1
|
Stensvold CR, Berg RPKD, Maloney JG, Molokin A, Santin M. Molecular characterization of Blastocystis and Entamoeba of muskoxen and sheep in Greenland. Int J Parasitol 2023; 53:673-685. [PMID: 37355198 DOI: 10.1016/j.ijpara.2023.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/26/2023]
Abstract
Molecular characterisation of endobionts that are shared among human and non-human hosts can help shed light on the epidemiology and inform studies that aim to unravel the role of these organisms in health and disease. Two of the most common of shared endobionts include the single-celled intestinal protists Blastocystis and Entamoeba. Here, we present the first known data on genetic diversity and host specificity of these two genera in Greenland. Faecal DNA samples from 243 muskoxen and 44 sheep were submitted to metabarcoding of nuclear small subunit ribosomal DNA. Entamoeba- and Blastocystis-specific sequences were clustered, and consensus sequences were subjected to taxonomic query. Using MinION-based sequencing, near-complete nuclear small subunit ribosomal DNA sequences were obtained from four faecal samples. Of the 243 muskox samples, 180 (74%) and 19 (8%) were positive for Blastocystis and Entamoeba, respectively. Forty (91%) and six (14%) of the 44 sheep samples were positive for Blastocystis and Entamoeba, respectively. Blastocystis subtypes (ST) 10, 14, 21, 24-26, and a novel subtype (ST40) were identified. Colonisation by more than one subtype was common. ST40 was common in muskoxen but limited to Northeast Greenland. Entamoeba bovis and the E. bovis-associated ribosomal lineages (RL) 1 and 8 were found, and three conditional lineages (CL) 3, 4, and 10 were confirmed; CL10 was promoted to RL12. Several novel lineages were identified, all of which were linked to the E. bovis complex. In conclusion, Blastocystis was far more common than Entamoeba and found in approximately three of every four animals; both can be considered common colonisers of large herbivorous mammals in Greenland. Multiple subtypes/lineages of both genera were commonly observed, some of which were novel, but most of which are seen in many other parts of the world.
Collapse
Affiliation(s)
- Christen Rune Stensvold
- Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark.
| | - Rebecca P K D Berg
- Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Jenny G Maloney
- United States Department of Agriculture, Agricultural Research Service, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, USA
| | - Aleksey Molokin
- United States Department of Agriculture, Agricultural Research Service, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, USA
| | - Monica Santin
- United States Department of Agriculture, Agricultural Research Service, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, USA
| |
Collapse
|
2
|
Tantrawatpan C, Vaisusuk K, Thanchomnang T, Pilap W, Sankamethawee W, Suksavate W, Chatan W, Bunchom N, Kaewkla O, Stensvold CR, Saijuntha W. Distribution of Blastocystis subtypes isolated from various animal hosts in Thailand. Res Vet Sci 2023; 162:104939. [PMID: 37453229 DOI: 10.1016/j.rvsc.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Blastocystis is a parasitic protist of a variety of hosts, including humans. Mapping the distribution of Blastocystis and its genetic variants across different host species can help us understand the epidemiology of this organism and its role in health and disease. This study aimed to identify subtypes of Blastocystis detected in different animal hosts in Thailand. A total of 825 fecal samples belonging to 18 vertebrate orders, 36 families, 68 genera, and 80 species were collected. Of these, 111 specimens were Blastocystis-positive by culture. Seventy-nine samples were subjected to small subunit (SSU) ribosomal DNA amplification by PCR, and reliable subtype data were obtained for 61 specimens. At least 14 subtypes (ST), namely ST1 to ST10, ST14/ST24/ST25 complex, ST23, ST26, and ST29 were detected. In addition, Blastocystis was found in tortoises. ST1 (3.2%) and ST5 (11.5%) were found in pigs, ST2 (1.6%) and ST3 (3.2%) in non-human primates, ST4 (14.7%) in rodents and ruminants, ST6 (4.9%), ST7 (30%), ST9 (1.6%), and ST29 (1.6%) in birds, ST8 (6.6%) in Green peafowl and East Asian Porcupine, and ST10 (4.9%), ST14/ST24/ST25 (9.8%), ST23 (1.6%) and ST26 (1.6%) in ruminants. The sequence recovered from the elongated tortoises (Indotestudo elongata) (3.2%) was phylogenetically placed within the reptilian cluster of Blastocystis, for which no subtype system is available yet. Of note, we did not obtain Blastocystis sequences from any of the many canids and felids sampled in the study, and our data are in support of host specificity of Blastocystis, according to both colonization and subtype distribution.
Collapse
Affiliation(s)
- Chairat Tantrawatpan
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, and Center of Excellence in Stem Cell Research, Thammasat University, Rangsit Campus, Pathum Thani 12120, Thailand
| | - Kotchaphon Vaisusuk
- Department of Veterinary Technology and Veterinary Nursing, Faculty of Agricultural Technology, Rajabhat Maha Sarakham University, Maha Sarakham 44000, Thailand
| | | | - Warayutt Pilap
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham 44150, Thailand; Center of Excellence in Biodiversity Research, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Wangworn Sankamethawee
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Warong Suksavate
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Wasupon Chatan
- Department of Veterinary Clinic, Faculty of Veterinary Sciences, Mahasarakham University, Maha Sarakham 44000, Thailand; Center of Excellence in Biodiversity Research, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Naruemon Bunchom
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Onuma Kaewkla
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand; Center of Excellence in Biodiversity Research, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Christen Rune Stensvold
- Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, Copenhagen S DK-2300, Denmark
| | - Weerachai Saijuntha
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham 44150, Thailand; Center of Excellence in Biodiversity Research, Mahasarakham University, Maha Sarakham 44150, Thailand.
| |
Collapse
|
3
|
Vonaesch P, Billy V, Mann AE, Morien E, Habib A, Collard JM, Dédé M, Kapel N, Sansonetti PJ, Parfrey LW. The eukaryome of African children is influenced by geographic location, gut biogeography, and nutritional status. MICROLIFE 2023; 4:uqad033. [PMID: 37680753 PMCID: PMC10481997 DOI: 10.1093/femsml/uqad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023]
Abstract
Eukaryotes have historically been studied as parasites, but recent evidence suggests they may be indicators of a healthy gut ecosystem. Here, we describe the eukaryome along the gastrointestinal tract of children aged 2-5 years and test for associations with clinical factors such as anaemia, intestinal inflammation, chronic undernutrition, and age. Children were enrolled from December 2016 to May 2018 in Bangui, Central African Republic and Antananarivo, Madagascar. We analyzed a total of 1104 samples representing 212 gastric, 187 duodenal, and 705 fecal samples using a metabarcoding approach targeting the full ITS2 region for fungi, and the V4 hypervariable region of the 18S rRNA gene for the overall eukaryome. Roughly, half of all fecal samples showed microeukaryotic reads. We find high intersubject variability, only a handful of taxa that are likely residents of the gastrointestinal tract, and frequent co-occurrence of eukaryotes within an individual. We also find that the eukaryome differs between the stomach, duodenum, and feces and is strongly influenced by country of origin. Our data show trends towards higher levels of Fusarium equiseti, a mycotoxin producing fungus, and lower levels of the protist Blastocystis in stunted children compared to nonstunted controls. Overall, the eukaryome is poorly correlated with clinical variables. Our study is of one of the largest cohorts analyzing the human intestinal eukaryome to date and the first to compare the eukaryome across different compartments of the gastrointestinal tract. Our results highlight the importance of studying populations across the world to uncover common features of the eukaryome in health.
Collapse
Affiliation(s)
- Pascale Vonaesch
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Vincent Billy
- Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 3200-6270 University Boulevard, V6T1Z4 Vancouver, Canada
| | - Allison E Mann
- Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 3200-6270 University Boulevard, V6T1Z4 Vancouver, Canada
| | - Evan Morien
- Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 3200-6270 University Boulevard, V6T1Z4 Vancouver, Canada
| | - Azimdine Habib
- Unité de Bactériologie Expérimentale, Institut Pasteur de Madagascar, BP1274 Ambatofotsikely Avaradoha 101 Antananarivo, Madagascar
| | - Jean-Marc Collard
- Unité de Bactériologie Expérimentale, Institut Pasteur de Madagascar, BP1274 Ambatofotsikely Avaradoha 101 Antananarivo, Madagascar
| | - Michel Dédé
- Laboratoire d’Analyse médicale, Institut Pasteur de Bangui, Avenue De Independence Bangui, 923 Central African Republic
| | - Nathalie Kapel
- Laboratoire de Coprologie Fonctionnelle, Assistance Publique- Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 47-83 Bd de l’Hôpital, 75013 Paris, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Laura Wegener Parfrey
- Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, 3200-6270 University Boulevard, V6T1Z4 Vancouver, Canada
| |
Collapse
|
4
|
Ahmed SA, Kotepui M, Masangkay FR, Milanez GD, Karanis P. Gastrointestinal parasites in Africa: A review. ADVANCES IN PARASITOLOGY 2023; 119:1-64. [PMID: 36707173 DOI: 10.1016/bs.apar.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Data on human gastrointestinal parasites (GIP) infections in the african sub-regions and countries are mainly lacking in terms of prevalence and population stratification by afflicted age group, symptomatology, multi-parasitism, and diagnostic methods. This study aims to describe the GIP reported in african countries and discuss the extent of the burden in the african context. Only 68.42% (39/57) of african countries reported human cases of GIP with helminths (45%, CI: 40-50%, I2: 99.79%) as the predominant parasitic group infecting the african population. On a regional scale, Central Africa had the highest pooled prevalence for GIP (43%, CI: 32-54%, I2: 99.74%), while the Central African Republic led all countries with a pooled prevalence of 90% (CI: 89-92%, I2: 99.96%). The vulnerable population (patients who are minorities, children, old, poor, underfunded, or have particular medical conditions) was the most affected (50%, CI: 37-62%, I2: 99.33%), with the predominance of GIP in the 6 to <20 years age group (48%, CI: 43-54%, I2: 99.68%). Reports on multi-parasitism (44%, CI: 40-48%, I2: 99.73%) were almost double the reports of single infections (43%, CI: 27-59%, I2: 99.77%) with combined molecular and non-molecular techniques demonstrating the best performance for GIP identification. The current review spans more than 40 years of GIP reports from the african continent. Geographical characteristics, environmental factors, habits of its inhabitants, and their health status play a crucial role in GIP modulation and behaviour in its captive hosts. Strategies for regular and enhanced surveillance, policy formation, and high-level community awareness are necessary to identify the true incidence in Africa and the transmission of the pathogens via water and food.
Collapse
Affiliation(s)
- Shahira A Ahmed
- Department of Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manas Kotepui
- Medical Technology Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Frederick R Masangkay
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Giovanni D Milanez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, Cologne, Germany; University of Nicosia Medical School, Nicosia, Cyprus.
| |
Collapse
|
5
|
RNA Sequencing Reveals Widespread Transcription of Natural Antisense RNAs in Entamoeba Species. Microorganisms 2022; 10:microorganisms10020396. [PMID: 35208849 PMCID: PMC8874941 DOI: 10.3390/microorganisms10020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/26/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022] Open
Abstract
Entamoeba is a genus of Amoebozoa that includes the intestine-colonizing pathogenic species Entamoeba histolytica. To understand the basis of gene regulation in E. histolytica from an evolutionary perspective, we have profiled the transcriptomes of its closely related species E. dispar, E. moshkovskii and E. invadens. Genome-wide identification of transcription start sites (TSS) and polyadenylation sites (PAS) revealed the similarities and differences of their gene regulatory sequences. In particular, we found the widespread initiation of antisense transcription from within the gene coding sequences is a common feature among all Entamoeba species. Interestingly, we observed the enrichment of antisense transcription in genes involved in several processes that are common to species infecting the human intestine, e.g., the metabolism of phospholipids. These results suggest a potentially conserved and compact gene regulatory system in Entamoeba.
Collapse
|
6
|
Amplicon-based next-generation sequencing of eukaryotic nuclear ribosomal genes (metabarcoding) for the detection of single-celled parasites in human faecal samples. Parasite Epidemiol Control 2022; 17:e00242. [PMID: 35146142 PMCID: PMC8819130 DOI: 10.1016/j.parepi.2022.e00242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 01/12/2023] Open
Abstract
Comprehensive detection and differentiation of intestinal protists mostly rely on DNA-based methods. Here, we evaluated next-generation sequencing of eukaryotic nuclear ribosomal genes (metabarcoding) for the detection and differentiation of intestinal eukaryotic protists in the stool of healthy Tunisian individuals. Thirty-six faecal DNA samples previously evaluated by microscopy and ameboid species-specific PCRs were tested. The hypervariable regions V3-V4 and V3-V5 of the 18S rRNA gene were amplified using three universal eukaryotic primer sets and sequenced using Illumina®MiSeq sequencing. In addition, real-time PCR assays were used to detect Dientamoeba fragilis, Giardia duodenalis, and Cryptosporidium spp. The metabarcoding assay detected Blastocystis (subtypes 1, 2, and 3) and archamoebid species and subtypes (Entamoeba dispar, Entamoeba hartmanni, Entamoeba coli RL1 and RL2, Endolimax nana, Iodamoeba bütschlii RL1) in 27 (75%) and 22 (61%) of the 36 stool samples, respectively. Meanwhile, the assay had limited sensitivity for flagellates as evidenced by the fact that no Giardia-specific reads were found in any of the five Giardia-positive samples included, and Dientamoeba-specific reads were observed only in 3/13 D. fragilis-positive samples. None of the samples were positive for Cryptosporidium by any of the methods. In conclusion, a large variety of intestinal eukaryotic protists were detected and differentiated at species and subtype level; however, limited sensitivity for common flagellates was observed.
Collapse
|
7
|
Herrera G, Vega L, Patarroyo MA, Ramírez JD, Muñoz M. Gut microbiota composition in health-care facility-and community-onset diarrheic patients with Clostridioides difficile infection. Sci Rep 2021; 11:10849. [PMID: 34035404 PMCID: PMC8149855 DOI: 10.1038/s41598-021-90380-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
The role of gut microbiota in the establishment and development of Clostridioides difficile infection (CDI) has been widely discussed. Studies showed the impact of CDI on bacterial communities and the importance of some genera and species in recovering from and preventing infection. However, most studies have overlooked important components of the intestinal ecosystem, such as eukaryotes and archaea. We investigated the bacterial, archaea, and eukaryotic intestinal microbiota of patients with health-care-facility- or community-onset (HCFO and CO, respectively) diarrhea who were positive or negative for CDI. The CDI-positive groups (CO/+, HCFO/+) showed an increase in microorganisms belonging to Bacteroidetes, Firmicutes, Proteobacteria, Ascomycota, and Opalinata compared with the CDI-negative groups (CO/-, HCFO/-). Patients with intrahospital-acquired diarrhea (HCFO/+, HCFO/-) showed a marked decrease in bacteria beneficial to the intestine, and there was evidence of increased Archaea and Candida and Malassezia species compared with the CO groups (CO/+, CO/-). Characteristic microbiota biomarkers were established for each group. Finally, correlations between bacteria and eukaryotes indicated interactions among the different kingdoms making up the intestinal ecosystem. We showed the impact of CDI on microbiota and how it varies with where the infection is acquired, being intrahospital-acquired diarrhea one of the most influential factors in the modulation of bacterial, archaea, and eukaryotic populations. We also highlight interactions between the different kingdoms of the intestinal ecosystem, which need to be evaluated to improve our understanding of CDI pathophysiology.
Collapse
Affiliation(s)
- Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, 110231, Bogotá D.C., Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
8
|
Vega L, Herrera G, Muñoz M, Patarroyo MA, Maloney JG, Santín M, Ramírez JD. Gut microbiota profiles in diarrheic patients with co-occurrence of Clostridioides difficile and Blastocystis. PLoS One 2021; 16:e0248185. [PMID: 33725006 PMCID: PMC7963057 DOI: 10.1371/journal.pone.0248185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Blastocystis and Clostridioides difficile co-occurrence is considered a rare event since the colonization by Blastocystis is prevented under a decrease in beneficial bacteria in the microbiota when there is C. difficile infection (CDI). This scenario has been reported once, but no information on the gut microbiota profiling is available. The present study is motivated by knowing which members of the microbiota can be found in this rare scenario and how this co-occurrence may impact the abundance of other bacteria, eukaryotes or archaea present in the gut microbiota. This study aimed to describe the bacterial and eukaryotic communities using amplicon-based sequencing of the 16S- and 18S-rRNA regions of three patient groups: (1) Blastocystis and C. difficile infection (B+/C+, n = 31), (2) C. difficile infection only (B˗/C+, n = 44), and (3) without Blastocystis or C. difficile (B˗/C˗, n = 40). Blastocystis was subtyped using amplicon-based sequencing of the 18S-rRNA gene, revealing circulation of subtypes ST1 (43.4%), ST3 (35.85%) and ST5 (20.75%) among the study population. We found that B+/C+ patients had a higher abundance of some beneficial bacteria (such as butyrate producers or bacteria with anti-inflammatory properties) compared with non-Blastocystis-colonized patients, which may suggest a shift towards an increase in beneficial bacteria when Blastocystis colonizes patients with CDI. Regarding eukaryotic communities, statistical differences in the abundance of some eukaryotic genera between the study groups were not observed. Thus, this study provides preliminary descriptive information of a potential microbiota profiling of differential presence by Blastocystis and C. difficile.
Collapse
Affiliation(s)
- Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Manuel A. Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jenny G. Maloney
- USDA ARS, Environmental Microbial and Food Safety Laboratory, BARC, Beltsville, MD, United States of America
| | - Monica Santín
- USDA ARS, Environmental Microbial and Food Safety Laboratory, BARC, Beltsville, MD, United States of America
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
9
|
Multilocus Genotyping of Giardia duodenalis in Mostly Asymptomatic Indigenous People from the Tapirapé Tribe, Brazilian Amazon. Pathogens 2021; 10:pathogens10020206. [PMID: 33672794 PMCID: PMC7917967 DOI: 10.3390/pathogens10020206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Little information is available on the occurrence and genetic variability of the diarrhoea-causing enteric protozoan parasite Giardia duodenalis in indigenous communities in Brazil. This cross-sectional epidemiological survey describes the frequency, genotypes, and risk associations for this pathogen in Tapirapé people (Brazilian Amazon) at four sampling campaigns during 2008–2009. Microscopy was used as a screening test, and molecular (PCR and Sanger sequencing) assays targeting the small subunit ribosomal RNA, the glutamate dehydrogenase, the beta-giardin, and the triosephosphate isomerase genes as confirmatory/genotyping methods. Associations between G. duodenalis and sociodemographic and clinical variables were investigated using Chi-squared test and univariable/multivariable logistic regression models. Overall, 574 individuals belonging to six tribes participated in the study, with G. duodenalis prevalence rates varying from 13.5–21.7%. The infection was positively linked to younger age and tribe. Infected children <15 years old reported more frequent gastrointestinal symptoms compared to adults. Assemblage B accounted for three out of four G. duodenalis infections and showed a high genetic diversity. No association between assemblage and age or occurrence of diarrhoea was demonstrated. These data indicate that the most likely source of infection was anthropic and that different pathways (e.g., drinking water) may be involved in the transmission of the parasite.
Collapse
|
10
|
Abstract
Microbial parasites adapted to thrive at mammalian mucosal surfaces have evolved multiple times from phylogenetically distant lineages into various extracellular and intracellular life styles. Their symbiotic relationships can range from commensalism to parasitism and more recently some host-parasites interactions are thought to have evolved into mutualistic associations too. It is increasingly appreciated that this diversity of symbiotic outcomes is the product of a complex network of parasites-microbiota-host interactions. Refinement and broader use of DNA based detection techniques are providing increasing evidence of how common some mucosal microbial parasites are and their host range, with some species being able to swap hosts, including from farm and pet animals to humans. A selection of examples will illustrate the zoonotic potential for a number of microbial parasites and how some species can be either disruptive or beneficial nodes in the complex networks of host-microbe interactions disrupting or maintaining mucosal homoeostasis. It will be argued that mucosal microbial parasitic diversity will represent an important resource to help us dissect through comparative studies the role of host-microbe interactions in both human health and disease.
Collapse
|
11
|
Stensvold CR, Lebbad M, Hansen A, Beser J, Belkessa S, O'Brien Andersen L, Clark CG. Differentiation of Blastocystis and parasitic archamoebids encountered in untreated wastewater samples by amplicon-based next-generation sequencing. Parasite Epidemiol Control 2019; 9:e00131. [PMID: 31909230 PMCID: PMC6940715 DOI: 10.1016/j.parepi.2019.e00131] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/06/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
Background Application of next-generation sequencing (NGS) to genomic DNA extracted from sewage offers a unique and cost-effective opportunity to study the genetic diversity of intestinal parasites. In this study, we used amplicon-based NGS to reveal and differentiate several common luminal intestinal parasitic protists, specifically Entamoeba, Endolimax, Iodamoeba, and Blastocystis, in sewage samples from Swedish treatment plants. Materials and methods Influent sewage samples were subject to gradient centrifugation, DNA extraction and PCR-based amplification using three primer pairs designed for amplification of eukaryotic nuclear 18S ribosomal DNA. PCR products were sequenced using ILLUMINA® technology, and resulting sequences were annotated to species and subtype level using the in-house BION software, sequence clustering, and phylogenetic analysis. Results A total of 26 samples from eight treatment plants in central/southern Sweden were analysed. Blastocystis sp. and Entamoeba moshkovskii were detected in all samples, and most samples (n = 20) were positive for Entamoeba coli. Moreover, we detected Entamoeba histolytica, Entamoeba dispar, Entamoeba hartmanni, Endolimax nana, and Iodamoeba bütschlii in 1, 11, 4, 10, and 7 samples, respectively. The level of genetic divergence observed within E. nana and E. moshkovskii was 20.2% and 7.7%, respectively, across the ~400-bp region studied, and two clades of E. moshkovskii were found. As expected, Blastocystis sp. subtypes 1–4 were present in almost all samples; however, ST8 was present in 10 samples and was the only subtype not commonly found in humans that was present in multiple samples. Conclusions Entamoeba and Blastocystis were identified as universal members of the “sewage microbiome”. Blastocystis sp. ST8, which has been rarely reported in humans, was a very common finding, indicating that a hitherto unidentified but common host of ST8 contributed to the sewage influent. The study also provided substantial new insight into the intra-generic diversity of Entamoeba and Endolimax.
Collapse
Affiliation(s)
- Christen Rune Stensvold
- Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Marianne Lebbad
- Department of Microbiology, Public Health Agency of Sweden, SE-171 82 Solna, Sweden
| | - Anette Hansen
- Department of Microbiology, Public Health Agency of Sweden, SE-171 82 Solna, Sweden
| | - Jessica Beser
- Department of Microbiology, Public Health Agency of Sweden, SE-171 82 Solna, Sweden
| | - Salem Belkessa
- Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark.,Department of Biochemistry and Microbiology, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University of Tizi Ouzou, 15000 Tizi Ouzou, Algeria.,Department of Natural and Life Sciences, Faculty of Exact Sciences and Natural and Life Sciences, Mohamed Khider University of Biskra, 07000 Biskra, Algeria
| | - Lee O'Brien Andersen
- Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - C Graham Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
12
|
Jiménez PA, Jaimes JE, Ramírez JD. A summary of Blastocystis subtypes in North and South America. Parasit Vectors 2019; 12:376. [PMID: 31358042 PMCID: PMC6664531 DOI: 10.1186/s13071-019-3641-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/25/2019] [Indexed: 03/13/2023] Open
Abstract
Background Blastocystis is a stramenopile of worldwide significance due to its capacity to colonize several hosts. Based on its high level of genetic diversity, Blastocystis is classified into global ribosomal subtypes (STs). The aim of this study was to conduct a summary of Blastocystis STs and depict their distribution throughout North and South America; we did this by assembling maps and identifying its most common 18S alleles based on diverse studies that had been reported all over the continent and whose Blastocystis-positive samples were obtained from numerous hosts. Results Thirty-nine articles relating to nine countries from the American continent were considered, revealing that ST1 (33.3%), ST2 (21.9%), ST3 (37.9%), ST4 (1.7%), ST5 (0.4%), ST6 (1.2%), ST7 (1%), ST8 (0.7%), ST9 (0.4%), ST12 (0.3%), Novel ST (1.1%) and Mixed STs (0.2%) occurred in humans. The STs in other animal hosts were ST1 (6.5%), ST2 (6.5%), ST3 (4.7%), ST4 (7.2%), ST5 (15.9%), ST6 (17.3%), ST7 (3.6%), ST8 (20.6%), ST10 (9%), ST14 (3.6%), ST17 (1.1%) and Novel ST (4%). The countries that presented the most abundant variety of studies reporting STs were the USA with 14 STs, Brazil with 9 STs and Colombia with 8 STs. Additionally, new variants had been described in the last few years, which have increased the prevalence of these subtypes in the countries studied, such as Novel ST (1.1%) and Mixed STs (0.2%) in humans and Novel ST (4%) in animals. Conclusions This summary updates the epidemiological situation on the distribution of Blastocystis STs in North and South America and will augment current knowledge on the prevalence and genetic diversity of this protozoan. Electronic supplementary material The online version of this article (10.1186/s13071-019-3641-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paula Andrea Jiménez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia.,Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Jesús Eduardo Jaimes
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|