1
|
Argüello-García R, Carrero JC, Ortega-Pierres MG. Extracellular Cysteine Proteases of Key Intestinal Protozoan Pathogens-Factors Linked to Virulence and Pathogenicity. Int J Mol Sci 2023; 24:12850. [PMID: 37629029 PMCID: PMC10454693 DOI: 10.3390/ijms241612850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Intestinal diseases caused by protistan parasites of the genera Giardia (giardiasis), Entamoeba (amoebiasis), Cryptosporidium (cryptosporidiosis) and Blastocystis (blastocystosis) represent a major burden in human and animal populations worldwide due to the severity of diarrhea and/or inflammation in susceptible hosts. These pathogens interact with epithelial cells, promoting increased paracellular permeability and enterocyte cell death (mainly apoptosis), which precede physiological and immunological disorders. Some cell-surface-anchored and molecules secreted from these parasites function as virulence markers, of which peptide hydrolases, particularly cysteine proteases (CPs), are abundant and have versatile lytic activities. Upon secretion, CPs can affect host tissues and immune responses beyond the site of parasite colonization, thereby increasing the pathogens' virulence. The four intestinal protists considered here are known to secrete predominantly clan A (C1- and C2-type) CPs, some of which have been characterized. CPs of Giardia duodenalis (e.g., Giardipain-1) and Entamoeba histolytica (EhCPs 1-6 and EhCP112) degrade mucin and villin, cause damage to intercellular junction proteins, induce apoptosis in epithelial cells and degrade immunoglobulins, cytokines and defensins. In Cryptosporidium, five Cryptopains are encoded in its genome, but only Cryptopains 4 and 5 are likely secreted. In Blastocystis sp., a legumain-activated CP, called Blastopain-1, and legumain itself have been detected in the extracellular medium, and the former has similar adverse effects on epithelial integrity and enterocyte survival. Due to their different functions, these enzymes could represent novel drug targets. Indeed, some promising results with CP inhibitors, such as vinyl sulfones (K11777 and WRR605), the garlic derivative, allicin, and purified amoebic CPs have been obtained in experimental models, suggesting that these enzymes might be useful drug targets.
Collapse
Affiliation(s)
- Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, Mexico;
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | - M. Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, Mexico;
| |
Collapse
|
2
|
Dhal AK, Panda C, Yun SIL, Mahapatra RK. An update on Cryptosporidium biology and therapeutic avenues. J Parasit Dis 2022; 46:923-939. [PMID: 35755159 PMCID: PMC9215156 DOI: 10.1007/s12639-022-01510-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium species has been identified as an important pediatric diarrheal pathogen in resource-limited countries, particularly in very young children (0–24 months). However, the only available drug (nitazoxanide) has limited efficacy and can only be prescribed in a medical setting to children older than one year. Many drug development projects have started to investigate new therapeutic avenues. Cryptosporidium’s unique biology is challenging for the traditional drug discovery pipeline and requires novel drug screening approaches. Notably, in recent years, new methods of oocyst generation, in vitro processing, and continuous three-dimensional cultivation capacities have been developed. This has enabled more physiologically pertinent research assays for inhibitor discovery. In a short time, many great strides have been made in the development of anti-Cryptosporidium drugs. These are expected to eventually turn into clinical candidates for cryptosporidiosis treatment in the future. This review describes the latest development in Cryptosporidium biology, genomics, transcriptomics of the parasite, assay development, and new drug discovery.
Collapse
Affiliation(s)
- Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Chinmaya Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Soon-IL Yun
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | | |
Collapse
|
3
|
Inhibitor of Cysteine Protease of Plasmodium malariae Regulates Malapains, Endogenous Cysteine Proteases of the Parasite. Pathogens 2022; 11:pathogens11050605. [PMID: 35631126 PMCID: PMC9142985 DOI: 10.3390/pathogens11050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Cysteine proteases of malaria parasites have been recognized as potential targets in antimalarial drug development as they play pivotal roles in the biology of these parasites. However, strict regulation of their activities is also necessary to minimize or prevent deleterious damage to the parasite and the host. Previously, we have characterized falcipain family cysteine proteases of Plasmodium malariae, named as malapains (MPs). MPs are active hemoglobinases. They also may participate in the release of merozoites from mature schizonts by facilitating remodeling of erythrocyte skeleton proteins. In this study, we identified and characterized an endogenous inhibitor of cysteine protease of P. malariae (PmICP). PmICP shared similar structural and biochemical properties with ICPs from other Plasmodium species. Recombinant PmICP showed a broad range of inhibitory activities against diverse cysteine proteases such as falcipain family enzymes (MP-2, MP-4, VX-3, VX-4, and FP-3), papain, and human cathepsins B and L, with stronger inhibitory activities against falcipain family enzymes. The inhibitory activity of PmICP was not affected by pH. PmICP was thermo-labile, resulting in rapid loss of its inhibitory activity at a high temperature. PmICP effectively inhibited hemoglobin hydrolysis by MPs and regulated maturation of MPs, suggesting its role as a functional regulator of MPs.
Collapse
|
4
|
A Novel Cysteine Protease Inhibitor of Naegleria fowleri That Is Specifically Expressed during Encystation and at Mature Cysts. Pathogens 2021; 10:pathogens10040388. [PMID: 33804993 PMCID: PMC8063937 DOI: 10.3390/pathogens10040388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022] Open
Abstract
Naegleria fowleri is a free-living amoeba that is ubiquitous in diverse natural environments. It causes a fatal brain infection in humans known as primary amoebic meningoencephalitis. Despite the medical importance of the parasitic disease, there is a great lack of knowledge about the biology and pathogenicity of N. fowleri. In this study, we identified and characterized a novel cysteine protease inhibitor of N. fowleri (NfCPI). NfCPI is a typical cysteine protease inhibitor belonging to the cystatin family with a Gln-Val-Val-Ala-Gly (QVVAG) motif, a characteristic motif conserved in the cystatin family of proteins. Bacterially expressed recombinant NfCPI has a dimeric structure and exhibits inhibitory activity against several cysteine proteases including cathespin Bs of N. fowleri at a broad range of pH values. Expression profiles of nfcpi revealed that the gene was highly expressed during encystation and cyst of the amoeba. Western blot and immunofluorescence assays also support its high level of expression in cysts. These findings collectively suggest that NfCPI may play a critical role in encystation or cyst formation of N. fowleri by regulating cysteine proteases that may mediate encystation or mature cyst formation of the amoeba. More comprehensive studies to investigate the roles of NfCPI in encystation and its target proteases are necessary to elucidate the regulatory mechanism and the biological significance of NfCPI.
Collapse
|
5
|
Shindo T, Kaschani F, Yang F, Kovács J, Tian F, Kourelis J, Hong TN, Colby T, Shabab M, Chawla R, Kumari S, Ilyas M, Hörger AC, Alfano JR, van der Hoorn RAL. Screen of Non-annotated Small Secreted Proteins of Pseudomonas syringae Reveals a Virulence Factor That Inhibits Tomato Immune Proteases. PLoS Pathog 2016; 12:e1005874. [PMID: 27603016 PMCID: PMC5014320 DOI: 10.1371/journal.ppat.1005874] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/15/2016] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) is an extracellular model plant pathogen, yet its potential to produce secreted effectors that manipulate the apoplast has been under investigated. Here we identified 131 candidate small, secreted, non-annotated proteins from the PtoDC3000 genome, most of which are common to Pseudomonas species and potentially expressed during apoplastic colonization. We produced 43 of these proteins through a custom-made gateway-compatible expression system for extracellular bacterial proteins, and screened them for their ability to inhibit the secreted immune protease C14 of tomato using competitive activity-based protein profiling. This screen revealed C14-inhibiting protein-1 (Cip1), which contains motifs of the chagasin-like protease inhibitors. Cip1 mutants are less virulent on tomato, demonstrating the importance of this effector in apoplastic immunity. Cip1 also inhibits immune protease Pip1, which is known to suppress PtoDC3000 infection, but has a lower affinity for its close homolog Rcr3, explaining why this protein is not recognized in tomato plants carrying the Cf-2 resistance gene, which uses Rcr3 as a co-receptor to detect pathogen-derived protease inhibitors. Thus, this approach uncovered a protease inhibitor of P. syringae, indicating that also P. syringae secretes effectors that selectively target apoplastic host proteases of tomato, similar to tomato pathogenic fungi, oomycetes and nematodes.
Collapse
Affiliation(s)
- Takayuki Shindo
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Farnusch Kaschani
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Fan Yang
- Center for Plant Science Innovation and the Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Judit Kovács
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Fang Tian
- Center for Plant Science Innovation and the Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jiorgos Kourelis
- Plant Chemetics lab, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Tram Ngoc Hong
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Plant Chemetics lab, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Tom Colby
- Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mohammed Shabab
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rohini Chawla
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Selva Kumari
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Muhammad Ilyas
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Anja C. Hörger
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - James R. Alfano
- Center for Plant Science Innovation and the Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Renier A. L. van der Hoorn
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Plant Chemetics lab, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Microbial inhibitors of cysteine proteases. Med Microbiol Immunol 2016; 205:275-96. [DOI: 10.1007/s00430-016-0454-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023]
|
7
|
Costa TF, Lima APC. Natural cysteine protease inhibitors in protozoa: Fifteen years of the chagasin family. Biochimie 2016; 122:197-207. [DOI: 10.1016/j.biochi.2015.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022]
|
8
|
The Biological Fight Against Pathogenic Bacteria and Protozoa. NEW WEAPONS TO CONTROL BACTERIAL GROWTH 2016. [PMCID: PMC7123701 DOI: 10.1007/978-3-319-28368-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The animal gastrointestinal tract is a tube with two open ends; hence, from the microbial point of view it constitutes an open system, as opposed to the circulatory system that must be a tightly closed microbial-free environment. In particular, the human intestine spans ca. 200 m2 and represents a massive absorptive surface composed of a layer of epithelial cells as well as a paracellular barrier. The permeability of this paracellular barrier is regulated by transmembrane proteins known as claudins that play a critical role in tight junctions.
Collapse
|
9
|
Miyamoto Y, Eckmann L. Drug Development Against the Major Diarrhea-Causing Parasites of the Small Intestine, Cryptosporidium and Giardia. Front Microbiol 2015; 6:1208. [PMID: 26635732 PMCID: PMC4652082 DOI: 10.3389/fmicb.2015.01208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022] Open
Abstract
Diarrheal diseases are among the leading causes of morbidity and mortality in the world, particularly among young children. A limited number of infectious agents account for most of these illnesses, raising the hope that advances in the treatment and prevention of these infections can have global health impact. The two most important parasitic causes of diarrheal disease are Cryptosporidium and Giardia. Both parasites infect predominantly the small intestine and colonize the lumen and epithelial surface, but do not invade deeper mucosal layers. This review discusses the therapeutic challenges, current treatment options, and drug development efforts against cryptosporidiosis and giardiasis. The goals of drug development against Cryptosporidium and Giardia are different. For Cryptosporidium, only one moderately effective drug (nitazoxanide) is available, so novel classes of more effective drugs are a high priority. Furthermore, new genetic technology to identify potential drug targets and better assays for functional evaluation of these targets throughout the parasite life cycle are needed for advancing anticryptosporidial drug design. By comparison, for Giardia, several classes of drugs with good efficacy exist, but dosing regimens are suboptimal and emerging resistance begins to threaten clinical utility. Consequently, improvements in potency and dosing, and the ability to overcome existing and prevent new forms of drug resistance are priorities in antigiardial drug development. Current work on new drugs against both infections has revealed promising strategies and new drug leads. However, the primary challenge for further drug development is the underlying economics, as both parasitic infections are considered Neglected Diseases with low funding priority and limited commercial interest. If a new urgency in medical progress against these infections can be raised at national funding agencies or philanthropic organizations, meaningful and timely progress is possible in treating and possibly preventing cryptosporidiosis and giardiasis.
Collapse
Affiliation(s)
- Yukiko Miyamoto
- Department of Medicine, University of California at San Diego, La Jolla CA, USA
| | - Lars Eckmann
- Department of Medicine, University of California at San Diego, La Jolla CA, USA
| |
Collapse
|
10
|
Guo Y, Tang K, Rowe LA, Li N, Roellig DM, Knipe K, Frace M, Yang C, Feng Y, Xiao L. Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum. BMC Genomics 2015; 16:320. [PMID: 25903370 PMCID: PMC4407392 DOI: 10.1186/s12864-015-1517-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/10/2015] [Indexed: 11/17/2022] Open
Abstract
Background Cryptosporidium hominis is a dominant species for human cryptosporidiosis. Within the species, IbA10G2 is the most virulent subtype responsible for all C. hominis–associated outbreaks in Europe and Australia, and is a dominant outbreak subtype in the United States. In recent yearsIaA28R4 is becoming a major new subtype in the United States. In this study, we sequenced the genomes of two field specimens from each of the two subtypes and conducted a comparative genomic analysis of the obtained sequences with those from the only fully sequenced Cryptosporidium parvum genome. Results Altogether, 8.59-9.05 Mb of Cryptosporidium sequences in 45–767 assembled contigs were obtained from the four specimens, representing 94.36-99.47% coverage of the expected genome. These genomes had complete synteny in gene organization and 96.86-97.0% and 99.72-99.83% nucleotide sequence similarities to the published genomes of C. parvum and C. hominis, respectively. Several major insertions and deletions were seen between C. hominis and C. parvum genomes, involving mostly members of multicopy gene families near telomeres. The four C. hominis genomes were highly similar to each other and divergent from the reference IaA25R3 genome in some highly polymorphic regions. Major sequence differences among the four specimens sequenced in this study were in the 5′ and 3′ ends of chromosome 6 and the gp60 region, largely the result of genetic recombination. Conclusions The sequence similarity among specimens of the two dominant outbreak subtypes and genetic recombination in chromosome 6, especially around the putative virulence determinant gp60 region, suggest that genetic recombination plays a potential role in the emergence of hyper-transmissible C. hominis subtypes. The high sequence conservation between C. parvum and C. hominis genomes and significant differences in copy numbers of MEDLE family secreted proteins and insulinase-like proteases indicate that telomeric gene duplications could potentially contribute to host expansion in C. parvum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1517-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yaqiong Guo
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China. .,Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Lori A Rowe
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Na Li
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Kristine Knipe
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Michael Frace
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Chunfu Yang
- Division of Global HIV/AIDS, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| |
Collapse
|
11
|
Lehmann C, Heitmann A, Mishra S, Burda PC, Singer M, Prado M, Niklaus L, Lacroix C, Ménard R, Frischknecht F, Stanway R, Sinnis P, Heussler V. A cysteine protease inhibitor of plasmodium berghei is essential for exo-erythrocytic development. PLoS Pathog 2014; 10:e1004336. [PMID: 25166051 PMCID: PMC4148452 DOI: 10.1371/journal.ppat.1004336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 07/08/2014] [Indexed: 11/18/2022] Open
Abstract
Plasmodium parasites express a potent inhibitor of cysteine proteases (ICP) throughout their life cycle. To analyze the role of ICP in different life cycle stages, we generated a stage-specific knockout of the Plasmodium berghei ICP (PbICP). Excision of the pbicb gene occurred in infective sporozoites and resulted in impaired sporozoite invasion of hepatocytes, despite residual PbICP protein being detectable in sporozoites. The vast majority of these parasites invading a cultured hepatocyte cell line did not develop to mature liver stages, but the few that successfully developed hepatic merozoites were able to initiate a blood stage infection in mice. These blood stage parasites, now completely lacking PbICP, exhibited an attenuated phenotype but were able to infect mosquitoes and develop to the oocyst stage. However, PbICP-negative sporozoites liberated from oocysts exhibited defective motility and invaded mosquito salivary glands in low numbers. They were also unable to invade hepatocytes, confirming that control of cysteine protease activity is of critical importance for sporozoites. Importantly, transfection of PbICP-knockout parasites with a pbicp-gfp construct fully reversed these defects. Taken together, in P. berghei this inhibitor of the ICP family is essential for sporozoite motility but also appears to play a role during parasite development in hepatocytes and erythrocytes.
Collapse
Affiliation(s)
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Satish Mishra
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | - Mirko Singer
- University of Heidelberg Medical School, Heidelberg, Germany
| | - Monica Prado
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Livia Niklaus
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Céline Lacroix
- Institute Pasteur, Unité de Biologie et Génétique du Paludisme, Paris, France
| | - Robert Ménard
- Institute Pasteur, Unité de Biologie et Génétique du Paludisme, Paris, France
| | | | - Rebecca Stanway
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Photini Sinnis
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Cross-talk between malarial cysteine proteases and falstatin: the BC loop as a hot-spot target. PLoS One 2014; 9:e93008. [PMID: 24699522 PMCID: PMC3974720 DOI: 10.1371/journal.pone.0093008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/27/2014] [Indexed: 02/05/2023] Open
Abstract
Cysteine proteases play a crucial role in the development of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Our earlier studies demonstrated that these enzymes are equipped with specific domains for defined functions and further suggested the mechanism of activation of cysteine proteases. The activities of these proteases are regulated by a new class of endogenous inhibitors of cysteine proteases (ICPs). Structural studies of the ICPs of Trypanosoma cruzi (chagasin) and Plasmodium berghei (PbICP) indicated that three loops (termed BC, DE, and FG) are crucial for binding to target proteases. Falstatin, an ICP of P. falciparum, appears to play a crucial role in invasion of erythrocytes and hepatocytes. However, the mechanism of inhibition of cysteine proteases by falstatin has not been established. Our study suggests that falstatin is the first known ICP to function as a multimeric protein. Using site-directed mutagenesis, hemoglobin hydrolysis assays and peptide inhibition studies, we demonstrate that the BC loop, but not the DE or FG loops, inhibits cysteine proteases of P. falciparum and P. vivax via hydrogen bonds. These results suggest that the BC loop of falstatin acts as a hot-spot target for inhibiting malarial cysteine proteases. This finding suggests new strategies for the development of anti-malarial agents based on protease-inhibitor interactions.
Collapse
|
13
|
Abstract
SUMMARYCryptosporidiumhost cell interaction remains fairly obscure compared with other apicomplexans such asPlasmodiumorToxoplasma. The reason for this is probably the inability of this parasite to complete its life cyclein vitroand the lack of a system to genetically modifyCryptosporidium. However, there is a substantial set of data about the molecules involved in attachment and invasion and about the host cell pathways involved in actin arrangement that are altered by the parasite. Here we summarize the recent advances in research on host cell infection regarding the excystation process, attachment and invasion, survival in the cell, egress and the available data on omics.
Collapse
|
14
|
Identification and characterization of the second cysteine protease inhibitor of Clonorchis sinensis (CsStefin-2). Parasitol Res 2013; 113:47-58. [DOI: 10.1007/s00436-013-3624-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
15
|
PROTEIN INHIBITORS SYNTHESISED BY MICROORGANISMS. BIOTECHNOLOGIA ACTA 2013. [DOI: 10.15407/biotech6.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|