1
|
Wang H, Li Y, Yu Q, Wang M, Ainiwaer A, Tang N, Zheng X, Duolikun A, Deng B, Li J, Shen Y, Zhang C. Immunological Characteristics of Hepatic Dendritic Cells in Patients and Mouse Model with Liver Echinococcus multilocularis Infection. Trop Med Infect Dis 2024; 9:95. [PMID: 38787028 PMCID: PMC11125766 DOI: 10.3390/tropicalmed9050095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The cestode Echinococcus multilocularis, which mainly dwells in the liver, leads to a serious parasitic liver disease called alveolar echinococcosis (AE). Despite the increased attention drawn to the immunosuppressive microenvironment formed by hepatic AE tissue, the immunological characteristics of hepatic dendritic cells (DCs) in the AE liver microenvironment have not been fully elucidated. Here, we profiled the immunophenotypic characteristics of hepatic DC subsets in both clinical AE patients and a mouse model. Single-cell RNA sequencing (scRNA-Seq) analysis of four AE patient specimens revealed that greater DC numbers were present within perilesional liver tissues and that the distributions of cDC and pDC subsets in the liver and periphery were different. cDCs highly expressed the costimulatory molecule CD86, the immune checkpoint molecule CD244, LAG3, CTLA4, and the checkpoint ligand CD48, while pDCs expressed these genes at low frequencies. Flow cytometric analysis of hepatic DC subsets in an E. multilocularis infection mouse model demonstrated that the number of cDCs significantly increased after parasite infection, and a tolerogenic phenotype characterized by a decrease in CD40 and CD80 expression levels was observed at an early stage, whereas an activated phenotype characterized by an increase in CD86 expression levels was observed at a late stage. Moreover, the expression profiles of major immune checkpoint molecules (CD244 and LAG3) and ligands (CD48) on hepatic DC subsets in a mouse model exhibited the same pattern as those in AE patients. Notably, the cDC and pDC subsets in the E. multilocularis infection group exhibited higher expression levels of PD-L1 and CD155 than those in the control group, suggesting the potential of these subsets to impair T cell function. These findings may provide valuable information for investigating the role of hepatic DC subsets in the AE microenvironment and guiding DC targeting treatments for AE.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Yinshi Li
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Qian Yu
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Mingkun Wang
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Abidan Ainiwaer
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Na Tang
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Xuran Zheng
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Adilai Duolikun
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Bingqing Deng
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Jing Li
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), World Health Organization Collaborating Centre for Tropical Disease, Shanghai 200025, China
| | - Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
2
|
Loos JA, Franco M, Chop M, Rodriguez Rodrigues C, Cumino AC. Resveratrol against Echinococcus sp.: Discrepancies between In Vitro and In Vivo Responses. Trop Med Infect Dis 2023; 8:460. [PMID: 37888588 PMCID: PMC10610609 DOI: 10.3390/tropicalmed8100460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
In an attempt to find new anti-echinococcal drugs, resveratrol (Rsv) effectiveness against the larval stages of Echinococcus granulosus and E. multilocularis was evaluated. The in vitro effect of Rsv on parasites was assessed via optical and electron microscopy, RT-qPCR and immunohistochemistry. In vivo efficacy was evaluated in murine models of cystic (CE) and alveolar echinococcosis (AE). The impact of infection and drug treatment on the mouse bone marrow hematopoietic stem cell (HSC) population and its differentiation into dendritic cells (BMDCs) was investigated via flow cytometry and RT-qPCR. In vitro treatment with Rsv reduced E. granulosus metacestode and protoscolex viability in a concentration-dependent manner, caused ultrastructural damage, increased autophagy gene transcription, and raised Eg-Atg8 expression while suppressing Eg-TOR. However, the intraperitoneal administration of Rsv was not only ineffective, but also promoted parasite development in mice with CE and AE. In the early infection model of AE treated with Rsv, an expansion of HSCs was observed followed by their differentiation towards BMCDs. The latter showed an anti-inflammatory phenotype and reduced LPS-stimulated activation compared to control BMDCs. We suggest that Rsv ineffectiveness could have been caused by the low intracystic concentration achieved in vivo and the drug's hormetic effect, with opposite anti-parasitic and immunomodulatory responses in different doses.
Collapse
Affiliation(s)
- Julia A. Loos
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata 7600, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
| | - Micaela Franco
- Hospital Interzonal General de Agudos “Dr. Oscar E Alende”, Mar del Plata 7600, Argentina;
| | - Maia Chop
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata 7600, Argentina
| | - Christian Rodriguez Rodrigues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata 7600, Argentina
| | - Andrea C. Cumino
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata 7600, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina; (M.C.); (C.R.R.)
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata 7600, Argentina
| |
Collapse
|
3
|
Wang X, Lin R, Fu C, Yang C, Dong D, Wu X, Chen X, Wang L, Hou J. Echinococcus granulosus cyst fluid inhibits inflammatory responses through inducing histone demethylase KDM5B in macrophages. Parasit Vectors 2023; 16:321. [PMID: 37689671 PMCID: PMC10492338 DOI: 10.1186/s13071-023-05948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Echinococcus granulosus cyst fluid (EgCF) weakens macrophage inflammatory responses, thereby enabling the parasite to evade the immune system. However, the role of histone modification in this process remains to be explored. METHODS The levels of IL-6, TNF-α, IL-10, H3K4me3, and KDM5B were detected using quantitative real-time PCR, ELISA, and Western blotting. The enrichment of H3K4me3 and KDM5B at the promoter of inflammatory factors was detected by chromatin immunoprecipitation. RESULTS Based on EgCF-stimulated macrophage models, we found that EgCF significantly inhibited mRNA expression and protein secretion of IL-6 and TNF-α and upregulated mRNA expression of IL-10 under the influence of TLR4. EgCF lowered the level of H3K4me3 and promoted the transcription and protein stability of histone demethylase KDM5B. Chromatin immunoprecipitation analysis revealed that EgCF suppressed the enrichment of H3K4me3 modification at the promoters of TNF-α and IL-6 and downregulated their expression in macrophages. Additionally, the inhibition of KDM5B activity by CPI-455 weakened the anti-inflammatory effect of EgCF. CONCLUSIONS Our findings demonstrate a novel mechanism through which EgCF promotes KDM5B expression and inhibits the enrichment of H3K4me3 at the promoters of inflammatory cytokines to suppress the inflammatory response.
Collapse
Affiliation(s)
- Xiaopeng Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Ruolin Lin
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chunxue Fu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chun Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Dan Dong
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
4
|
Wang M, Shang Z, Qiao F, Hei J, Ma X, Wang Y. Notch signaling pathway involved in Echinococcus granulosus infection regulates dendritic cell development and differentiation. Front Cell Infect Microbiol 2023; 13:1147025. [PMID: 37274316 PMCID: PMC10235693 DOI: 10.3389/fcimb.2023.1147025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction The Notch signaling pathway is involved in the development of many diseases; it regulates the development of dendritic cells (DCs), and affects the immune response of DC-mediated T cells. We previously found that ferritin and malate dehydrogenase (mMDH) in Echinococcus granulosus (E.granulosus) induced different immune responses through sensitized DCs. Therefore, in the study we explored whether the Notch signaling pathway affects the development and differentiation of DCs, causing changes in the immune response of DCs sensitized with E. granulosus antigens, and clarified whether it is involved in E.granulosus infection. Methods We used the Notch signaling pathway inhibitor [N-[3,5-difluorophenace-tyl] -L-alanyl]-S-phenylglycinet-butyl ester (DAPT) or activator Jagged1 to construct in vitro cell models with blocked or activated Notch signaling respectively. We analyzed the effect of Notch signaling on the development and differentiation of DCs by detecting their morphology, migration function, capacity to promote T cell proliferation, and cytokine secretion. We observed the changes in DC response to E. granulosus antigens and the mediated immune response. Results DAPT inhibited the development and maturation of DCs, which were in a non-responsive or incompetent state, reduced the sensitization of DCs to Eg.ferritin, weakened the migration ability of DCs, disrupted their ability to mediate T-cell proliferation, reduced DC expression of MHCII, CD80, CD60, and CD40 co-stimulatory molecules, prevented the secretion of cytokines and attenuated the expression of Notch1, Notch2, Notch3 receptors, Jagged1, Delta-like 4 (Delta4), and Hes1. Following Jagged1 addition, the function of DCs was restored to some extent, and the expression of Notch1, Delta4 and Hes1 was activated in response to the stimulation of Eg.ferritin. However, Eg.mMDH stimulated DCs to produce an immune response showing weak interference by DAPT and Jagged1. Discussion The study suggests that the Notc h signaling pathway is involved in the Eg.ferritin-sensitized DC-mediated immune response, which may become a new target for treating E.granulosus infection.
Collapse
Affiliation(s)
- Mingxia Wang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Zailing Shang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Fei Qiao
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Junhu Hei
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Xueling Ma
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Yana Wang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
- Key Laboratory of Common Infectious Diseases of Ningxia Autonomous Region, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
5
|
Soleymani N, Taran F, Nazemshirazi M, Naghibi A, Torabi M, Borji H, Haghparast A. Dysregulation of Ovine Toll-Like Receptors 2 and 4 Expression by Hydatid Cyst-Derived Antigens. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:219-228. [PMID: 34557236 PMCID: PMC8418664 DOI: 10.18502/ijpa.v16i2.6271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/12/2020] [Indexed: 11/24/2022]
Abstract
Background Cystic echinococcosis (CE) is a zoonotic disease caused by infection with Echinococcus granulosus. Toll-like receptors (TLRs) as the first line of defense against various parasites play a critical role in sensing and triggering anti-parasite responses. Methods The study was conducted at the Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Iran in 2019. Ovine peripheral blood mononuclear cells (PBMCs) were stimulated with hydatid cyst-derived antigens including hydatid cyst fluid (HCF), germinal layer antigens (GL), somatic and excretory/secretory (ES) products of protoscoleces (PSC). To investigate whether the expression of TLR2 and TLR4 was altered during exposure to these antigens, PBMCs were stimulated with two different concentrations at different time points. Results After exposure of PBMCs to ES and somatic antigens of protoscoleces (PSC) the expression of TLR2 and TLR4 was down-regulated in comparison with control group. Similarly, HCF markedly down-regulated TLR2 and TLR4 transcripts independent of dose and time. GL antigens significantly down-regulated TLR2, while TLR4 expression was up-regulated as compared with control group. Conclusion Hydatid cyst-derived antigens could dysregulate the expression of TLR2 and TLR4 in ovine PBMCs, suggesting a possible mechanism to suppress host immunity to establish chronic infection.
Collapse
Affiliation(s)
- Nooshinmehr Soleymani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fateme Taran
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Abolghasem Naghibi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Torabi
- Central Laboratories of Khorasan Razavi Veterinary Organization, Mashhad, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Haghparast
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Modulation of the mTOR pathway plays a central role in dendritic cell functions after Echinococcus granulosus antigen recognition. Sci Rep 2021; 11:17238. [PMID: 34446757 PMCID: PMC8390662 DOI: 10.1038/s41598-021-96435-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Immune evasion is a hallmark of persistent echinococcal infection, comprising modulation of innate immune cells and antigen-specific T cell responses. However, recognition of Echinococcus granulosus by dendritic cells (DCs) is a key determinant of the host's response to this parasite. Given that mTOR signaling pathway has been described as a regulator linking metabolism and immune function in DCs, we reported for the first time in these cells, global translation levels, antigen uptake, phenotype, cytokine transcriptional levels, and splenocyte priming activity upon recognition of the hydatid fluid (HF) and the highly glycosylated laminar layer (LL). We found that LL induced a slight up-regulation of CD86 and MHC II in DCs and also stimulated the production of IL-6 and TNF-α. By contrast, HF did not increase the expression of any co-stimulatory molecules, but also down-modulated CD40 and stimulated the expression of the anti-inflammatory cytokine IL-10. Both parasitic antigens promoted protein synthesis through mTOR activation. The use of rapamycin decreased the expression of the cytokines tested, empowered the down-modulation of CD40 and also reduced splenocyte proliferation. Finally, we showed that E. granulosus antigens increase the amounts of LC3-positive structures in DCs which play critical roles in the presentation of these antigens to T cells.
Collapse
|
7
|
Lin K, Zhou D, Li M, Meng J, He F, Yang X, Dong D, Wang X, Wu X, Chen X, Hou J. Echinococcus granulosus cyst fluid suppresses inflammatory responses by inhibiting TRAF6 signalling in macrophages. Parasitology 2021; 148:887-894. [PMID: 33775265 PMCID: PMC11010193 DOI: 10.1017/s0031182021000548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 11/07/2022]
Abstract
Echinococcus granulosus sensu lato has complex defence mechanisms that protect it from the anti-parasitic immune response for long periods. Echinococcus granulosus cyst fluid (EgCF) is involved in the immune escape. Nevertheless, whether and how EgCF modulates the inflammatory response in macrophages remains poorly understood. Here, real-time polymerase chain reaction and enzyme-linked immunosorbent assay revealed that EgCF could markedly attenuate the lipopolysaccharide (LPS)-induced production of pro-inflammatory factors including tumour necrosis factor-α, interleukin (IL)-12 and IL-6 but increase the expression of IL-10 at mRNA and protein levels in mouse peritoneal macrophages and RAW 264.7 cells. Mechanically, western blotting and immunofluorescence assay showed that EgCF abolished the activation of nuclear factor (NF)-κB p65, p38 mitogen-activated protein kinase (MAPK) and ERK1/2 signalling pathways by LPS stimulation in mouse macrophages. EgCF's anti-inflammatory role was at least partly contributed by promoting proteasomal degradation of the critical adaptor TRAF6. Moreover, the EgCF-promoted anti-inflammatory response and TRAF6 proteasomal degradation were conserved in human THP-1 macrophages. These findings collectively reveal a novel mechanism by which EgCF suppresses inflammatory responses by inhibiting TRAF6 and the downstream activation of NF-κB and MAPK signalling in both human and mouse macrophages, providing new insights into the molecular mechanisms underlying the E. granulosus-induced immune evasion.
Collapse
Affiliation(s)
- Ke Lin
- Department of Immunology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Di Zhou
- Medical Laboratory, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Min Li
- Nursing School of Shihezi University, Shihezi, Xinjiang, China
| | - Jin Meng
- Department of Immunology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Feiming He
- Department of Immunology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaofeng Yang
- Department of Immunology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Dan Dong
- Department of Immunology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xian Wang
- Department of Immunology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangwei Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- Department of Immunology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- Department of Immunology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| |
Collapse
|
8
|
Bakhtiar NM, Spotin A, Mahami-Oskouei M, Ahmadpour E, Rostami A. Recent advances on innate immune pathways related to host-parasite cross-talk in cystic and alveolar echinococcosis. Parasit Vectors 2020; 13:232. [PMID: 32375891 PMCID: PMC7204293 DOI: 10.1186/s13071-020-04103-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are life-threatening parasitic infections worldwide caused by Echinococcus granulosus (sensu lato) and E. multilocularis, respectively. Very little is known about the factors affecting innate susceptibility and resistance to infection with Echinococcus spp. Although benzimidazolic drugs against CE and AE have definitively improved the treatment of these cestodes; however, the lack of successful control campaigns, including the EG95 vaccine, at a continental level indicates the importance of generating novel therapies. This review represents an update on the latest developments in the regulatory functions of innate immune pathways such as apoptosis, toll-like receptors (TLRs), and inflammasomes against CE and AE. We suggest that apoptosis can reciprocally play a bi-functional role among the host-Echinococcus metabolite relationships in suppressive and survival mechanisms of CE. Based on the available information, further studies are needed to determine whether the orchestrated in silico strategy for designing inhibitors and interfering RNA against anti-apoptotic proteins and TLRs would be effective to improve new treatments as well as therapeutic vaccines against the E. granulosus and E. multilocularis.![]()
Collapse
Affiliation(s)
- Nayer Mehdizad Bakhtiar
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahmoud Mahami-Oskouei
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
9
|
Wang H, Zhang CS, Fang BB, Li ZD, Li L, Bi XJ, Li WD, Zhang N, Lin RY, Wen H. Thioredoxin peroxidase secreted by Echinococcus granulosus (sensu stricto) promotes the alternative activation of macrophages via PI3K/AKT/mTOR pathway. Parasit Vectors 2019; 12:542. [PMID: 31727141 PMCID: PMC6857240 DOI: 10.1186/s13071-019-3786-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Larvae of Echinococcus granulosus (sensu lato) dwell in host organs for a long time but elicit only a mild inflammatory response, which indicates that the resolution of host inflammation is necessary for parasite survival. The recruitment of alternatively activated macrophages (AAMs) has been observed in a variety of helminth infections, and emerging evidence indicates that AAMs are critical for the resolution of inflammation. However, whether AAMs can be induced by E. granulosus (s.l.) infection or thioredoxin peroxidase (TPx), one of the important molecules secreted by the parasite, remains unclear. METHODS The activation status of peritoneal macrophages (PMs) derived from mice infected with E. granulosus (sensu stricto) was analyzed by evaluating the expression of phenotypic markers. PMs were then treated in vivo and in vitro with recombinant EgTPx (rEgTPx) and its variant (rvEgTPx) in combination with parasite excretory-secretory (ES) products, and the resulting activation of the PMs was evaluated by flow cytometry and real-time PCR. The phosphorylation levels of various molecules in the PI3K/AKT/mTOR pathway after parasite infection and antigen stimulation were also detected. RESULTS The expression of AAM-related genes in PMs was preferentially induced after E. granulosus (s.s.) infection, and phenotypic differences in cell morphology were detected between PMs isolated from E. granulosus (s.s.)-infected mice and control mice. The administration of parasite ES products or rEgTPx induced the recruitment of AAMs to the peritoneum and a notable skewing of the ratio of PM subsets, and these effects are consistent with those obtained after E. granulosus (s.s.) infection. ES products or rEgTPx also induced PMs toward an AAM phenotype in vitro. Interestingly, this immunomodulatory property of rEgTPx was dependent on its antioxidant activity. In addition, the PI3K/AKT/mTOR pathway was activated after parasite infection and antigen stimulation, and the activation of this pathway was suppressed by pre-treatment with an AKT/mTOR inhibitor. CONCLUSIONS This study demonstrates that E. granulosus (s.s.) infection and ES products, including EgTPx, can induce PM recruitment and alternative activation, at least in part, via the PI3K/AKT/mTOR pathway. These results suggest that EgTPx-induced AAMs might play a key role in the resolution of inflammation and thereby favour the establishment of hydatid cysts in the host.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China.,Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, 831100, Xinjiang, People's Republic of China.,Basic Medical College, Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China
| | - Chuan-Shan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China.,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China
| | - Bin-Bin Fang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Zhi-De Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Xiao-Juan Bi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Wen-Ding Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Ning Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Ren-Yong Lin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China. .,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China.
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China. .,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China.
| |
Collapse
|
10
|
Therapeutic effects of Echinococcus granulosus cystic fluid on allergic airway inflammation. Exp Parasitol 2019; 198:63-70. [DOI: 10.1016/j.exppara.2019.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/04/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
|
11
|
Mechanisms underlying immune tolerance caused by recombinant Echinococcus granulosus antigens Eg mMDH and Eg10 in dendritic cells. PLoS One 2018; 13:e0204868. [PMID: 30261049 PMCID: PMC6160197 DOI: 10.1371/journal.pone.0204868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
Mice immunized with recombinant Echinococcus granulosus antigens Eg10 and Eg mMDH do not show elevated resistance to E. granulosus infection but show aggravated infection instead. To gain a deeper insight in the immune tolerance mechanisms in mice immunized with Eg10 and Eg mMDH, this study simulated the immune tolerance process in vitro by culturing bone marrow-derived dendritic cells (BMDCs) in the presence of Eg10 or Eg mMDH. Scanning electron microscopy revealed that Eg10- and Eg mMDH-treated DCs exhibited immature cell morphology, while addition of LPS to the cells induced changes in cell morphology and an increase in the number of cell-surface protrusions. This observation was consistent with the increased expression of the cell-surface molecules MHCII and CD80 in Eg10- and Eg mMDH-treated DCs pretreated with LPS. DCs exposed to the two antigens had a very weak ability to induce T-cell proliferation, but could promote the formation of Treg cells. Introduction of the indoleamine 2,3-dioxygenase (IDO) inhibitor, 1-methyl tryptopha (1-MT) enhanced the ability of the antigens to induce T cells and inhibited the induction of Treg cells. Eg mMDH-treated DCs showed a strong response to 1-MT: the DCs had high mRNA levels of IDO, IL-6, and IL-10, while 1-MT decreased the expression. In contrast, DCs treated with Eg10 did not show significant changes after 1-MT treatment. Eg mMDH inhibited DC maturation and promoted IDO expression, which, on the one hand, decreased the ability of DCs to induce T-cell proliferation, resulting in T-cell anergy, and on the other hand, induced the formation of Tregs, resulting in an immunosuppressive effect. In contrast, the escape mechanisms induced by Eg10 did not primarily depend on the IDO pathway and might involve other mechanisms that need to be further explored.
Collapse
|
12
|
Hui W, Jiang S, Liu X, Ban Q, Chen S, Jia B. Gene Expression Profile in the Liver of Sheep Infected with Cystic Echinococcosis. PLoS One 2016; 11:e0160000. [PMID: 27467147 PMCID: PMC4965101 DOI: 10.1371/journal.pone.0160000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/12/2016] [Indexed: 11/20/2022] Open
Abstract
Background Cystic Echinococcosis (CE), caused by infection with the Echinococcus granulosus (E. granulosus), represents considerable health problems in both humans and livestock. Nevertheless, the genetic program that regulates the host response to E. granulosus infection is largely unknown. Previously, using microarray analysis, we found that the innate immunity played a vital role in the E. granulosus defense of the intestine tissue where E. granulosus first invaded. Subsequently, we turned our attention to investigating the molecular immune mechanism in its organ target, the liver, which is where the E. granulosus metacestodes are established and live for very long periods. In this work, the microarray-based methodology was used to study gene expression profiles in the liver of sheep infected with E. granulosus at 8 weeks post infection, corresponding to the early cystic established phase. Methods A total of 6 female-1-year-old healthy Kazakh sheep were used for the experiments. Three Kazakh sheep were orally infected with E. granulosus eggs, and the others remained untreated and served as controls. Sheep were humanely euthanized and necropsized at 8 weeks post-infection (the early stage of cyst established). The microarray was used to detect differential hepatic gene expression between CE infection sheep and healthy controls at this time point. Real-time PCR was used to validate the microarray data. Results We found that E. granulosus infection induces 153 differentially expressed genes in the livers of infected sheep compared with healthy controls. Among them, 87 genes were up-regulated, and 66 genes were notably down-regulated. Functional analysis showed that these genes were associated with three major functional categories: (a) metabolism, (b) the immune system and (c) signaling and transport. Deeper analysis indicated that complement together with other genes associated with metabolism, played important roles in the defense of E. granulosus infection. Conclusion The present study identified genes profiling in the liver tissue of E. granulosus infection in sheep. The expression pattern obtained here could be helpful for understanding the molecular immunity mechanisms of host responses to E. granulosus infection. However, it is necessary to carry out further studies to evalute the role of these genes.
Collapse
Affiliation(s)
- Wenqiao Hui
- Institute of Animal Husbandary and Veterinary Medicine, Anhui Academy of Agriculture Sciences, Road Nongkenan, Hefei, 230031, Anhui, People’s Republic of China
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi, 832003, Xinjiang, People’s Republic of China
| | - Song Jiang
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi, 832003, Xinjiang, People’s Republic of China
| | - Xianxia Liu
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi, 832003, Xinjiang, People’s Republic of China
| | - Qian Ban
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi, 832003, Xinjiang, People’s Republic of China
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Road Jiulong, Hefei, 230000, Anhui, People’s Republic of China
- * E-mail: (QB); (SC); (BJ)
| | - Sheng Chen
- Institute of Animal Husbandary and Veterinary Medicine, Anhui Academy of Agriculture Sciences, Road Nongkenan, Hefei, 230031, Anhui, People’s Republic of China
- * E-mail: (QB); (SC); (BJ)
| | - Bin Jia
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi, 832003, Xinjiang, People’s Republic of China
- * E-mail: (QB); (SC); (BJ)
| |
Collapse
|
13
|
Vatankhah A, Halász J, Piurkó V, Barbai T, Rásó E, Tímár J. Characterization of the inflammatory cell infiltrate and expression of costimulatory molecules in chronic echinococcus granulosus infection of the human liver. BMC Infect Dis 2015; 15:530. [PMID: 26578348 PMCID: PMC4647452 DOI: 10.1186/s12879-015-1252-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022] Open
Abstract
Background The local immune responses to chronic echinococcal infections in various organs are largely unknown. Since the liver is the most frequently involved organ in such infections in human we aimed to characterize the inflammatory as well as immune cell infiltrate around hydatid cysts in the liver and compared to common inflammatory processes of the liver. Method Surgical samples from the liver of 21 cystic echinococcosis (CE) patients were studied and the distribution of different types of inflammatory and immune cells were determined by immunohistochemistry. Furthermore, expression levels of costimulatory CTLA4, CD28, CD80 and CD86 molecules were measured at RNA level by PCR. Liver biopsy samples from patients with steatohepatitis (SH, n = 11) and chronic hepatitis (CH, n = 11) were used as non-inflammatory and chronic inflammatory controls, respectively. The composition and density of the inflammatory and immune cell infiltrates have been compared by using morphometry. Results CD3+ T cells predominated the inflammatory infiltrate in all pathological processes, while in CE samples CD20+ B cells, in CH samples CD68+ macrophages were also frequent. Both myeloperoxidase (MPO) + leukocytes and CD68+ macrophages were found to be significantly decreased in CE as compared to either SH or CH samples. Concerning T cell subtypes, only CD8+ T cells were found to be significantly decreased in SH samples. CD1a + dendritic cells were almost completely missing from CE biopsies unlike in any other sample types. There were no differences detected in the mRNA expression of costimulatory molecules except decreased expression of CD28 in CE samples. Conclusion In the hydatid lesions of the liver of chronic echinococcal infections T cell-mediated immunity seems to be impaired as compared to other types of chronic inflammatory processes, suggesting an immunosuppressive role for Echinococcus granulosus, which deserve further attentions.
Collapse
Affiliation(s)
- A Vatankhah
- 2nd Department of Pathology, Semmelweis University, Üllői u. 93, 1091, Budapest, Hungary. .,Molecular Oncology Research Group, MTA-SE, Budapest, Hungary.
| | - J Halász
- 2nd Department of Pathology, Semmelweis University, Üllői u. 93, 1091, Budapest, Hungary. .,Molecular Oncology Research Group, MTA-SE, Budapest, Hungary.
| | - V Piurkó
- 2nd Department of Pathology, Semmelweis University, Üllői u. 93, 1091, Budapest, Hungary. .,Molecular Oncology Research Group, MTA-SE, Budapest, Hungary.
| | - T Barbai
- 2nd Department of Pathology, Semmelweis University, Üllői u. 93, 1091, Budapest, Hungary. .,Molecular Oncology Research Group, MTA-SE, Budapest, Hungary.
| | - E Rásó
- 2nd Department of Pathology, Semmelweis University, Üllői u. 93, 1091, Budapest, Hungary. .,Molecular Oncology Research Group, MTA-SE, Budapest, Hungary.
| | - J Tímár
- 2nd Department of Pathology, Semmelweis University, Üllői u. 93, 1091, Budapest, Hungary. .,Molecular Oncology Research Group, MTA-SE, Budapest, Hungary.
| |
Collapse
|