1
|
Wang T, Ma G, Ang CS, Korhonen PK, Stroehlein AJ, Young ND, Hofmann A, Chang BCH, Williamson NA, Gasser RB. The developmental phosphoproteome of Haemonchus contortus. J Proteomics 2019; 213:103615. [PMID: 31846766 DOI: 10.1016/j.jprot.2019.103615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Protein phosphorylation plays essential roles in many cellular processes. Despite recent progress in the genomics, transcriptomics and proteomics of socioeconomically important parasitic nematodes, there is scant phosphoproteomic data to underpin molecular biological discovery. Here, using the phosphopeptide enrichment-based LC-MS/MS and data-independent acquisition (DIA) quantitation, we characterised the first developmental phosphoproteome of the parasitic nematode Haemonchus contortus - one of the most pathogenic parasites of ruminant livestock. Totally, 1804 phosphorylated proteins with 4406 phosphorylation sites ('phosphosites') from different developmental stages/sexes were identified. Bioinformatic analyses of quantified 'phosphosites' exhibited distinctive stage- and sex-specific patterns during development, and identified a subset of phosphoproteins proposed to play crucial roles in processes such as spindle positioning, signal transduction and kinase activity. A sequence-based comparison of the phosphoproteome of H. contortus with those of two free-living nematode species (Caenorhabditis elegans and Pristionchus pacificus) suggested a limited number of common protein phosphorylation events among these species. Our findings infer active roles for protein phosphorylation in the adaptation of a parasitic nematode to a constantly changing external environment. The phosphoproteomic data set for H. contortus provides a basis to better understand phosphorylation and associated biological processes (e.g., regulation of signal transduction), and might enable the discovery of novel anthelmintic targets. SIGNIFICANCE: Here, we report the first phosphoproteome for a socioeconomically parasitic nematode (Haemonchus contortus). This phosphoproteome exhibits distinctive patterns during development, suggesting active roles of post-translational modification in the parasite's adaptation to changing environments within and outside of the host animal. This work sheds a light on the developmental phosphorylation in a parasitic nematode, and could enable the discovery of novel interventions against major pathogens.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
2
|
Yadav P, Ayana R, Garg S, Jain R, Sah R, Joshi N, Pati S, Singh S. Plasmodium palmitoylation machinery engineered in E. coli for high-throughput screening of palmitoyl acyl-transferase inhibitors. FEBS Open Bio 2019; 9:248-264. [PMID: 30761251 PMCID: PMC6356172 DOI: 10.1002/2211-5463.12564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/21/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022] Open
Abstract
Lipid‐based palmitoylation is a post‐translation modification (PTM) which acts as a biological rheostat in life cycle progression of a deadly human malaria parasite, Plasmodium falciparum. P. falciparum palmitoylation is catalyzed by 12 putative palmitoyl acyl‐transferase enzymes containing the conserved DHHC‐CRD (DHHC motif within a cysteine‐rich domain) which can serve as a druggable target. However, the paucity of high‐throughput assays has impeded the design of drugs targeting palmitoylation. We have developed a novel strategy which involves engineering of Escherichia coli, a PTM‐null system, to enforce ectopic expression of palmitoyl acyl‐transferase in order to study Plasmodium‐specific palmitoylation and screening of inhibitors. In this study, we have developed three synthetic E. coli strains expressing Plasmodium‐specific DHHC proteins (PfDHHC7/8/9). These cells were used for validating acyl‐transferase activity via acyl‐biotin exchange (ABE) and clickable chemistry methods. E. coli proteome was found to be palmitoylated in PfDHHC‐expressing clones, suggesting that plasmodium DHHC can catalyze palmitoylation of E. coli proteins. Upon treatment with generic inhibitor 2‐bromopalmitate (2‐BMP), a predominant reduction in palmitic acid incorporation is detected. Overall, these findings suggest that synthetic E. coli strains expressing PfDHHCs can enforce global palmitoylation in the E. coli proteome. Interestingly, this finding was corroborated by our in silico palmitoylome profiling, which revealed that out of the total E. coli proteome, 108 proteins were predicted to be palmitoylated as represented by the presence of three cysteine consensus motifs (cluster type I, II, III). In summary, our study reports a proof of concept for screening of chemotherapeutics targeting the palmitoylation machinery using a high‐throughput screening platform.
Collapse
Affiliation(s)
- Preeti Yadav
- Special Centre for Molecular Medicine Jawaharlal Nehru University New Delhi India
| | - R Ayana
- Department of Life Sciences School of Natural Sciences Shiv Nadar University Greater Noida, Uttar Pradesh India
| | - Swati Garg
- Department of Life Sciences School of Natural Sciences Shiv Nadar University Greater Noida, Uttar Pradesh India
| | - Ravi Jain
- Department of Life Sciences School of Natural Sciences Shiv Nadar University Greater Noida, Uttar Pradesh India
| | - Raj Sah
- Special Centre for Molecular Medicine Jawaharlal Nehru University New Delhi India
| | - Nishant Joshi
- Department of Life Sciences School of Natural Sciences Shiv Nadar University Greater Noida, Uttar Pradesh India
| | - Soumya Pati
- Department of Life Sciences School of Natural Sciences Shiv Nadar University Greater Noida, Uttar Pradesh India
| | - Shailja Singh
- Special Centre for Molecular Medicine Jawaharlal Nehru University New Delhi India
| |
Collapse
|
3
|
Ayana R, Yadav P, Kumari R, Ramu D, Garg S, Pati S, Singh S. Identification and Characterization of a Novel Palmitoyl Acyltransferase as a Druggable Rheostat of Dynamic Palmitoylome in L. donovani. Front Cell Infect Microbiol 2018; 8:186. [PMID: 29977865 PMCID: PMC6022219 DOI: 10.3389/fcimb.2018.00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023] Open
Abstract
Palmitoylation has been recently identified as an important post-translational rheostat for controlling protein function in eukaryotes. However, the molecular machinery underlying palmitoylation remains unclear in the neglected tropical parasite, Leishmania donovani. Herein, we have identified a catalog of 20 novel palmitoyl acyltransferases (PATs) and characterized the promastigote-specific PAT (LdPAT4) containing the canonical Asp-His-His-Cys (DHHC) domain. Immunofluorescence analysis using in-house generated LdPAT4-specific antibody demonstrated distinct expression of LdPAT4 in the flagellar pocket of promastigotes. Using metabolic labeling-coupled click chemistry method, the functionality of this recombinant enzyme could be authenticated in E. coli strain expressing LdPAT4-DHHC domain. This was evident by the cellular uptake of palmitic acid analogs, which could be successfully inhibited by 2-BMP, a PAT-specific inhibitor. Using CSS-Palm based in-silico proteomic analysis, we could predict up to 23 palmitoylated sites per protein in the promastigotes, and further identify distinctive palmitoylated protein clusters involved in microtubule assembly, flagella motility and vesicular trafficking. To highlight, proteins such as Flagellar Member proteins (FLAM1, FLAM5), Intraflagellar Transport proteins (IFT88), and flagellar motor assembly proteins including the Dynein family were found to be enriched. Furthermore, analysis of global palmitoylation in promastigotes using Acyl-biotin exchange purification identified a set of S-palmitoylated proteins overlapping with the in-silico proteomics data. The attenuation of palmitoylation using 2-BMP demonstrated several phenotypic alterations in the promastigotes including distorted morphology, reduced motility (flagellar loss or slow flagellar beating), and inefficient invasion of promastigotes to host macrophages. These analyses confirm the essential role of palmitoylation in promastigotes. In summary, the findings suggest that LdPAT4 acts as a functional acyltransferase that can regulate palmitoylation of proteins involved in parasite motility and invasion, thus, can serve as a potential target for designing chemotherapeutics in Visceral Leishmaniasis.
Collapse
Affiliation(s)
- R Ayana
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Preeti Yadav
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rajesh Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Dandugudumula Ramu
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Swati Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Eichenberger RM, Ramakrishnan C, Russo G, Deplazes P, Hehl AB. Genome-wide analysis of gene expression and protein secretion of Babesia canis during virulent infection identifies potential pathogenicity factors. Sci Rep 2017; 7:3357. [PMID: 28611446 PMCID: PMC5469757 DOI: 10.1038/s41598-017-03445-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022] Open
Abstract
Infections of dogs with virulent strains of Babesia canis are characterized by rapid onset and high mortality, comparable to complicated human malaria. As in other apicomplexan parasites, most Babesia virulence factors responsible for survival and pathogenicity are secreted to the host cell surface and beyond where they remodel and biochemically modify the infected cell interacting with host proteins in a very specific manner. Here, we investigated factors secreted by B. canis during acute infections in dogs and report on in silico predictions and experimental analysis of the parasite’s exportome. As a backdrop, we generated a fully annotated B. canis genome sequence of a virulent Hungarian field isolate (strain BcH-CHIPZ) underpinned by extensive genome-wide RNA-seq analysis. We find evidence for conserved factors in apicomplexan hemoparasites involved in immune-evasion (e.g. VESA-protein family), proteins secreted across the iRBC membrane into the host bloodstream (e.g. SA- and Bc28 protein families), potential moonlighting proteins (e.g. profilin and histones), and uncharacterized antigens present during acute crisis in dogs. The combined data provides a first predicted and partially validated set of potential virulence factors exported during fatal infections, which can be exploited for urgently needed innovative intervention strategies aimed at facilitating diagnosis and management of canine babesiosis.
Collapse
Affiliation(s)
| | | | | | - Peter Deplazes
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Emery SJ, Lacey E, Haynes PA. Quantitative proteomics in Giardia duodenalis —Achievements and challenges. Mol Biochem Parasitol 2016; 208:96-112. [DOI: 10.1016/j.molbiopara.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 12/31/2022]
|
6
|
Emery SJ, Mirzaei M, Vuong D, Pascovici D, Chick JM, Lacey E, Haynes PA. Induction of virulence factors in Giardia duodenalis independent of host attachment. Sci Rep 2016; 6:20765. [PMID: 26867958 PMCID: PMC4751611 DOI: 10.1038/srep20765] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response.
Collapse
Affiliation(s)
- Samantha J Emery
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Pty, Ltd, Smithfield, NSW 2165, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW, 2109, Australia
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ernest Lacey
- Microbial Screening Technologies, Pty, Ltd, Smithfield, NSW 2165, Australia
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
7
|
Swann J, Jamshidi N, Lewis NE, Winzeler EA. Systems analysis of host-parasite interactions. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:381-400. [PMID: 26306749 PMCID: PMC4679367 DOI: 10.1002/wsbm.1311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/16/2022]
Abstract
Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug‐resistant parasites necessitates that the research community take an active role in understanding host–parasite infection biology in order to develop improved therapeutics. Recent advances in next‐generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host–parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high‐throughput ‐omic data will undoubtedly generate extraordinary insight into host–parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host–parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies. WIREs Syst Biol Med 2015, 7:381–400. doi: 10.1002/wsbm.1311 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Justine Swann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Neema Jamshidi
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, USA.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics and Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
de Monerri NCS, Weiss LM. Integration of RNA-seq and proteomics data with genomics for improved genome annotation in Apicomplexan parasites. Proteomics 2015; 15:2557-9. [PMID: 26152714 PMCID: PMC4552184 DOI: 10.1002/pmic.201500253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 11/07/2022]
Abstract
While high quality genomic sequence data is available for many pathogenic organisms, the corresponding gene annotations are often plagued with inaccuracies that can hinder research that utilizes such genomic data. Experimental validation of gene models is clearly crucial in improving such gene annotations; the field of proteogenomics is an emerging area of research wherein proteomic data is applied to testing and improving genetic models. Krishna et al. [Proteomics 2015, 15, 2618-2628] investigated whether incorporation of RNA-seq data into proteogenomics analyses can contribute significantly to validation studies of genome annotation, in two important parasitic organisms Toxoplasma gondii and Neospora caninum. They applied a systematic approach to combine new and previously published proteomics data from T. gondii and N. caninum with transcriptomics data, leading to substantially improved gene models for these organisms. This study illustrates the importance of incorporating experimental data from both proteomics and RNA-seq studies into routine genome annotation protocols.
Collapse
Affiliation(s)
- Natalie C. Silmon de Monerri
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Room 504 Forchheimer, Bronx, NY, 10461
| | - Louis M. Weiss
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Room 504 Forchheimer, Bronx, NY, 10461
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Room 504 Forchheimer, Bronx, NY, 10461
| |
Collapse
|
9
|
van der Ree AM, Mutapi F. The helminth parasite proteome at the host-parasite interface - Informing diagnosis and control. Exp Parasitol 2015; 157:48-58. [PMID: 26116863 DOI: 10.1016/j.exppara.2015.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/16/2015] [Accepted: 06/15/2015] [Indexed: 12/27/2022]
Abstract
Helminth parasites are a significant health burden for humans in the developing world and also cause substantial economic losses in livestock production across the world. The combined lack of vaccines for the major human and veterinary helminth parasites in addition to the development of drug resistance to anthelmintics in sheep and cattle mean that controlling helminth infection and pathology remains a challenge. However, recent high throughput technological advances mean that screening for potential drug and vaccine candidates is now easier than in previous decades. A better understanding of the host-parasite interactions occurring during infection and pathology and identifying pathways that can be therapeutically targeted for more effective and 'evolution proof' interventions is now required. This review highlights some of the advances that have been made in understanding the host-parasite interface in helminth infections using studies of the temporal expression of parasite proteins, i.e. the parasite proteome, and discuss areas for potential future research and translation.
Collapse
Affiliation(s)
- Anna M van der Ree
- Institute of Immunology & Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Krishna R, Xia D, Sanderson S, Shanmugasundram A, Vermont S, Bernal A, Daniel-Naguib G, Ghali F, Brunk BP, Roos DS, Wastling JM, Jones AR. A large-scale proteogenomics study of apicomplexan pathogens-Toxoplasma gondii and Neospora caninum. Proteomics 2015; 15:2618-28. [PMID: 25867681 PMCID: PMC4692086 DOI: 10.1002/pmic.201400553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/09/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023]
Abstract
Proteomics data can supplement genome annotation efforts, for example being used to confirm gene models or correct gene annotation errors. Here, we present a large-scale proteogenomics study of two important apicomplexan pathogens: Toxoplasma gondii and Neospora caninum. We queried proteomics data against a panel of official and alternate gene models generated directly from RNASeq data, using several newly generated and some previously published MS datasets for this meta-analysis. We identified a total of 201 996 and 39 953 peptide-spectrum matches for T. gondii and N. caninum, respectively, at a 1% peptide FDR threshold. This equated to the identification of 30 494 distinct peptide sequences and 2921 proteins (matches to official gene models) for T. gondii, and 8911 peptides/1273 proteins for N. caninum following stringent protein-level thresholding. We have also identified 289 and 140 loci for T. gondii and N. caninum, respectively, which mapped to RNA-Seq-derived gene models used in our analysis and apparently absent from the official annotation (release 10 from EuPathDB) of these species. We present several examples in our study where the RNA-Seq evidence can help in correction of the current gene model and can help in discovery of potential new genes. The findings of this study have been integrated into the EuPathDB. The data have been deposited to the ProteomeXchange with identifiers PXD000297and PXD000298.
Collapse
Affiliation(s)
- Ritesh Krishna
- Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, UK.,Institute of Infection and Global Health, University of Liverpool, Liverpool, Merseyside, UK
| | - Dong Xia
- Institute of Infection and Global Health, University of Liverpool, Liverpool, Merseyside, UK
| | - Sanya Sanderson
- Institute of Infection and Global Health, University of Liverpool, Liverpool, Merseyside, UK
| | - Achchuthan Shanmugasundram
- Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, UK.,Institute of Infection and Global Health, University of Liverpool, Liverpool, Merseyside, UK
| | - Sarah Vermont
- Institute of Infection and Global Health, University of Liverpool, Liverpool, Merseyside, UK
| | - Axel Bernal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Fawaz Ghali
- Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, UK
| | - Brian P Brunk
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan M Wastling
- Institute of Infection and Global Health, University of Liverpool, Liverpool, Merseyside, UK
| | - Andrew R Jones
- Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, UK
| |
Collapse
|
11
|
Emery SJ, van Sluyter S, Haynes PA. Proteomic analysis inGiardia duodenalisyields insights into strain virulence and antigenic variation. Proteomics 2014; 14:2523-34. [DOI: 10.1002/pmic.201400144] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/19/2014] [Accepted: 09/25/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Samantha J. Emery
- Department of Chemistry and Biomolecular Sciences; Macquarie University; North Ryde New South Wales Australia
| | - Steve van Sluyter
- Department of Chemistry and Biomolecular Sciences; Macquarie University; North Ryde New South Wales Australia
| | - Paul A. Haynes
- Department of Chemistry and Biomolecular Sciences; Macquarie University; North Ryde New South Wales Australia
| |
Collapse
|
12
|
|
13
|
Panek J, El Alaoui H, Mone A, Urbach S, Demettre E, Texier C, Brun C, Zanzoni A, Peyretaillade E, Parisot N, Lerat E, Peyret P, Delbac F, Biron DG. Hijacking of host cellular functions by an intracellular parasite, the microsporidian Anncaliia algerae. PLoS One 2014; 9:e100791. [PMID: 24967735 PMCID: PMC4072689 DOI: 10.1371/journal.pone.0100791] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/29/2014] [Indexed: 11/18/2022] Open
Abstract
Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture) quantitative proteomics workflow. Our study focused on deciphering the cross-talk in a host-parasite association, involving human foreskin fibroblasts (HFF) and the microsporidia Anncaliia algerae, a fungus related parasite with an obligate intracellular lifestyle and a strong host dependency. The host-parasite cross-talk was analyzed at five post-infection times 1, 6, 12 and 24 hours post-infection (hpi) and 8 days post-infection (dpi). A significant up-regulation of four interferon-induced proteins with tetratricopeptide repeats IFIT1, IFIT2, IFIT3 and MX1 was observed at 8 dpi suggesting a type 1 interferon (IFN) host response. Quantitative alteration of host proteins involved in biological functions such as signaling (STAT1, Ras) and reduction of the translation activity (EIF3) confirmed a host type 1 IFN response. Interestingly, the SILAC approach also allowed the detection of 148 A. algerae proteins during the kinetics of infection. Among these proteins many are involved in parasite proliferation, and an over-representation of putative secreted effectors proteins was observed. Finally our survey also suggests that A. algerae could use a transposable element as a lure strategy to escape the host innate immune system.
Collapse
Affiliation(s)
- Johan Panek
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Hicham El Alaoui
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
- * E-mail: (HEA); (DGB)
| | - Anne Mone
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Serge Urbach
- Functional Proteomics Platform. UMR CNRS 5203, Montpellier, France
| | - Edith Demettre
- Functional Proteomics Platform. UMS CNRS 3426, Montpellier, France
| | - Catherine Texier
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Christine Brun
- INSERM, UMR1090 TAGC, Marseille, Marseille, France
- Aix-Marseille Université, UMR1090 TAGC, Marseille, France
- CNRS, Marseille, France
| | - Andreas Zanzoni
- INSERM, UMR1090 TAGC, Marseille, Marseille, France
- Aix-Marseille Université, UMR1090 TAGC, Marseille, France
| | - Eric Peyretaillade
- Clermont Université, Université d'Auvergne, I.U.T., UFR Pharmacie, Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 4678, Conception, Ingénierie et Développement de l'Aliment et du Médicament, Clermont-Ferrand, France
| | - Nicolas Parisot
- Clermont Université, Université d'Auvergne, I.U.T., UFR Pharmacie, Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 4678, Conception, Ingénierie et Développement de l'Aliment et du Médicament, Clermont-Ferrand, France
| | - Emmanuelle Lerat
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Pierre Peyret
- Clermont Université, Université d'Auvergne, I.U.T., UFR Pharmacie, Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 4678, Conception, Ingénierie et Développement de l'Aliment et du Médicament, Clermont-Ferrand, France
| | - Frederic Delbac
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - David G. Biron
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
- * E-mail: (HEA); (DGB)
| |
Collapse
|
14
|
Chapman HD, Barta JR, Blake D, Gruber A, Jenkins M, Smith NC, Suo X, Tomley FM. A selective review of advances in coccidiosis research. ADVANCES IN PARASITOLOGY 2014; 83:93-171. [PMID: 23876872 DOI: 10.1016/b978-0-12-407705-8.00002-1] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coccidiosis is a widespread and economically significant disease of livestock caused by protozoan parasites of the genus Eimeria. This disease is worldwide in occurrence and costs the animal agricultural industry many millions of dollars to control. In recent years, the modern tools of molecular biology, biochemistry, cell biology and immunology have been used to expand greatly our knowledge of these parasites and the disease they cause. Such studies are essential if we are to develop new means for the control of coccidiosis. In this chapter, selective aspects of the biology of these organisms, with emphasis on recent research in poultry, are reviewed. Topics considered include taxonomy, systematics, genetics, genomics, transcriptomics, proteomics, transfection, oocyst biogenesis, host cell invasion, immunobiology, diagnostics and control.
Collapse
Affiliation(s)
- H David Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
de Jesus JB, Mesquita-Rodrigues C, Cuervo P. Proteomics advances in the study of Leishmania parasites and leishmaniasis. Subcell Biochem 2014; 74:323-349. [PMID: 24264252 DOI: 10.1007/978-94-007-7305-9_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Leishmania spp. are digenetic parasites which cause a broad spectrum of fatal diseases in humans. These parasites, as well as the other trypanosomatid, regulate gene expression at the post-transcriptional and post-translational levels, so that a poor correlation is observed between mRNA content and translated proteins. The completion of the genomic sequencing of several Leishmania species has enormous relevance to the study of the leishmaniasis pathogenesis. The combination of the available genomic resources of these parasites with powerful high-throughput proteomic analysis has shed light on various aspects of Leishmania biology as well as on the mechanisms underlying the disease. Diverse proteomic approaches have been used to describe and catalogue global protein profiles of Leishmania spp., reveal changes in protein expression during development, determine the subcellular localization of gene products, evaluate host-parasite interactions and elucidate drug resistance mechanisms. The characterization of these proteins has advanced, although many fundamental questions remain unanswered. Here, we present a historic review summarizing the different proteomic technologies applied to the study of Leishmania parasites during the last decades and we discuss the proteomic discoveries that have contributed to the understanding of Leishmania parasites biology and leishmaniasis.
Collapse
Affiliation(s)
- Jose Batista de Jesus
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del Rei, São João Del Rei, MG, Brazil,
| | | | | |
Collapse
|
16
|
Witschi M, Xia D, Sanderson S, Baumgartner M, Wastling J, Dobbelaere D. Proteomic analysis of the Theileria annulata schizont. Int J Parasitol 2013; 43:173-80. [PMID: 23178997 PMCID: PMC3572392 DOI: 10.1016/j.ijpara.2012.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 12/25/2022]
Abstract
The apicomplexan parasite, Theileria annulata, is the causative agent of tropical theileriosis, a devastating lymphoproliferative disease of cattle. The schizont stage transforms bovine leukocytes and provides an intriguing model to study host/pathogen interactions. The genome of T. annulata has been sequenced and transcriptomic data are rapidly accumulating. In contrast, little is known about the proteome of the schizont, the pathogenic, transforming life cycle stage of the parasite. Using one-dimensional (1-D) gel LC-MS/MS, a proteomic analysis of purified T. annulata schizonts was carried out. In whole parasite lysates, 645 proteins were identified. Proteins with transmembrane domains (TMDs) were under-represented and no proteins with more than four TMDs could be detected. To tackle this problem, Triton X-114 treatment was applied, which facilitates the extraction of membrane proteins, followed by 1-D gel LC-MS/MS. This resulted in the identification of an additional 153 proteins. Half of those had one or more TMD and 30 proteins with more than four TMDs were identified. This demonstrates that Triton X-114 treatment can provide a valuable additional tool for the identification of new membrane proteins in proteomic studies. With two exceptions, all proteins involved in glycolysis and the citric acid cycle were identified. For at least 29% of identified proteins, the corresponding transcripts were not present in the existing expressed sequence tag databases. The proteomics data were integrated into the publicly accessible database resource at EuPathDB (www.eupathdb.org) so that mass spectrometry-based protein expression evidence for T. annulata can be queried alongside transcriptional and other genomics data available for these parasites.
Collapse
Affiliation(s)
- M. Witschi
- Division of Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - D. Xia
- Department of Infection Biology, Institute of Infection and Global Health & School of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, UK
| | - S. Sanderson
- Department of Infection Biology, Institute of Infection and Global Health & School of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, UK
| | - M. Baumgartner
- Division of Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - J.M. Wastling
- Department of Infection Biology, Institute of Infection and Global Health & School of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, UK
| | - D.A.E. Dobbelaere
- Division of Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|