1
|
Kiang ALW, Loo SS, Mat-Isa MN, Ng CL, Blake DP, Wan KL. Insights into genomic sequence diversity of the SAG surface antigen superfamily in geographically diverse Eimeria tenella isolates. Sci Rep 2024; 14:26251. [PMID: 39482455 PMCID: PMC11528073 DOI: 10.1038/s41598-024-77580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Eimeria tenella is among the protozoan parasites that cause the infectious disease coccidiosis in chickens, incurring huge economic losses to the global poultry industry. Surface antigens (EtSAGs) involved in host-parasite interaction are potential targets for control strategies. However, the occurrence of genetic diversity for EtSAGs in field populations is unknown, as is the risk of such diversity to the efficacy of EtSAG-based control approaches. Here, the extent of EtSAG genetic diversity and its implications on protein structure and function is assessed. Eighty-seven full-length EtSAG genomic sequences were identified from E. tenella genome assemblies of isolates sampled from continents including North America (United States), Europe (United Kingdom), Asia (Malaysia and Japan) and Africa (Nigeria). Limited diversity was observed in the EtSAG sequences. However, distinctive patterns of polymorphism were identified between EtSAG subfamilies, suggesting functional differences among these antigen families. Polymorphisms were sparsely distributed across isolates, with a small number of variants exclusive to specific geographical regions. These findings enhance our understanding of EtSAGs, particularly in elucidating functional differences among the antigens that could inform the development of more effective and long-lasting anticoccidial control strategies.
Collapse
Affiliation(s)
- Alice Li-Wen Kiang
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia
| | - Shu-San Loo
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor DE, Malaysia
| | - Mohd-Noor Mat-Isa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor DE, Malaysia
| | - Chyan-Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia
| | - Damer P Blake
- Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Kiew-Lian Wan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia.
| |
Collapse
|
2
|
Eltahan R, Guo F, Zhang H, Xiang L, Zhu G. Discovery of ebselen as an inhibitor of Cryptosporidium parvum glucose-6-phosphate isomerase (CpGPI) by high-throughput screening of existing drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:43-49. [PMID: 29414105 PMCID: PMC6114080 DOI: 10.1016/j.ijpddr.2018.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 12/30/2022]
Abstract
Cryptosporidium parvum is a water-borne and food-borne apicomplexan pathogen. It is one of the top four diarrheal-causing pathogens in children under the age of five in developing countries, and an opportunistic pathogen in immunocompromised individuals. Unlike other apicomplexans, C. parvum lacks Kreb's cycle and cytochrome-based respiration, thus relying mainly on glycolysis to produce ATP. In this study, we characterized the primary biochemical features of the C. parvum glucose-6-phosphate isomerase (CpGPI) and determined its Michaelis constant towards fructose-6-phosphate (Km = 0.309 mM, Vmax = 31.72 nmol/μg/min). We also discovered that ebselen, an organoselenium drug, was a selective inhibitor of CpGPI by high-throughput screening of 1200 known drugs. Ebselen acted on CpGPI as an allosteric noncompetitive inhibitor (IC50 = 8.33 μM; Ki = 36.33 μM), while complete inhibition of CpGPI activity was not achieved. Ebselen could also inhibit the growth of C. parvum in vitro (EC50 = 165 μM) at concentrations nontoxic to host cells, albeit with a relatively small in vitro safety window of 4.2 (cytotoxicity TC50 on HCT-8 cells = 700 μM). Additionally, ebselen might also target other enzymes in the parasite, leading to the parasite growth reduction. Therefore, although ebselen is useful in studying the inhibition of CpGPI enzyme activity, further proof is needed to chemically and/or genetically validate CpGPI as a drug target. Cryptosporidium parvum possesses a single glucose-6-phosphate isomerase (CpGPI). CpGPI displays Michaelis-Menten kinetics towards fructose-6P (Km = 0.309 mM). The organoselenium ebselen is a CpGPI inhibitor identified from 1200 existing drugs. Ebselen displays allosteric noncompetitive inhibition on CpGPI (Ki = 36.33 μM). Ebeselen could inhibit the growth of C. parvum in vitro (EC50 = 165 μM).
Collapse
Affiliation(s)
- Rana Eltahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Lixin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA.
| |
Collapse
|
3
|
Abstract
INTRODUCTION Despite the fact that diseases caused by protozoan parasites represent serious challenges for public health, animal production and welfare, only a limited panel of drugs has been marketed for clinical applications. AREAS COVERED Herein, the authors investigate two strategies, namely whole organism screening and target-based drug design. The present pharmacopoeia has resulted from whole organism screening, and the mode of action and targets of selected drugs are discussed. However, the more recent extensive genome sequencing efforts and the development of dry and wet lab genomics and proteomics that allow high-throughput screening of interactions between micromolecules and recombinant proteins has resulted in target-based drug design as the predominant focus in anti-parasitic drug development. Selected examples of target-based drug design studies are presented, and calcium-dependent protein kinases, important drug targets in apicomplexan parasites, are discussed in more detail. EXPERT OPINION Despite the enormous efforts in target-based drug development, this approach has not yet generated market-ready antiprotozoal drugs. However, whole-organism screening approaches, comprising of both in vitro and in vivo investigations, should not be disregarded. The repurposing of already approved and marketed drugs could be a suitable strategy to avoid fastidious approval procedures, especially in the case of neglected or veterinary parasitoses.
Collapse
Affiliation(s)
- Joachim Müller
- a Institute of Parasitology, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - Andrew Hemphill
- a Institute of Parasitology, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| |
Collapse
|
4
|
Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae. Genomics 2013; 102:47-56. [DOI: 10.1016/j.ygeno.2013.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/08/2013] [Accepted: 04/18/2013] [Indexed: 11/23/2022]
|
5
|
Ruiz A, Muñoz M, Molina J, Hermosilla C, Rodríguez F, Andrada M, Martín S, A.Guedes, Pérez D, Matos L, López A, Taubert A. Primary infection of goats with Eimeria ninakohlyakimovae does not provide protective immunity against high challenge infections. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2013.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Zhang JJ, Wang LX, Ruan WK, An J. Investigation into the prevalence of coccidiosis and maduramycin drug resistance in chickens in China. Vet Parasitol 2013; 191:29-34. [DOI: 10.1016/j.vetpar.2012.07.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 06/05/2012] [Accepted: 07/27/2012] [Indexed: 11/25/2022]
|
7
|
Müller J, Hemphill A. New approaches for the identification of drug targets in protozoan parasites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:359-401. [PMID: 23317822 DOI: 10.1016/b978-0-12-407704-1.00007-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Antiparasitic chemotherapy is an important issue for drug development. Traditionally, novel compounds with antiprotozoan activities have been identified by screening of compound libraries in high-throughput systems. More recently developed approaches employ target-based drug design supported by genomics and proteomics of protozoan parasites. In this chapter, the drug targets in protozoan parasites are reviewed. The gene-expression machinery has been among the first targets for antiparasitic drugs and is still under investigation as a target for novel compounds. Other targets include cytoskeletal proteins, proteins involved in intracellular signaling, membranes, and enzymes participating in intermediary metabolism. In apicomplexan parasites, the apicoplast is a suitable target for established and novel drugs. Some drugs act on multiple subcellular targets. Drugs with nitro groups generate free radicals under anaerobic growth conditions, and drugs with peroxide groups generate radicals under aerobic growth conditions, both affecting multiple cellular pathways. Mefloquine and thiazolides are presented as examples for antiprotozoan compounds with multiple (side) effects. The classic approach of drug discovery employing high-throughput physiological screenings followed by identification of drug targets has yielded the mainstream of current antiprotozoal drugs. Target-based drug design supported by genomics and proteomics of protozoan parasites has not produced any antiparasitic drug so far. The reason for this is discussed and a synthesis of both methods is proposed.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, University of Berne, Berne, Switzerland.
| | | |
Collapse
|
8
|
Ruiz A, Matos L, Muñoz MC, Hermosilla C, Molina JM, Andrada M, Rodríguez F, Pérez D, López A, Guedes A, Taubert A. Isolation of an Eimeria ninakohlyakimovae field strain (Canary Islands) and analysis of its infection characteristics in goat kids. Res Vet Sci 2012; 94:277-84. [PMID: 22989759 DOI: 10.1016/j.rvsc.2012.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 11/28/2022]
Abstract
The current study was conducted to isolate a field strain of Eimeria ninakohlyakimovae, characterize its infectivity and the response to challenge under experimental conditions. The isolated strain (GC) induced a prepatent period of 14-15 days p.i., a patency of 7±2 days and a noticeable pathogenicity in infected goat kids. Challenge trials resulting in a decrease of oocysts per gram counts as well as a milder intensity of clinical signs in re-infected animals indicated the capacity of this strain to induce protective immune response. Altogether, the data reported in the present study suggest that the strain E. ninakohlyakimovae GC is a useful tool for the investigation of mechanisms of pathogenicity as well as host protective immune response in caprine coccidiosis, representing a valuable prerequisite for the development of future strategies in prophylaxis and control of this important parasitic disease in goat.
Collapse
Affiliation(s)
- A Ruiz
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lim LS, Tay YL, Alias H, Wan KL, Dear PH. Insights into the genome structure and copy-number variation of Eimeria tenella. BMC Genomics 2012; 13:389. [PMID: 22889016 PMCID: PMC3505466 DOI: 10.1186/1471-2164-13-389] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 08/01/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Eimeria is a genus of parasites in the same phylum (Apicomplexa) as human parasites such as Toxoplasma, Cryptosporidium and the malaria parasite Plasmodium. As an apicomplexan whose life-cycle involves a single host, Eimeria is a convenient model for understanding this group of organisms. Although the genomes of the Apicomplexa are diverse, that of Eimeria is unique in being composed of large alternating blocks of sequence with very different characteristics - an arrangement seen in no other organism. This arrangement has impeded efforts to fully sequence the genome of Eimeria, which remains the last of the major apicomplexans to be fully analyzed. In order to increase the value of the genome sequence data and aid in the effort to gain a better understanding of the Eimeria tenella genome, we constructed a whole genome map for the parasite. RESULTS A total of 1245 contigs representing 70.0% of the whole genome assembly sequences (Wellcome Trust Sanger Institute) were selected and subjected to marker selection. Subsequently, 2482 HAPPY markers were developed and typed. Of these, 795 were considered as usable markers, and utilized in the construction of a HAPPY map. Markers developed from chromosomally-assigned genes were then integrated into the HAPPY map and this aided the assignment of a number of linkage groups to their respective chromosomes. BAC-end sequences and contigs from whole genome sequencing were also integrated to improve and validate the HAPPY map. This resulted in an integrated HAPPY map consisting of 60 linkage groups that covers approximately half of the estimated 60 Mb genome. Further analysis suggests that the segmental organization first seen in Chromosome 1 is present throughout the genome, with repeat-poor (P) regions alternating with repeat-rich (R) regions. Evidence of copy-number variation between strains was also uncovered. CONCLUSIONS This paper describes the application of a whole genome mapping method to improve the assembly of the genome of E. tenella from shotgun data, and to help reveal its overall structure. A preliminary assessment of copy-number variation (extra or missing copies of genomic segments) between strains of E. tenella was also carried out. The emerging picture is of a very unusual genome architecture displaying inter-strain copy-number variation. We suggest that these features may be related to the known ability of this parasite to rapidly develop drug resistance.
Collapse
Affiliation(s)
- Lik-Sin Lim
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | | | | | | | | |
Collapse
|
10
|
Amiruddin N, Lee XW, Blake DP, Suzuki Y, Tay YL, Lim LS, Tomley FM, Watanabe J, Sugimoto C, Wan KL. Characterisation of full-length cDNA sequences provides insights into the Eimeria tenella transcriptome. BMC Genomics 2012; 13:21. [PMID: 22244352 PMCID: PMC3315734 DOI: 10.1186/1471-2164-13-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 01/13/2012] [Indexed: 11/12/2022] Open
Abstract
Background Eimeria tenella is an apicomplexan parasite that causes coccidiosis in the domestic fowl. Infection with this parasite is diagnosed frequently in intensively reared poultry and its control is usually accorded a high priority, especially in chickens raised for meat. Prophylactic chemotherapy has been the primary method used for the control of coccidiosis. However, drug efficacy can be compromised by drug-resistant parasites and the lack of new drugs highlights demands for alternative control strategies including vaccination. In the long term, sustainable control of coccidiosis will most likely be achieved through integrated drug and vaccination programmes. Characterisation of the E. tenella transcriptome may provide a better understanding of the biology of the parasite and aid in the development of a more effective control for coccidiosis. Results More than 15,000 partial sequences were generated from the 5' and 3' ends of clones randomly selected from an E. tenella second generation merozoite full-length cDNA library. Clustering of these sequences produced 1,529 unique transcripts (UTs). Based on the transcript assembly and subsequently primer walking, 433 full-length cDNA sequences were successfully generated. These sequences varied in length, ranging from 441 bp to 3,083 bp, with an average size of 1,647 bp. Simple sequence repeat (SSR) analysis identified CAG as the most abundant trinucleotide motif, while codon usage analysis revealed that the ten most infrequently used codons in E. tenella are UAU, UGU, GUA, CAU, AUA, CGA, UUA, CUA, CGU and AGU. Subsequent analysis of the E. tenella complete coding sequences identified 25 putative secretory and 60 putative surface proteins, all of which are now rational candidates for development as recombinant vaccines or drug targets in the effort to control avian coccidiosis. Conclusions This paper describes the generation and characterisation of full-length cDNA sequences from E. tenella second generation merozoites and provides new insights into the E. tenella transcriptome. The data generated will be useful for the development and validation of diagnostic and control strategies for coccidiosis and will be of value in annotation of the E. tenella genome sequence.
Collapse
Affiliation(s)
- Nadzirah Amiruddin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
| | | | | | | | | | | | | | | | | | | |
Collapse
|