1
|
Sutrave S, Richter MH. The Truman Show for Human Helminthic Parasites: A Review of Recent Advances in In Vitro Cultivation Platforms. Microorganisms 2023; 11:1708. [PMID: 37512881 PMCID: PMC10384154 DOI: 10.3390/microorganisms11071708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Throughout history, parasites and parasitic diseases have been humankind's constant companions, as evidenced by the findings of tapeworm eggs in ancient, mummified remains. Helminths are responsible for causing severe, long-term, and debilitating infectious diseases worldwide, especially affecting economically challenged nations due to prevailing deficits in access to sanitation, proper hygiene practices, and healthcare infrastructure. Socio-ecological drivers, such as poverty, migration, and climate change, continue to contribute to parasites and their disease vectors being spread beyond known endemic zones. The study of parasitic diseases has had a fair amount of success leading to the development of new chemotherapeutic agents and the implementation of parasite eradication programs. However, further progress in this direction has been hampered by the challenges of culturing some of these parasites in in vitro systems for efficient availability, basic life cycle, infection studies, and effectiveness of novel treatment strategies. The complexity of the existing models varies widely, depending on the parasite and its life cycle, ranging from basic culture methods to advanced 3D systems. This review aims to highlight the research conducted so far in culturing and maintaining parasites in an in vitro setting, thereby contributing to a better understanding of pathogenicity and generating new insights into their lifecycles in the hopes of leading to effective treatments and prevention strategies. This work is the first comprehensive outline of existing in vitro models for highly transmissible helminth diseases causing severe morbidity and mortality in humans globally.
Collapse
Affiliation(s)
- Smita Sutrave
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Martin Heinrich Richter
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
2
|
Mourão MDM, Bitar M, Lobo FP, Peconick AP, Grynberg P, Prosdocimi F, Waisberg M, Cerqueira GC, Macedo AM, Machado CR, Yoshino T, Franco GR. A directed approach for the identification of transcripts harbouring the spliced leader sequence and the effect of trans-splicing knockdown in Schistosoma mansoni. Mem Inst Oswaldo Cruz 2014; 108:707-17. [PMID: 24037192 PMCID: PMC3970683 DOI: 10.1590/0074-0276108062013006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2013] [Accepted: 06/13/2013] [Indexed: 11/22/2022] Open
Abstract
Schistosomiasis is a major neglected tropical disease caused by trematodes from the genus Schistosoma. Because schistosomes exhibit a complex life cycle and numerous mechanisms for regulating gene expression, it is believed that spliced leader (SL) trans-splicing could play an important role in the biology of these parasites. The purpose of this study was to investigate the function of trans-splicing in Schistosoma mansoni through analysis of genes that may be regulated by this mechanism and via silencing SL-containing transcripts through RNA interference. Here, we report our analysis of SL transcript-enriched cDNA libraries from different S. mansoni life stages. Our results show that the trans-splicing mechanism is apparently not associated with specific genes, subcellular localisations or life stages. In cross-species comparisons, even though the sets of genes that are subject to SL trans-splicing regulation appear to differ between organisms, several commonly shared orthologues were observed. Knockdown of trans-spliced transcripts in sporocysts resulted in a systemic reduction of the expression levels of all tested trans-spliced transcripts; however, the only phenotypic effect observed was diminished larval size. Further studies involving the findings from this work will provide new insights into the role of trans-splicing in the biology of S. mansoni and other organisms. All Expressed Sequence Tags generated in this study were submitted to dbEST as five different libraries. The accessions for each library and for the individual sequences are as follows: (i) adult worms of mixed sexes (LIBEST_027999: JZ139310 - JZ139779), (ii) female adult worms (LIBEST_028000: JZ139780 - JZ140379), (iii) male adult worms (LIBEST_028001: JZ140380 - JZ141002), (iv) eggs (LIBEST_028002: JZ141003 - JZ141497) and (v) schistosomula (LIBEST_028003: JZ141498 - JZ141974).
Collapse
Affiliation(s)
- Marina de Moraes Mourão
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou, Fiocruz, Belo HorizonteMG, Brasil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Soares CS, Morais ER, Magalhães LG, Machado CB, Moreira ÉBDC, Teixeira FR, Rodrigues V, Yoshino TP. Molecular and functional characterization of a putative PA28γ proteasome activator orthologue in Schistosoma mansoni. Mol Biochem Parasitol 2013; 189:14-25. [PMID: 23611749 DOI: 10.1016/j.molbiopara.2013.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
PA28γ is a proteasome activator involved in the regulation of the cellular proliferation, differentiation and growth. In the present study, we identified and characterized a cDNA from Schistosoma mansoni exhibiting significant homology to PA28γ of diverse taxa ranging from mammals (including humans) to simple invertebrates. Designated SmPA28γ, this transcript has a 753bp predicted ORF encoding a protein of 250 amino acid residues. Alignment of SmPA28γ with multiple PA28γ orthologues revealed an average similarity of ~40% among the investigated organisms, and 90% similarity with PA28γ from Schistosoma japonicum. In addition, phylogenetic analysis demonstrated a close linkage between SmPA28γ to its sister group that contains well-characterized PA28γ sequences from Drosophila spp., as well as sharing the same branch with PA28γ from S. japonicum. Gene expression profiling of SmPA28γ using real-time quantitative PCR revealed elevated steady-state transcript levels in the eggs, miracidia and paired adult worms compared to other stages. In parallel with gene expression profiles, an affinity-purified anti-SmPA28γ antibody produced against recombinant protein exhibited strongest reactivity in Western blot analyses to endogenous SmPA28γ from miracidia, sporocysts and paired adult worms. Given its known regulatory function in other organisms, we hypothesized that the high level of SmPA28γ transcript and protein in these stages may be correlated with an important role of the PA28γ in the cellular growth and/or development of this parasite. To address this hypothesis, miracidia were transformed in vitro to sporocysts in the presence of SmPA28γ double-stranded RNAs (dsRNAs) and cultivated for 4 days, after which time steady-state transcript and protein levels, and phenotypic changes were evaluated. SmPA28γ dsRNA treatment resulted in gene and protein knockdown of ~60% and ~80%, respectively, which were correlated with a significant decrease in larval length compared to its controls. These findings are consistent with a putative role of SmPA28γ in larval growth/development of the S. mansoni.
Collapse
Affiliation(s)
- Cláudia Sossai Soares
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Rinaldi G, Eckert SE, Tsai IJ, Suttiprapa S, Kines KJ, Tort JF, Mann VH, Turner DJ, Berriman M, Brindley PJ. Germline transgenesis and insertional mutagenesis in Schistosoma mansoni mediated by murine leukemia virus. PLoS Pathog 2012; 8:e1002820. [PMID: 22911241 PMCID: PMC3406096 DOI: 10.1371/journal.ppat.1002820] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2012] [Accepted: 06/11/2012] [Indexed: 12/11/2022] Open
Abstract
Functional studies will facilitate characterization of role and essentiality of newly available genome sequences of the human schistosomes, Schistosoma mansoni, S. japonicum and S. haematobium. To develop transgenesis as a functional approach for these pathogens, we previously demonstrated that pseudotyped murine leukemia virus (MLV) can transduce schistosomes leading to chromosomal integration of reporter transgenes and short hairpin RNA cassettes. Here we investigated vertical transmission of transgenes through the developmental cycle of S. mansoni after introducing transgenes into eggs. Although MLV infection of schistosome eggs from mouse livers was efficient in terms of snail infectivity, >10-fold higher transgene copy numbers were detected in cercariae derived from in vitro laid eggs (IVLE). After infecting snails with miracidia from eggs transduced by MLV, sequencing of genomic DNA from cercariae released from the snails also revealed the presence of transgenes, demonstrating that transgenes had been transmitted through the asexual developmental cycle, and thereby confirming germline transgenesis. High-throughput sequencing of genomic DNA from schistosome populations exposed to MLV mapped widespread and random insertion of transgenes throughout the genome, along each of the autosomes and sex chromosomes, validating the utility of this approach for insertional mutagenesis. In addition, the germline-transmitted transgene encoding neomycin phosphotransferase rescued cultured schistosomules from toxicity of the antibiotic G418, and PCR analysis of eggs resulting from sexual reproduction of the transgenic worms in mice confirmed that retroviral transgenes were transmitted to the next (F1) generation. These findings provide the first description of wide-scale, random insertional mutagenesis of chromosomes and of germline transmission of a transgene in schistosomes. Transgenic lines of schistosomes expressing antibiotic resistance could advance functional genomics for these significant human pathogens. DATABASE ACCESSION: Sequence data from this study have been submitted to the European Nucleotide Archive (http://www.ebi.ac.uk/embl) under accession number ERP000379.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States of America
- Departamento de Genética, Facultad de Medicina, Universidad de la República, (UDELAR), Montevideo, Uruguay
| | - Sabine E. Eckert
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Oxford Nanopore Technologies, Oxford, United Kingdom
| | - Isheng J. Tsai
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sutas Suttiprapa
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States of America
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kristine J. Kines
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States of America
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - José F. Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, (UDELAR), Montevideo, Uruguay
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Daniel J. Turner
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Oxford Nanopore Technologies, Oxford, United Kingdom
| | - Matthew Berriman
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States of America
- Research Center for Neglected Diseases of Poverty, The George Washington University, Washington, DC, United States of America
| |
Collapse
|
5
|
Abstract
Schistosome research has entered the genomic era with the publications reporting the Schistosoma mansoni and Schistosoma japonicum genomes. Schistosome genomics is motivated by the need for new control tools. However, much can also be learned about the biology of Schistosoma, which is a tractable experimental model. In this article, we review the recent achievements in the field of schistosome research and discuss future perspectives on genomics and how it can be integrated in a usable format, on the genetic mapping and how it has improved the genome assembly and provided new research approaches, on how epigenetics provides interesting insights into the biology of the species and on new functional genomics tools that will contribute to the understanding of the function of genes, many of which are parasite- or taxon specific.
Collapse
Affiliation(s)
- M M Mourão
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
6
|
Abstract
Parasitic diseases cause important losses in public and veterinary health worldwide. Novel drugs, more reliable diagnostic techniques and vaccine candidates are urgently needed. Due to the complexity of parasites and the intricate relationship with their hosts, development of successful tools to fight parasites has been very limited to date. The growing information on individual parasite genomes is now allowing the use of a broader range of potential strategies to gain deeper insights into the host-parasite relationship and has increased the possibilities to develop molecular-based tools in the field of parasitology. Nevertheless, functional studies of respective genes are still scarce. The RNA interference phenomenon resulting in the regulation of protein expression through the specific degradation of defined mRNAs, and more specifically the possibility of artificially induce it, has shown to be a powerful tool for the investigation of proteins function in many organisms. Recent advances in the design and delivery of targeting molecules allow efficient and highly specific gene silencing in different types of parasites, pointing out this technology as a powerful tool for the identification of novel vaccine candidates or drug targets at the high-throughput level in the near future, and could enable researchers to functionally annotate parasite genomes. The aim of this review is to provide a comprehensive overview on the current advances and pitfalls in gene silencing mechanisms, techniques, applications and prospects in animal parasites.
Collapse
|
7
|
Abstract
SUMMARYIn parasitological research, significant progress has been made with respect to genomics and transcriptomics but transgenic systems for functional gene analyses are mainly restricted to the protozoan field. Gene insertion and knockout strategies can be applied to parasitic protozoa as well as gene silencing by RNA interference (RNAi). By contrast, research on parasitic helminthes still lags behind. Along with the major advances in genome and transcriptome analyses e.g. for schistosomes, methods for the functional characterization of genes of interest are still in their initial phase and have to be elaborated now, at the beginning of the post-genomic era. In this review we will summarize attempts made in the last decade regarding the establishment of protocols to transiently and stably transform or transfect schistosomes. Besides approaches using particle bombardment, electroporation or virus-based infection strateies to introduce DNA constructs into adult and larval schistosome stages to express reporter genes, first approaches have also been made in establishing protocols based on soaking, lipofection, and/or electroporation for RNA interference to silence gene activity. Although in these cases remarkable progress can be seen, the schistosome community eagerly awaits major breakthroughs especially with respect to stable transformation, but also for silencing or knock-down strategies for every schistosome gene of interest.
Collapse
|
8
|
Zhu JY, Ye Q, Zhao QP, Ming ZP, Grevelding CG, Jiang MS, Dong HF. Effects of protein extract from head-foot tissue of Oncomelania hupensis on the growth and gene expression of mother sporocysts of Schistosoma japonicum. Parasitol Res 2011; 110:721-31. [PMID: 21800125 DOI: 10.1007/s00436-011-2548-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2011] [Accepted: 07/01/2011] [Indexed: 10/17/2022]
Abstract
Oncomelania hupensis is the intermediate host of Schistosoma japonicum. In the present study, we investigated the effects of protein extracts from head-foot or gland tissue of O. hupensis on mother sporocysts of S. japonicum cultured in vitro. In the presence of head-foot protein extract of snails from the native province Hunan, in-vitro-transformed mother sporocysts presented not only a longer survival time and stronger motility, but also a bigger size than parasites cultured with protein extracts of glands of the same snail or head-foot tissue of a non-native snail from the Hubei province. Using suppression subtractive hybridization, two subtractive libraries were constructed on the basis of RNA of sporocysts cultured with or without native snail head-foot protein extract. A number of 31 transcripts were found to be up-regulated. Sequence analyses revealed that they represented genes involved among others in metabolic process, electron transport chain, response to chemical stimulus, and oxidation-reduction processes. Opposite to that 20 down-regulated transcripts were among others related to pseudouridine synthesis, RNA processing, and ribosome biogenesis. The differential expression of three of these transcripts, encoding cytochrome c oxidase subunit 2 (Cox2), NADH-ubiquinone oxidoreductase (ND1), and dyskeratosis congenita 1 protein (DKC1), were confirmed by real-time PCR. The promoted development and the differential gene expression of cultured sporocysts under the influence of head-foot protein extract of native O. hupensis implied not only its ability to improve in vitro culture conditions for intramolluscan stages, it may also represent a priming result with respect to the identification and characterization of factors involved in the parasite-host interplay between S. japonicum and O. hupensis.
Collapse
Affiliation(s)
- Jun Yong Zhu
- Department of Parasitology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei Province, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Helminths and multiple sclerosis: will old friends give us new treatments for MS? J Neuroimmunol 2011; 233:3-5. [PMID: 21295861 DOI: 10.1016/j.jneuroim.2011.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2011] [Accepted: 01/10/2011] [Indexed: 12/26/2022]
|
10
|
Rinaldi G, Suttiprapa S, Brindley PJ. Quantitative retrotransposon anchored PCR confirms transduction efficiency of transgenes in adult Schistosoma mansoni. Mol Biochem Parasitol 2011; 177:70-6. [PMID: 21251928 DOI: 10.1016/j.molbiopara.2011.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2010] [Revised: 12/24/2010] [Accepted: 01/06/2011] [Indexed: 01/08/2023]
Abstract
A quantitative retrotransposon anchored PCR (qRAP) that utilizes endogenous retrotransposons as a chromosomal anchor was developed to investigate integration of transgenes in Schistosoma mansoni. The qRAP technique, which builds on earlier techniques, (i) Alu-PCR which has been used to quantify lentiviral (HIV-1) proviral insertions in human chromosomes and (ii) a non-quantitative retrotransposon anchored PCR known to detect the presence of transgenes in the S. mansoni genome, was tested here in a model comparison of retrovirus-transduced adult schistosomes in which one group included intact worms, the other included fragments of adult worms. At the outset, after transducing intact and viable fragments of schistosomes with reporter RNAs, we observed more reporter activity in fragments of worms than in intact worms. We considered this simply reflects the increased surface area in fragments compared to intact worms exposed to the exogenous reporter genes. Subsequently, intact worms and worm fragments were transduced with pseudotyped virions. Transgene integration events in genomic DNA extracted from the virion-exposed worms and worm fragments were quantified by the qRAP, which revealed that fragmenting adult schistosomes resulted in increased density of proviral integrations. The qRAP findings confirmed the likely value of this qRAP technique for quantification of transgenes integrated in schistosome chromosomes. Last, considering the absence of schistosome cell or tissue lines, primary culture of fragmented worms offers an opportunity to optimize transgenesis, and other functional genomic approaches.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037, USA.
| | | | | |
Collapse
|
11
|
Abstract
Schistosomes are parasitic worms that infect over 200 million people and constitute an enormous public health problem worldwide. Molecular tools are being developed for use with these parasites in order to increase our understanding of their unique molecular and cell biology. Among the more promising methodologies is RNA interference (RNAi, or gene silencing), a mechanism by which gene-specific double-stranded RNA (dsRNA) triggers degradation of homologous mRNA transcripts. In this work we describe methods for applying RNAi to suppress gene expression in the intra-mammalian life stages of Schistosoma mansoni. These methods include isolating and culturing the parasites, preparing and delivering dsRNA targeting a specific gene and monitoring the outcome. Given the abundance of schistosome transcriptome and genome sequences now available, RNAi technology has the potential to rapidly expand analysis of the roles and importance of the genes of this globally important parasite.
Collapse
Affiliation(s)
- Rita Bhardwaj
- Division of Infectious Diseases, Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| | | | | |
Collapse
|
12
|
Taft AS, Yoshino TP. Cloning and functional characterization of two calmodulin genes during larval development in the parasitic flatworm Schistosoma mansoni. J Parasitol 2010; 97:72-81. [PMID: 21348610 DOI: 10.1645/ge-2586.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022] Open
Abstract
Schistosomiasis is endemic in over 70 countries, in which more than 200 million people are infected with the various schistosome species. Understanding the physiological processes underlying key developmental events could be useful in developing novel chemotherapeutic reagents or infection intervention strategies. Calmodulin is a small, calcium-sensing protein found in all eukaryotes and, although the protein has been previously identified in various Schistosoma mansoni stages and implicated in egg hatching and miracidia transformation, few molecular and functional data are available for this essential protein. Herein, we report the molecular cloning, expression, and functional characterization of calmodulin in the miracidia and primary sporocyst stages of S. mansoni. Two transcripts, SmCaM1 and SmCaM2, were cloned and sequenced, and a recombinant SmCaM1 protein was expressed in Escherichia coli and used to generate anti-CaM antibodies. The 2 protein sequences were highly conserved when compared to other model organisms. The alignment of the predicted proteins of both SmCaM1 and SmCaM2 exhibited 99% identity to each other and 97-98% identity with mammalian calmodulins. Analysis of steady-state transcript abundance indicate that the 2 calmodulin transcripts differ in their stage-associated expression patterns, although the CaM protein isotype appears to be constitutively expressed during early larval development. Application of RNAi to larval parasites results in a "stunted growth" phenotype in sporocysts with 30 and 35% reduction in transcript abundance for SmCaM1 and SmCaM2, respectively, and a corresponding 35% reduction in protein level after incubation in double-stranded RNA. Differential expression of CaM transcripts during early larval development and a growth defect-inducing effect associated with partial transcript and protein inhibition as a result of RNAi suggest a potentially important role of calmodulin during early larval development.
Collapse
Affiliation(s)
- Andrew S Taft
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
13
|
Taft AS, Norante FA, Yoshino TP. The identification of inhibitors of Schistosoma mansoni miracidial transformation by incorporating a medium-throughput small-molecule screen. Exp Parasitol 2010; 125:84-94. [PMID: 20060828 DOI: 10.1016/j.exppara.2009.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2009] [Revised: 12/21/2009] [Accepted: 12/30/2009] [Indexed: 10/20/2022]
Abstract
In Schistosoma mansoni, the miracidium-to-primary sporocyst transformation process is associated with many physiological, morphological, transcriptional and biochemical changes. In the present study, we use a medium-throughput small-molecule screen to identify chemical compounds inhibiting or delaying the in vitro transformation of miracidia to the sporocyst stage. The Sigma-Aldrich Library of Pharmacologically Active Compounds (LOPAC) contains 1280 well-characterized chemical compounds with various modes of action including enzyme inhibitors, antibiotics, cell-cycle regulators, apoptosis inducers and GPCR ligands. We identified 47 compounds that greatly reduce or delay this transformation process during a primary screen of live miracidia. The majority of compounds inhibiting larval transformation were from dopaminergic, serotonergic, ion channel and phosphorylation classes. Specifically, we found that dopamine D2-type antagonists, serotonin reuptake inhibitors, voltage-gated calcium channel antagonists and a PKC activator significantly reduced in vitro miracidial transformation rates. Many of the targets of these compounds regulate adenylyl cyclase activity, with the inhibition or activation of these targets resulting in increased cAMP levels in miracidia and concomitant blocking/delaying of larval transformation.
Collapse
Affiliation(s)
- Andrew S Taft
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|