1
|
Rodríguez-Gavilanes D, Garcés Botacio HA, Fuentes R, Rodriguez-Scott L, Añino Y, López-Chong OG, Medianero E. An Annotated Checklist of Invasive Species of the Phyla Arthropods and Chordates in Panama. BIOLOGY 2024; 13:571. [PMID: 39194509 DOI: 10.3390/biology13080571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
Invasive species are one of the five main causes of biodiversity loss, along with habitat destruction, overexploitation, pollution, and climate change. Numbers and species of invasive organisms represent one of the first barriers to overcome in ecological conservation programs since they are difficult to control and eradicate. Due to the lack of records of invasive exotic species in Panama, this study was necessary for identifying and registering the documented groups of invasive species of the Chordates and Arthropod groups in Panama. This exhaustive search for invasive species was carried out in different bibliographic databases, electronic portals, and scientific journals which addressed the topic at a global level. The results show that approximately 141 invasive exotic species of the Arthropoda and Chordata phyla have been reported in Panama. Of the 141 species, 50 species belonged to the Arthropoda phylum and 91 species belonged to the Chordate phylum. Panamanian economic activity could facilitate the introduction of alien species into the country. This study provides the first list of invasive exotic chordate and arthropod species reported for the Republic of Panama.
Collapse
Affiliation(s)
- Digna Rodríguez-Gavilanes
- Escuela de Biología, Universidad de Panamá, Campus Octavio Méndez Pereira, Panama 0819-07289, Panama
| | - Humberto A Garcés Botacio
- Departamento de Biología Marina y Limnología, Universidad de Panamá, Campus Octavio Méndez Pereira, Avenida Simón Bolívar, Panama 0819-07289, Panama
| | - Rogemif Fuentes
- Fundación Los Naturalistas, David, Chiriquí 0426-01459, Panama
| | - Louise Rodriguez-Scott
- Programa de Maestría en Ciencias Biológicas, Facultad de Ciencias, Naturales, Exactas y Tecnología, Universidad de Panamá, Panama 0819-07289, Panama
| | - Yostin Añino
- Museo de Invertebrado G.B.Fairchild, Universidad de Panamá, Panama 0819-07289, Panama
| | - Oscar G López-Chong
- Colección de Aves, Instituto Smithsonian de Investigaciones Tropicales, Panama 0843-03092, Panama
| | - Enrique Medianero
- Departamento de Ciencias Ambientales y Programa de Maestría en Entomología, Universidad de Panamá, Campus Octavio Méndez Pereira, Avenida Simón Bolívar, Panama 0819-07289, Panama
- Miembro del Sistema Nacional de Investigación (SNI-SENACYT), Panama 0816-02852, Panama
| |
Collapse
|
2
|
Du Y, Wang X, Ashraf S, Tu W, Xi Y, Cui R, Chen S, Yu J, Han L, Gu S, Qu Y, Liu X. Climate match is key to predict range expansion of the world's worst invasive terrestrial vertebrates. GLOBAL CHANGE BIOLOGY 2024; 30:e17137. [PMID: 38273500 DOI: 10.1111/gcb.17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024]
Abstract
Understanding the determinants of the range expansion of invasive alien species is crucial for developing effective prevention and control strategies. Nevertheless, we still lack a global picture of the potential factors influencing the invaded range expansion across taxonomic groups, especially for the world's worst invaders with high ecological and economic impacts. Here, by extensively collecting data on 363 distributional ranges of 19 of world's worst invasive terrestrial vertebrates across 135 invaded administrative jurisdictions, we observed remarkable variations in the range expansion across species and taxonomic groups. After controlling for taxonomic and geographic pseudoreplicates, model averaging analyses based on generalized additive mixed-effect models showed that species in invaded regions having climates more similar to those of their native ranges tended to undergo a larger range expansion. In addition, as proxies of propagule pressure and human-assisted transportation, the number of introduction events and the road network density were also important predictors facilitating the range expansion. Further variance partitioning analyses validated the predominant role of climate match in explaining the range expansion. Our study demonstrated that regions with similar climates to their native ranges could still be prioritized to prevent the spread of invasive species under the sustained global change.
Collapse
Affiliation(s)
- Yuanbao Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuyu Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Ecology, Lanzhou University, Lanzhou, Gansu Province, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Sadia Ashraf
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weishan Tu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yonghong Xi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shengnan Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan Province, China
| | - Jiajie Yu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lixia Han
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Raillietiella hemidactyli (Pentastomida: Raillietiellidae) in Tarentola mauritanica geckoes: A new zoonotic parasite for Europe. Acta Trop 2022; 228:106316. [PMID: 35081361 DOI: 10.1016/j.actatropica.2022.106316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/22/2022]
Abstract
Pentastomida is a subclass of parasitic arthropods, related to crustaceans, which develop in the respiratory tract of vertebrates (i.e., fishes, amphibians, reptiles, birds and mammals). Within this group of parasites, Raillietiella spp. adults develop in the lungs of lizards, snakes and toads, whereas larval stages in insects (e.g., cockroaches), which are intermediate hosts. Lizards were captured under the frame of a study on reptile zoonotic parasites. Feces of the collected animals were examined and pentastomids were diagnosed in Tarentola mauritanica geckoes (1.2%; 3/259) from Linosa island. Adult forms of Railietiella hemidactyli pentastomids were morphologically characterized and molecularly identified through 18S rDNA amplification and sequencing. Positive animals had adult forms of R. hemidactyli pentastomids in the lungs as well as embryonated eggs in feces. Raillietiella was herein identified for the first time in synanthropic geckoes in a confined population of one of the southernmost islands of Italy, representing the first report of this zoonotic pentastomid in synanthropic and invasive reptiles in Europe. Further studies should focus on the prevalence of pentastomids on synanthropic reptiles in other Italian regions to assess the zoonotic risk of infection and to warn veterinarians and physicians about the risk they may represent for several species of hosts, including dogs, cats and humans.
Collapse
|
4
|
Lapwong Y, Dejtaradol A, Webb JK. Shifts in thermal preference of introduced Asian house geckos (Hemidactylus frenatus) in temperate regions of southeastern Australia. J Therm Biol 2020; 91:102625. [DOI: 10.1016/j.jtherbio.2020.102625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 01/23/2023]
|
5
|
Sakla AJ, Detwiler JT, Caballero IC, Kelehear C, Criscione CD. Recognizing the Causes of Parasite Morphological Variation to Resolve the Status of a Cryptogenic Pentastome. J Parasitol 2019. [DOI: 10.1645/18-205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Andrew J. Sakla
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Jillian T. Detwiler
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T-2N2
| | | | - Crystal Kelehear
- Department of Biology, Geology & Physical Sciences, Sul Ross State University, Alpine, Texas 79832
| | | |
Collapse
|
6
|
Abstract
AbstractHost–parasite dynamics can play a fundamental role in both the establishment success of invasive species and their impact on native wildlife. The net impact of parasites depends on their capacity to switch effectively between native and invasive hosts. Here we explore host-switching, spatial patterns and simple fitness measures in a slow-expanding invasion: the invasion of Asian house geckos (Hemidactylus frenatus) from urban areas into bushland in Northeast Australia. In bushland close to urban edges, H. frenatus co-occurs with, and at many sites now greatly out-numbers, native geckos. We measured prevalence and intensity of Geckobia mites (introduced with H. frenatus), and Waddycephalus (a native pentastome). We recorded a new invasive mite species, and several new host associations for native mites and geckos, but we found no evidence of mite transmission between native and invasive geckos. In contrast, native Waddycephalus nymphs were commonly present in H. frenatus, demonstrating this parasite's capacity to utilize H. frenatus as a novel host. Prevalence of mites on H. frenatus decreased with distance from the urban edge, suggesting parasite release towards the invasion front; however, we found no evidence that mites affect H. frenatus body condition or lifespan. Waddycephalus was present at low prevalence in bushland sites and, although its presence did not affect host body condition, our data suggest that it may reduce host survival. The high relative density of H. frenatus at our sites, and their capacity to harbour Waddycephalus, suggests that there may be impacts on native geckos and snakes through parasite spillback.
Collapse
|
7
|
Abarca JG, Zuniga I, Ortiz-Morales G, Lugo A, Viquez-Cervilla M, Rodriguez-Hernandez N, Vázquez-Sánchez F, Murillo-Cruz C, Torres-Rivera EA, Pinto-Tomás AA, Godoy-Vitorino F. Characterization of the Skin Microbiota of the Cane Toad Rhinella cf. marina in Puerto Rico and Costa Rica. Front Microbiol 2018; 8:2624. [PMID: 29354109 PMCID: PMC5760547 DOI: 10.3389/fmicb.2017.02624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/15/2017] [Indexed: 12/22/2022] Open
Abstract
Rhinella marina is a toad native to South America that has been introduced in the Antilles, likely carrying high loads of microorganisms, potentially impacting local community diversity. The amphibian skin is involved in pathogen defense and its microbiota has been relatively well studied, however, research focusing on the cane toad microbiota is lacking. We hypothesize that the skin microbial communities will differ between toads inhabiting different geographical regions in Central America and the Caribbean. To test our hypothesis, we compared the microbiota of three populations of R. cf. marina toads, two from Costa Rican (native) and one Puerto Rican (exotic) locations. In Costa Rica, we collected 11 toads, 7 in Sarapiquí and 4 from Turrialba while in Puerto Rico, 10 animals were collected in Santa Ana. Separate swab samples were collected from the dorsal and ventral sites resulting in 42 samples. We found significant differences in the structure of the microbial communities between Puerto Rico and Costa Rica. We detected as much as 35 different phyla; however, communities were dominated by Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Alpha diversity and richness were significantly higher in toads from Puerto Rico and betadiversity revealed significant differences between the microbiota samples from the two countries. At the genus level, we found in Santa Ana, Puerto Rico, a high dominance of Kokuria, Niabella, and Rhodobacteraceae, while in Costa Rica we found Halomonas and Pseudomonas in Sarapiquí, and Acinetobacter and Citrobacter in Turrialba. This is the first report of Niabella associated with the amphibian skin. The core microbiome represented 128 Operational Taxonomic Units (OTUs) mainly from five genera shared among all samples, which may represent the symbiotic Rhinella's skin. These results provide insights into the habitat-induced microbial changes facing this amphibian species. The differences in the microbial diversity in Puerto Rican toads compared to those in Costa Rica provide additional evidence of the geographically induced patterns in the amphibian skin microbiome, and highlight the importance of discussing the microbial tradeoffs in the colonization of new ecosystems.
Collapse
Affiliation(s)
- Juan G. Abarca
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Ibrahim Zuniga
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Gilmary Ortiz-Morales
- Department of Natural Sciences, Microbial Ecology and Genomics Laboratory, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Armando Lugo
- Department of Natural Sciences, Microbial Ecology and Genomics Laboratory, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Mariel Viquez-Cervilla
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Natalia Rodriguez-Hernandez
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Frances Vázquez-Sánchez
- Department of Natural Sciences, Microbial Ecology and Genomics Laboratory, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Catalina Murillo-Cruz
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Ernesto A. Torres-Rivera
- Department of Natural Sciences, Center for Environmental Education, Conservation and Interpretation, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Adrián A. Pinto-Tomás
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Filipa Godoy-Vitorino
- Department of Natural Sciences, Microbial Ecology and Genomics Laboratory, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| |
Collapse
|
8
|
Rouchet R, Smith C, Liu H, Methling C, Douda K, Yu D, Tang Q, Reichard M. Avoidance of host resistance in the oviposition-site preferences of rose bitterling. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9907-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|