studies are needed to understand the mechanisms involved in the progression of this condition. During infection by Trypanosoma cruzi (T. cruzi), an inflammatory profile sets in that is involved in neural death, and this destruction is known to be essential for megacolon progression. One of the proteins related to the maintenance of intestinal neurons is the type 2 bone morphogenetic protein (BMP2). Intestinal BMP2 homeostasis is directly involved in the maintenance of organ function. Thus, the aim of this study was to correlate the production of intestinal BMP2 with immunopathological changes in C57Bl/6 mice infected with the T. cruzi Y strain in the acute and chronic phases. The mice were infected with 1000 blood trypomastigote forms. After euthanasia, the colon was collected, divided into two fragments, and a half was used for histological analysis and the other half for BMP2, IFNγ, TNF-α, and IL-10 quantification. The infection induced increased intestinal IFNγ and BMP2 production during the acute phase as well as an increase in the inflammatory infiltrate. In contrast, a decreased number of neurons in the myenteric plexus were observed during this phase. Collagen deposition increased gradually throughout the infection, as demonstrated in the chronic phase. Additionally, a BMP2 increase during the acute phase was positively correlated with intestinal IFNγ. In the same analyzed period, BMP2 and IFNγ showed negative correlations with the number of neurons in the myenteric plexus. As the first report of BMP2 alteration after infection by T. cruzi, we suggest that this imbalance is not only related to neuronal damage but may also represent a new route for maintaining the intestinal proinflammatory profile during the acute phase.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Arthur Wilson Florencio da Costa
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Simone Gonçalves Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Patricia Resende Alô Nagib
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Mara Rúbia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Milton Adriano Pelli Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
5
|
Bertoldo BB, Etchebehere RM, Furtado TCDS, Faria JBD, Silva CB, Araújo MFD, Rodrigues DBR, Pereira SADL. Lingual salivary gland hypertrophy and decreased acinar density in chagasic patients without megaesophagus. Rev Inst Med Trop Sao Paulo 2019; 61:e67. [PMID: 31859844 PMCID: PMC6907416 DOI: 10.1590/s1678-9946201961067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/13/2019] [Indexed: 11/22/2022] Open
Abstract
Although the salivary glands present several functions, there are few studies evaluating these glands in Chagas disease (CD). This study aimed to compare the percentage of collagen, the presence of inflammation, the density of chimase and tryptase mast cells, the area and density of lingual salivary gland acini in autopsied individuals with and without (CD). We analyzed 400 autopsy reports performed in a tertiary public hospital from 1999 to 2015 and selected all the cases in which tongue fragments were collected (27 cases), 12 with chronic CD without megaesophagus (CH) and 15 without CD (non-chagasic - NC). The histological sections of the tongue were stained by Picrosirius red for collagen evaluation and Hematoxylin-eosin for morphometric evaluation of salivary gland acini and inflammation. Anti-chimase and anti-tryptase antibodies were used for the immunohistochemical evaluation of mast cells. The chagasic patients presented higher volume and lower density of salivary glands acini. There was no difference in the collagen percentage, inflammation and density of mast cell chymase and tryptase between the groups. Although we did not observe a significant difference between the groups regarding the collagen percentage, inflammatory process and mast cell density, our results suggest that even without megaesophagus, chagasic patients present hypertrophy of the lingual salivary glands and lower acinar density probably due to mechanisms independent of the esophagus-glandular stimulus.
Collapse
Affiliation(s)
- Bárbara Bellocchio Bertoldo
- Universidade Federal do Triângulo Mineiro, Programa de Pós-Graduação em Ciências da Saúde, Uberaba, Minas Gerais, Brazil
| | - Renata Margarida Etchebehere
- Universidade Federal do Triângulo Mineiro, Curso de Pós-Graduação em Ciências da Saúde, Uberaba, Minas Gerais, Brazil
| | | | - Juliana Barbosa de Faria
- Universidade Federal do Triângulo Mineiro, Programa de Pós-Graduação em Ciências da Saúde, Uberaba, Minas Gerais, Brazil
| | - Camilla Beatriz Silva
- Universidade de Uberaba, Laboratório de Biologia Celular e Molecular, Uberaba, Minas Gerais, Brazil
| | - Márcia Fernandes de Araújo
- Universidade Federal do Triângulo Mineiro, Programa de Pós-Graduação em Ciências da Saúde, Uberaba, Minas Gerais, Brazil
| | - Denise Bertulucci Rocha Rodrigues
- Universidade Federal do Triângulo Mineiro, Programa de Pós-Graduação em Ciências da Saúde, Uberaba, Minas Gerais, Brazil.,Universidade de Uberaba, Programa de Mestrado em Odontologia, Uberaba, Minas Gerais, Brazil.,Universidade de Uberaba, Laboratório de Biologia Celular e Molecular, Uberaba, Minas Gerais, Brazil.,Universidade Federal do Triângulo Mineiro, Centro de Educação Profissional (Cefores), Uberaba, Minas Gerais, Brazil
| | - Sanivia Aparecida de Lima Pereira
- Universidade Federal do Triângulo Mineiro, Programa de Pós-Graduação em Ciências da Saúde, Uberaba, Minas Gerais, Brazil.,Universidade de Uberaba, Programa de Mestrado em Odontologia, Uberaba, Minas Gerais, Brazil.,Universidade de Uberaba, Laboratório de Biologia Celular e Molecular, Uberaba, Minas Gerais, Brazil.,Universidade Federal do Triângulo Mineiro, Centro de Educação Profissional (Cefores), Uberaba, Minas Gerais, Brazil
| |
Collapse
|
6
|
|
7
|
Kannen V, Sakita JY, Carneiro ZA, Bader M, Alenina N, Teixeira RR, de Oliveira EC, Brunaldi MO, Gasparotto B, Sartori DC, Fernandes CR, Silva JS, Andrade MV, Silva WA, Uyemura SA, Garcia SB. Mast Cells and Serotonin Synthesis Modulate Chagas Disease in the Colon: Clinical and Experimental Evidence. Dig Dis Sci 2018; 63:1473-1484. [PMID: 29569002 DOI: 10.1007/s10620-018-5015-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/07/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Trypanosoma cruzi (T. cruzi) infects millions of Latin Americans each year and can induce chagasic megacolon. Little is known about how serotonin (5-HT) modulates this condition. Aim We investigated whether 5-HT synthesis alters T. cruzi infection in the colon. MATERIALS AND METHODS Forty-eight paraffin-embedded samples from normal colon and chagasic megacolon were histopathologically analyzed (173/2009). Tryptophan hydroxylase 1 (Tph1) knockout (KO) mice and c-KitW-sh mice underwent T. cruzi infection together with their wild-type counterparts. Also, mice underwent different drug treatments (16.1.1064.60.3). RESULTS In both humans and experimental mouse models, the serotonergic system was activated by T. cruzi infection (p < 0.05). While treating Tph1KO mice with 5-HT did not significantly increase parasitemia in the colon (p > 0.05), rescuing its synthesis promoted trypanosomiasis (p < 0.01). T. cruzi-related 5-HT release (p < 0.05) seemed not only to increase inflammatory signaling, but also to enlarge the pericryptal macrophage and mast cell populations (p < 0.01). Knocking out mast cells reduced trypanosomiasis (p < 0.01), although it did not further alter the neuroendocrine cell number and Tph1 expression (p > 0.05). Further experimentation revealed that pharmacologically inhibiting mast cell activity reduced colonic infection (p < 0.01). A similar finding was achieved when 5-HT synthesis was blocked in c-KitW-sh mice (p > 0.05). However, inhibiting mast cell activity in Tph1KO mice increased colonic trypanosomiasis (p < 0.01). CONCLUSION We show that mast cells may modulate the T. cruzi-related increase of 5-HT synthesis in the intestinal colon.
Collapse
Affiliation(s)
- Vinicius Kannen
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirão Preto, 14040-903, Brazil.
- Department of Pathology, University of Sao Paulo, Ribeirão Preto, Brazil.
| | - Juliana Y Sakita
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Zumira A Carneiro
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité University Medicine Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Regina R Teixeira
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirão Preto, 14040-903, Brazil
| | | | | | - Bianca Gasparotto
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Daniela C Sartori
- Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | | | - João S Silva
- Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcus V Andrade
- Department of Clinical Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Wilson A Silva
- Department of Genetics, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Sergio A Uyemura
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Sérgio B Garcia
- Department of Pathology, University of Sao Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Mascareno E, Gupta R, Martello LA, Dhar-Mascareno M, Salciccioli L, Beckles D, Walsh MG, Machado FS, Tanowitz HB, Haseeb M. Rapidly progressive course of Trypanosoma cruzi infection in mice heterozygous for hexamethylene bis-acetamide inducible 1 (Hexim1) gene. Microbes Infect 2018; 20:25-36. [DOI: 10.1016/j.micinf.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 01/02/2023]
|
9
|
Freitas MAR, Segatto N, Tischler N, de Oliveira EC, Brehmer A, da Silveira ABM. Relation between mast cells concentration and serotonin expression in chagasic megacolon development. Parasite Immunol 2017; 39. [PMID: 28112415 DOI: 10.1111/pim.12414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022]
Abstract
Chagas' disease is still reaching about 10 million people in the world. In South America, one of the most severe forms of this disease is the megacolon, characterized by severe constipation, dilated sigmoid colon and rectum and severe malnutrition. Previous data suggested that mast cells and serotonin (5-hydroxytryptamine [5-HT]) expression could be involved in intestinal homeostasis control, avoiding the chagasic megacolon development. The aim at this study was to characterize the presence of mast cells and expression of serotonin in chagasic patients with and without megacolon and evaluate the relation between mast cells, serotonin and megacolon development. Our results demonstrated that patients without megacolon feature a large amount of serotonin and few mast cells, while patients with megacolon feature low serotonin expression and a lot of mast cells. We believe that serotonin may be involved in the inflammatory process control, triggered by mast cells, and the presence of this substance in large quantities of the intestine could represent a mechanism of megacolon prevention.
Collapse
Affiliation(s)
- M A R Freitas
- Parasitology, ICBIM, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - N Segatto
- Neurosciences Laboratory, ICBIM, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - N Tischler
- Parasitology, ICBIM, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - E C de Oliveira
- Department of Surgery, Medical School, Universidade Federal de Goiás, Goiás, Brazil
| | - A Brehmer
- Institute of Anatomy I, University of Erlangen-Nuremberg, Erlangen, Germany
| | - A B M da Silveira
- Neurosciences Laboratory, ICBIM, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
10
|
Beghini M, de Araújo MF, Severino VO, Etchebehere RM, Rocha Rodrigues DB, de Lima Pereira SA. Evaluation of the immunohistochemical expression of Gal-1, Gal-3 and Gal-9 in the colon of chronic chagasic patients. Pathol Res Pract 2017; 213:1207-1214. [PMID: 28554765 DOI: 10.1016/j.prp.2017.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE AND DESIGN The aim of the present study was to evaluate the immunohistochemical expression of Gal-1, Gal-3 and Gal-9 in the colon of chronic chagasic patients compared to biopsied non-chagasic patients. MATERIAL OR SUBJECTS Thirty-two colon fragments were selected from chagasic patients with megacolon (n=25) and nonchagasic patients without megacolon (n=7). METHODS Immunohistochemistry for Gal-1, Gal-3 and Gal-9 was performed using a common light microscope and the results were scored 0-3 according to labeling intensity. Data were analyzed statistically by the chi-square test. RESULTS Higher Gal-1, Gal-3 and Gal-9 expression was observed in the myenteric plexus ganglia of chagasic patients compared to non-chagasic patients, p=0.0487, p=0.0019 and p=0.0325, respectively, whereas no significant differences were observed between groups regarding the expression of Gal-1, Gal-3 and Gal-9 in the muscle layer. CONCLUSION Since Gal-1, Gal-3 and Gal-9 galectin expression was higher in the myenteric plexus ganglia of chagasic patients, we believe that these lectins may be associated with ganglionitis in the chagasic megacolon. However, since the present study was the first to report the participation of Gal-9 in Chagas disease, further investigations are needed to elucidate the role of galectin 9 in this disease.
Collapse
Affiliation(s)
- Marcela Beghini
- Human Pathology Division, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil
| | | | | | | | - Denise Bertulucci Rocha Rodrigues
- Laboratory of Biopathology and Molecular Biology, University of Uberaba (UNIUBE), Uberaba, MG, Brazil; Cefores, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Sanívia Aparecida de Lima Pereira
- Laboratory of Biopathology and Molecular Biology, University of Uberaba (UNIUBE), Uberaba, MG, Brazil; Cefores, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil.
| |
Collapse
|
11
|
Mast cells in gastrointestinal disorders. Eur J Pharmacol 2016; 778:139-45. [DOI: 10.1016/j.ejphar.2016.02.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 01/01/2023]
|
12
|
Genetic Susceptibility to Cardiac and Digestive Clinical Forms of Chronic Chagas Disease: Involvement of the CCR5 59029 A/G Polymorphism. PLoS One 2015; 10:e0141847. [PMID: 26599761 PMCID: PMC4657911 DOI: 10.1371/journal.pone.0141847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/13/2015] [Indexed: 12/25/2022] Open
Abstract
The clinical manifestations of chronic Chagas disease include the cardiac form of the disease and the digestive form. Not all the factors that act in the variable clinical course of this disease are known. This study investigated whether the CCR5Δ32 (rs333) and CCR5 59029 A/G (promoter region--rs1799987) polymorphisms of the CCR5 gene are associated with different clinical forms of chronic Chagas disease and with the severity of left ventricular systolic dysfunction in patients with chronic Chagas heart disease (CCHD). The antibodies anti-T. cruzi were identified by ELISA. PCR and PCR-RFLP were used to identify the CCR5Δ32 and CCR5 59029 A/G polymorphisms. The chi-square test was used to compare variables between groups. There was a higher frequency of the AA genotype in patients with CCHD compared with patients with the digestive form of the disease and the control group. The results also showed a high frequency of the AG genotype in patients with the digestive form of the disease compared to the other groups. The results of this study show that the CCR5Δ32 polymorphism does not seem to influence the different clinical manifestations of Chagas disease but there is involvement of the CCR5 59029 A/G polymorphism in susceptibility to the different forms of chronic Chagas disease. Besides, these polymorphisms do not influence left ventricular systolic dysfunction in patients with CCHD.
Collapse
|
13
|
Mast cells in the colon of Trypanosoma cruzi-infected patients: are they involved in the recruitment, survival and/or activation of eosinophils? Parasitol Res 2015; 114:1847-56. [PMID: 25711147 DOI: 10.1007/s00436-015-4371-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 02/03/2015] [Indexed: 01/05/2023]
Abstract
Megacolon is frequently observed in patients who develop the digestive form of Chagas disease. It is characterized by dilation of the rectum-sigmoid portion and thickening of the colon wall. Microscopically, the affected organ presents denervation, which has been considered as consequence of an inflammatory process that begins at the acute phase and persists in the chronic phase of infection. Inflammatory infiltrates are composed of lymphocytes, macrophages, natural killer cells, mast cells, and eosinophils. In this study, we hypothesized that mast cells producing tryptase could influence the migration and the activation of eosinophils at the site, thereby contributing to the immunopathology of the chronic phase. We seek evidence of interactions between mast cells and eosinophils through (1) evaluation of eosinophils, regarding the expression of PAR2, a tryptase receptor; (2) correlation analysis between densities of mast cells and eosinophils; and (3) ultrastructural studies. The electron microscopy studies revealed signs of activation of mast cells and eosinophils, as well as physical interaction between these cells. Immunohistochemistry and correlation analyses point to the participation of tryptase immunoreactive mast cells in the migration and/or survival of eosinophils at the affected organ.
Collapse
|
14
|
Jabari S, da Silveira ABM, de Oliveira EC, Quint K, Wirries A, Neuhuber W, Brehmer A. Interstitial cells of Cajal: crucial for the development of megacolon in human Chagas' disease? Colorectal Dis 2014; 15:e592-8. [PMID: 23810202 DOI: 10.1111/codi.12331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/02/2013] [Indexed: 02/08/2023]
Abstract
AIM Megacolon, chronic dilation of a colonic segment,is accompanied by extensive myenteric neuron loss. However, this fails to explain unequivocally the formation of megacolon. We aimed to study further enteric structures that are directly or indirectly involved in colonic motility. METHOD From surgically removed megacolon segments of seven Chagasic patients, three sets of cryosections from oral, megacolonic and anal zones were immunohistochemically quadruple-stained for smooth-muscle actin (SMA), synaptophysin (SYN, for nerve fibres), S100 (glia) and c-Kit (interstitial cells of Cajal, ICCs). Values of area measurements were related to the appropriate muscle layer areas and these proportions were compared with those of seven non-Chagasic control patients. RESULTS Whereas nerve and glia profile proportions did not mirror unequivocally the changes of Chagasic colon calibre (nondilation/dilation/nondilation), the proportions of SMA (i.e. muscle tissue density) and c-Kit (i.e. ICC density) did so: they decreased from the oral to the megacolonic segment but increased to the anal zones (muscle tissue density: control 68.3%, oral 54.3%, mega 42.1%, anal 47.6%; ICC-density: control 1.8%, oral 1.1%, mega 0.4, anal 0.8%). CONCLUSION Of the parameters evaluated, muscle tissue and ICC densities may be involved in the formation of Chagasic megacolon, although the mechanism of destruction cannot be deduced.
Collapse
Affiliation(s)
- S Jabari
- Institute of Anatomy I, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Megacolon, the irreversible dilation of a colonic segment, is a structural sign associated with various gastrointestinal disorders. In its hereditary, secondary form (e.g. in Hirschsprung's disease), dilation occurs in an originally healthy colonic segment due to an anally located, aganglionic zone. In contrast, in chronic Chagas' disease, the dilated segment itself displays pathohistological changes, and the earliest and most prominent being found was massive loss of myenteric neurons. This neuron loss was partial and selective, i.e. some neurons containing neuronal nitric oxide synthase and/or vasoactive intestinal peptide (VIP) were spared from neuron death. This disproportionate survival of inhibitory neurons, however, did not completely correlate with the calibre change along the surgically removed, megacolonic segments. A better correlation was observed as to potentially contractile muscle tissue elements and the interstitial cells of Cajal. Therefore, the decreased densities of α-smooth muscle actin- and c-kit-immunoreactive profiles were estimated along resected megacolonic segments. Their lowest values were observed in the megacolonic zones itself, whereas less pronounced decreases were found in the non-dilated, transitional zones (oral and anal to dilation). In contrast to the myenteric plexus, the submucosal plexus displayed only a moderate neuron loss. Neurons co-immunoreactive for VIP and calretinin survived disproportionately. As a consequence, these neurons may have contributed to maintain the epithelial barrier and allowed the chagasic patients to survive for decades, despite their severe disturbance of colonic motility. Due to its neuroprotective and neuroeffectory functions, VIP may play a key role in the development and duration of chagasic megacolon.
Collapse
|
16
|
Jabari S, da Silveira ABM, de Oliveira EC, Quint K, Wirries A, Neuhuber W, Brehmer A. Mucosal layers and related nerve fibres in non-chagasic and chagasic human colon--a quantitative immunohistochemical study. Cell Tissue Res 2014; 358:75-83. [PMID: 24962547 DOI: 10.1007/s00441-014-1934-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023]
Abstract
Chagasic megacolon is accompanied by extensive myenteric and, simultaneously, moderate submucosal neuron loss. Here, we examined changes of the innervation pattern of the lamina propria (LP) and muscularis mucosae (MM). Two alternating sets of cryosections were taken from seven non-chagasic colonic and seven chagasic megacolonic specimens (the latter included both the dilated megacolonic and the non-dilated transitional oral and anal zones) and were immunohistochemically triple-stained for smooth-muscle actin (SMA), synaptophysin (SYN) and glial acid protein S100 and, alternatively, for SMA, vasoactive intestinal peptide (VIP) and somatostatin (SOM). Subsequent image analysis and statistical evaluation of nervous tissue profile areas revealed that, in LP, the most extreme differences (i.e. increase in thickness or decrease in nerve, glia and muscle tissue profile area, respectively) compared with control values occurred in the dilated megacolonic zone itself. In contrast, the most extreme differences in the MM were in the anal-to-megacolonic zone (except the profile area of muscle tissue, which was lowest in the megacolonic zone). This parallels our previous results in the external muscle coat. A partial and selective survival of VIP-immunoreactive in contrast to SOM-immunoreactive nerve fibres was observed in both mucosal layers investigated. Thus, VIPergic nerve elements might be crucial for the maintenance of the mucosal barrier. The differential changes of neural tissue parameters in LP and MM might reflect a multifactorial rather than a pure neurogenic development of megacolon in chronic Chagas' disease.
Collapse
Affiliation(s)
- Samir Jabari
- Institute of Anatomy I, University of Erlangen-Nuremberg, Krankenhausstrasse 9, 91054, Erlangen, Germany,
| | | | | | | | | | | | | |
Collapse
|
17
|
Martins PR, Nascimento RD, de Souza Lisboa A, Martinelli PM, d'Ávila Reis D. Neuroimmunopathology of Trypanosoma cruzi-induced megaoesophagus: Is there a role for mast cell proteases? Hum Immunol 2014; 75:302-5. [PMID: 24530752 DOI: 10.1016/j.humimm.2014.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 01/03/2014] [Accepted: 02/04/2014] [Indexed: 01/18/2023]
Abstract
Tryptase and chymase are mast cell (MC)-specific proteases, which influence in the activation of inflammatory cells. In this study, we quantified tryptase- or chymase-expressing MCs in the oesophaguses of Chagas patients, and searched for a correlation between those data with area of nerve fibres that expressed either PGP9.5 (pan-marker) or vasoactive intestinal polypeptide (VIP), which is a neuromediator that has anti-inflammatory activity. Samples from the oesophaguses of 14 individuals Trypanosoma cruzi-infected and from six uninfected individuals were analysed by immunohistochemistry. It was demonstrated that the number of tryptase-IR MCs in infected individuals increased when compared with controls, regardless of whether the individuals had megaoesophagus, whereas the number of chymase-IR MCs increased only in infected individuals without megaoesophagus. Negative correlations were observed between tryptase-IR MCs and the density of nerve fibres that expressed VIP or PGP 9.5-IR. The participation of chymase and tryptase in this type of immunopathology is discussed.
Collapse
Affiliation(s)
| | | | - André de Souza Lisboa
- Department of Morphology, ICB, Universidade Federal de Minas Gerais, 31.270-901, Brazil
| | | | - Débora d'Ávila Reis
- Department of Morphology, ICB, Universidade Federal de Minas Gerais, 31.270-901, Brazil.
| |
Collapse
|
18
|
Ayo CM, Dalalio MMDO, Visentainer JEL, Reis PG, Sippert EÂ, Jarduli LR, Alves HV, Sell AM. Genetic susceptibility to Chagas disease: an overview about the infection and about the association between disease and the immune response genes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:284729. [PMID: 24069594 PMCID: PMC3771244 DOI: 10.1155/2013/284729] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/09/2013] [Accepted: 05/31/2013] [Indexed: 01/05/2023]
Abstract
Chagas disease, which is caused by the flagellate parasite Trypanosoma cruzi, affects 8-10 million people in Latin America. The disease is endemic and is characterised by acute and chronic phases that develop in the indeterminate, cardiac, and/or gastrointestinal forms. The immune response during human T. cruzi infection is not completely understood, despite its role in driving the development of distinct clinical manifestations of chronic infection. Polymorphisms in genes involved in the innate and specific immune response are being widely studied in order to clarify their possible role in the occurrence or severity of disease. Here we review the role of classic and nonclassic MHC, KIR, and cytokine host genetic factors on the infection by T. cruzi and the clinical course of Chagas disease.
Collapse
Affiliation(s)
- Christiane Maria Ayo
- Program of Biosciences Applied to Pharmacy, Department of Clinical Analysis and Biomedicine, Maringa State University, Avenida Colombo 5790, 87020900 Maringa, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Moreira MD, Brehmer A, de Oliveira EC, Neto SG, Luquetti AO, Bueno LL, Fujiwara RT, de Freitas MAR, da Silveira ABM. Regenerative process evaluation of neuronal subclasses in chagasic patients with megacolon. Hum Immunol 2012; 74:181-8. [PMID: 23220499 DOI: 10.1016/j.humimm.2012.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/13/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
Abstract
Chagas' disease is one of the most serious parasitic diseases of Latin America, with a social and economic impact far outweighing the combined effects of other parasitic diseases such as malaria, leishmaniasis and schistosomiasis. In the chronic phase of this disease, the destruction of enteric nervous system (ENS) components leads to megacolon development. Previous data presented that the regeneration tax in the ENS neurons is augmented in chagasic patients. Although, there are several neuronal types with different functions in the intestine a detailed study about the regeneration of every neuronal type was never performed before. Therefore, the aim of this study was to evaluate the regeneration tax of every neuronal cell type in the ENS from chagasic patients with megacolon and non-infected individuals. A neuronal regeneration marker (GAP-43) was used in combination with a pan-neuronal marker (Peripherin) and several neuropeptides markers (cChat, Substance P, NPY, VIP and NOS), and it was considered as positive just with the combination of these markers. Our results demonstrated that the regeneration levels of cChat, Substance P, and NPY were similar in chagasic patients and non-infected individuals. However, levels of VIP and NOS neuropeptides were increased in chagasic patients when compared with non-infected individuals. We believe that the augment in the regeneration occur due to an increased destruction of selective neuronal types. These results corroborates with previous studies that pointed out to selective destruction of VIP and NOS neurons in chagasic patients.
Collapse
Affiliation(s)
- Milena Dionízio Moreira
- Neurosciences Laboratory, Human Anatomy Department, ICBIM, Universidade Federal de Uberlândia, Minas Gerais 38.400-902, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Preponderance of inhibitory versus excitatory intramuscular nerve fibres in human chagasic megacolon. Int J Colorectal Dis 2012; 27:1181-9. [PMID: 22729712 DOI: 10.1007/s00384-012-1500-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Megacolon, chronic dilation of a colonic segment, is a frequent sign of Chagas disease. It is accompanied by an extensive neuron loss which, as shown recently, results in a partial, selective survival of nitrergic myenteric neurons. Here, we focused on the balance of intramuscular excitatory (choline acetyltransferase [ChAT]-immunoreactive) and inhibitory (neuronal nitric oxide synthase [NOS]- as well as vasoactive intestinal peptide [VIP]-immunoreactive) nerve fibres. MATERIALS AND METHODS From surgically removed megacolonic segments of seven patients, three sets of cryosections (from non-dilated oral, megacolonic and non-dilated anal parts) were immunhistochemically triple-stained for ChAT, NOS and VIP. Separate area measurements of nerve profiles within the circular and longitudinal muscle layers, respectively, were compared with those of seven non-chagasic control patients. Additionally, wholemounts from the same regions were stained for NOS, VIP and neurofilaments (NF). RESULTS The intramuscular nerve fibre density was significantly reduced in all three chagasic segments. The proportions of inhibitory (NOS only, VIP only, or NOS/VIP-coimmunoreactive) intramuscular nerves were 68 %/58 % (circular/longitudinal muscle, respectively) in the controls and increased to 75 %/69 % (oral parts), 84 %/76 % (megacolonic) and 87 %/94 % (anal) in chagasic specimens. In the myenteric plexus, NF-positive neurons co-staining for NOS and VIP also increased proportionally. The almost complete lack of dendritic structures in ganglia of chagasic specimens hampered morphological identification. DISCUSSION AND CONCLUSION We suggest that preponderance of inhibitory, intramuscular nerve fibres may be one factor explaining the chronic dilation. Since the nerve fibre imbalance is most pronounced in the anal, non-dilated segment, other components of the motor apparatus (musculature, interstitial cells, submucosal neurons) have to be considered.
Collapse
|
21
|
Adad SJ, Silva GBE, Jammal AA. The significantly reduced number of interstitial cells of Cajal in chagasic megacolon (CM) patients might contribute to the pathophysiology of CM. Virchows Arch 2012; 461:385-92. [PMID: 22895866 DOI: 10.1007/s00428-012-1299-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/22/2012] [Accepted: 08/02/2012] [Indexed: 11/30/2022]
Abstract
In addition to neurons, interstitial cells of Cajal (ICC) play an important role in coordinating intestinal motility with a pacemaker function. This study aimed to quantitatively analyze ICC, neurons, and muscular area, the latter to correct for quantitation errors resulting from dilation in case of a megacolon and from the dispersion of ICC that can be attributed to muscular hypertrophy. We analyzed 30 colon samples: ten chagasic megacolon (CM), ten chagasic colons without megacolon (CXM), and ten nonchagasic control patients (NC). We measured the area of muscularis propria and counted the number of neurons of the myenteric plexus in a histological section of an intestinal ring and the number of ICC at the level of the myenteric plexus and circular muscle layer, the latter in a section immunohistochemically stained for CD117. Muscular hypertrophy occurred only in the CM group. Compared to the NC group, we found in the CM group a statistically significant reduction of 80 % in the number of neurons, 60 % in the number of ICC in the myenteric plexus, and 38 % in the area of circular muscle. In the CXM group, these numbers were highly variable, and their reduction, less pronounced. We conclude that the number of ICC is significantly reduced in CM patients, and that this might contribute to the pathophysiology of CM. However, the development of CM requires severe denervation, whereas CXM generally exhibits less than 50 % denervation, favoring the hypothesis that the reduction in ICC number is, in part, a consequence of denervation.
Collapse
Affiliation(s)
- Sheila Jorge Adad
- Discipline of Special Pathology, Universidade Federal do Triângulo Mineiro, Av. Getúlio Guaritá, 130, CEP 38025-440 Uberaba, MG, Brazil.
| | | | | |
Collapse
|
22
|
Schaeffer DF, Kirsch R, Riddell RH. Mast cells and intestinal motility disorders (mastocytic enteritis/colitis). Dig Dis Sci 2012; 57:1118-21. [PMID: 22466075 DOI: 10.1007/s10620-012-2123-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Bassotti G, Villanacci V, Nascimbeni R, Cadei M, Manenti S, Antonelli E, Fanini L, Salerni B. Increase of colonic mast cells in obstructed defecation and their relationship with enteric glia. Dig Dis Sci 2012; 57:65-71. [PMID: 21814802 DOI: 10.1007/s10620-011-1848-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 07/22/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mast cells are involved in visceral hypersensitivity and motor activity of the gastrointestinal tract. However, there is almost no information concerning mast cells in constipated patients. AIMS The purpose of this study was to investigate mast cells distribution in all colonic layers in controls and severely constipated patients with obstructed defecation. METHODS Full-thickness specimens from colons of patients undergoing surgery for obstructed defecation due to refractoriness to other therapeutic interventions (n = 11), compared to controls, were obtained and the number of mast cells (evaluated by specific monoclonal antibodies) were counted in the whole viscus and in the various colonic segments (cecum, ascending, transverse, descending, and sigmoid). RESULTS Compared to controls, constipated patients had significantly higher numbers of mast cells, both as an overall number and in single colonic segments. This increase was especially evident in the mucosa and submucosa. Mast cells were homogeneously represented in the various segment of the large bowel, in both controls and patients. Degranulated mast cells were found to be close to enteric glial cells and glial filaments. CONCLUSIONS Colonic mast cells are increased in obstructed defecation patients. This might represent a vicariating mechanism to the impaired colonic propulsive activity of these patients.
Collapse
Affiliation(s)
- Gabrio Bassotti
- Gastroenterology and Hepatology Section, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Espinoza B, Solorzano-Domínguez N, Vizcaino-Castillo A, Martínez I, Elias-López AL, Rodríguez-Martínez JA. Gastrointestinal infection with Mexican TcI Trypanosoma cruzi strains: different degrees of colonization and diverse immune responses. Int J Biol Sci 2011; 7:1357-70. [PMID: 22110387 PMCID: PMC3221943 DOI: 10.7150/ijbs.7.1357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 02/06/2023] Open
Abstract
Mexican Ninoa and Queretaro (Qro) TcI strains of Trypanosoma cruzi have shown different degrees of virulence, and the two strains produce heterogeneous immune responses in the hearts of infected mice. This work shows that the same strains can invade the intestine by an intraperitoneal route and establish an infection, mainly in the colon. The three segments of the small intestine (duodenum, jejunum and ileum) were infected to a lesser degree than the colon. Despite the fact that parasites were predominantly found in the colon, an obvious inflammatory reaction was observed in the submucosal layer along the entire intestinal tract, with the virulent Qro strain causing significantly more areas of higher immune infiltration. A clear recruitment of CD4⁺ and CD8⁺ T lymphocytes to the mesenteric ganglia was observed during infection with the virulent strain. Macrophages were also differentially distributed in the gastrointestinal tract. These later cells infiltrated fewer amastigote nests in the mice infected with the Qro strain than in the mice infected with the Ninoa strain. When IFN-γ, TNF-α, and IL-4 levels were measured, an increase in these cytokines was observed compared with the uninfected mice. The role of these inflammatory reactions in the pathogenesis of Chagas enteropathy is also discussed in this paper.
Collapse
Affiliation(s)
- Bertha Espinoza
- Departamento de Inmunología. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México, Mexico City 04510.
| | | | | | | | | | | |
Collapse
|
25
|
Bassotti G, Villanacci V, Nascimbeni R, Cadei M, Manenti S, Sabatino G, Maurer CA, Cathomas G, Salerni B. Colonic mast cells in controls and slow transit constipation patients. Aliment Pharmacol Ther 2011; 34:92-9. [PMID: 21539589 DOI: 10.1111/j.1365-2036.2011.04684.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is recent evidence that mast cells may play important roles in the gut, especially concerning visceral hypersensitivity and motor activity. However, most data are only available for clinical conditions characterised by diarrhoea, where MC have chiefly investigated in the mucosal layer of the colon and there is almost no information concerning constipation. AIM To investigate mast cells distribution in all colonic layers in controls and severely constipated patients. METHODS Full-thickness specimens from colons of patients undergoing surgery for slow transit constipation (n=29), compared with controls, were obtained and the number of mast cells (evaluated by specific monoclonal antibodies) counted as a whole and in single colonic segments (caecum, ascending, transverse, descending and sigmoid). RESULTS Compared with controls, constipated patients revealed significantly higher number of mast cells, both as overall number and in single colonic segments. The distribution of mast cells resulted fairly homogeneous in the various segment of the large bowel, in both controls and patients, and no significant difference in the percentage of degranulated cells was found between groups. CONCLUSIONS Colonic mast cells display a homogeneous distribution within the viscus. This cell population is shown to increase in severely constipated patients, which might represent a mechanism trying to compensate for the impaired propulsive activity of these patients.
Collapse
Affiliation(s)
- G Bassotti
- Gastroenterology & Hepatology Section, Department of Clinical and Experimental Medicine, University of Perugia, Piazza Menghini 1, San Sisto (Perugia), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nascentes GAN, Meira WSF, Lages-Silva E, Ramírez LE. Immunization of mice with a Trypanosoma cruzi-like strain isolated from a bat: predictive factors for involvement of eosinophiles in tissue damage. Vector Borne Zoonotic Dis 2010; 10:989-97. [PMID: 20455782 DOI: 10.1089/vbz.2009.0185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The granules of eosinophiles are cytotoxic to Trypanosoma cruzi trypomastigote and amastigote forms and to several cell types of the host, revealing their role in either parasite elimination or the production of tissue lesions. In this study, we evaluated the biological characteristics of T. cruzi infection that are responsible for the increase in tissue eosinophile levels in mice previously immunized with a bat isolated T. cruzi-like strain that does not infect mice. Nonisogeneic mice were divided into 24 groups that received from zero to three inoculations of T. cruzi-like RM1 strain, with or without adjuvant, followed by challenge with T. cruzi VIC or JG strains. Uni- and multivariate comparisons were performed comparing the tissue eosinophile levels with the parasitemia peak, severity of myositis in skeletal muscle, phase of infection, and the immunization strategies induced by the T. cruzi-like strain (adjuvant, number of reinoculations, and parasites). Although the severity of inflammation was higher in the acute phase, the score of tissue eosinophiles was similar in the acute and chronic phases of infection. In addition, there was a positive correlation among eosinophile levels and parasitemia peak. In the chronic phase, a greater eosinophile count was accompanied by an augmentation of myositis. Regardless of the phase of infection, we observed a positive correlation between the intensity of eosinophile infiltration and the number of sensitizations with T. cruzi-like strain. The multivariate analysis showed that the peak of parasitemia, number of inoculations with the T. cruzi-like strain, and severity of myositis were associated with greater tissue eosinophilia, in comparison with adjuvant, T. cruzi strains used in the challenge or tissue parasitism. Therefore, tissue eosinophile levels proved to be an important parameter in the pathogenesis of experimental Chagas disease in the acute and chronic phases of infection and might be related to reinfections, parasite multiplication ability, and severity of inflammatory process.
Collapse
|
27
|
Dutra WO, Menezes CAS, Villani FNA, da Costa GC, da Silveira ABM, Reis DD, Gollob KJ. Cellular and genetic mechanisms involved in the generation of protective and pathogenic immune responses in human Chagas disease. Mem Inst Oswaldo Cruz 2010; 104 Suppl 1:208-18. [PMID: 19753476 DOI: 10.1590/s0074-02762009000900027] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/14/2009] [Indexed: 01/02/2023] Open
Abstract
Perhaps one of the most intriguing aspects of human Chagas disease is the complex network of events that underlie the generation of protective versus pathogenic immune responses during the chronic phase of the disease. While most individuals do not develop patent disease, a large percentage may develop severe forms that eventually lead to death. Although many efforts have been devoted to deciphering these mechanisms, there is still much to be learned before we can fully understand the pathogenesis of Chagas disease. It is clear that the host's immune response is decisive in this process. While characteristics of the parasite influence the immune response, it is becoming evident that the host genetic background plays a fundamental role in the establishment of pathogenic versus protective responses. The involvement of three complex organisms, host, parasite and vector, is certainly one of the key aspects that calls for multidisciplinary approaches towards the understanding of Chagas disease. We believe that now, one hundred years after the discovery of Chagas disease, it is imperative to continue with highly interactive research in order to elucidate the immune response associated with disease evolution, which will be essential in designing prophylactic or therapeutic interventions.
Collapse
Affiliation(s)
- Walderez Ornelas Dutra
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| | | | | | | | | | | | | |
Collapse
|
28
|
da Silveira ABM, de Araújo FF, Freitas MAR, Gomes JAS, Chaves AT, de Oliveira EC, Neto SG, Luquetti AO, da Cunha Souza G, Bernardino Júnior R, Fujiwara R, d'Avila Reis D, Correa-Oliveira R. Characterization of the presence and distribution of Foxp3(+) cells in chagasic patients with and without megacolon. Hum Immunol 2008; 70:65-7. [PMID: 19022313 DOI: 10.1016/j.humimm.2008.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 10/16/2008] [Accepted: 10/22/2008] [Indexed: 01/25/2023]
Abstract
Patients with Chagas's disease in the chronic phase regularly present with the chagasic megacolon. This form is characterized by inflammation, neuronal destruction, and organ dilatation. Chagasic patients with megacolon always present with inflammatory process near the enteric plexuses of the colon, as previously demonstrated. The aim of this study is to characterize the presence and distribution of Foxp3(+) cells in the muscle layers and neuronal plexuses area of the colon from chagasic patients with and without megacolon. Our results demonstrated that chagasic patients without megacolon presented with an increased concentration of Foxp3(+) cells in all colon layers compared with chagasic patients with megacolon and noninfected individuals. These cells were situated mainly near the blood vessels and rarely were associated with the inflammatory foci. We believe that the presence of Foxp3(+) cells may help to control the inflammatory process through the management of lymphocyte migration and, consequently, prevent neuronal destruction and chagasic megacolon development.
Collapse
|
29
|
Substance P and NK1 receptor expression in the enteric nervous system is related to the development of chagasic megacolon. Trans R Soc Trop Med Hyg 2008; 102:1154-6. [DOI: 10.1016/j.trstmh.2008.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 04/30/2008] [Accepted: 04/30/2008] [Indexed: 11/19/2022] Open
|
30
|
Pinheiro SW, Micheletti AMR, Crema VO, de Castro Côbo E, da Silva ACAL, Adad SJ. The different concentrations of mast cells in the musculature of the esophagus and the colon. Hum Pathol 2008; 39:793; author reply 793. [PMID: 18439945 DOI: 10.1016/j.humpath.2008.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 02/06/2008] [Indexed: 11/29/2022]
|