1
|
Siqueira-Neto JL, Lane TR, Bernatchez JA, Calvet Alvarez CM, Barbosa da Silva E, Giardini MA, Ekins S. Oral Pyronaridine Tetraphosphate Reduces Tissue Presence of Parasites in a Mouse Model of Chagas Disease. ACS OMEGA 2024; 9:37288-37298. [PMID: 39246496 PMCID: PMC11375811 DOI: 10.1021/acsomega.4c05060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
The eukaryotic parasite Trypanosoma cruzi (T. cruzi) is responsible for Chagas disease, which results in heart failure in patients. The disease is more common in Latin America, and is an emerging infection with The Centers for Disease Control estimating that greater than 300,000 people are currently infected in the United States. This disease has also spread from South and Central America, where it is endemic to many other countries, including Australia, Japan, and Spain. Current therapy for Chagas disease is inadequate due to limited efficacy in the indeterminate and chronic phases of the disease, in addition to the adverse effects from nifurtimox and benznidazole, which are nitro-containing drugs used for therapy. There is a clear need for new therapies for the Chagas disease. Using a computational machine learning approach, we have previously shown that the antimalarial pyronaridine tetraphosphate is active against T. cruzi Brazil-luc in vitro against parasites infecting a myoblast cell line and is also active in vivo in an acute mouse model of Chagas disease when dosed i.p. We now further evaluated oral pyronaridine as a monotherapy to determine the minimum effective dose to treat acute and chronic models of Chagas disease. Our results for T. cruzi Brazil-luc demonstrated daily oral dosing with pyronaridine from 150 to 600 mg/kg resulted in statistically significant inhibition in the 7 day acute mouse model. Combination therapy with daily dosing of benznidazole and pyronaridine in the acute infection model demonstrated that 300 mg/kg pyronaridine could return statistically significant antiparasitic activity to a subtherapetic 10 mg/kg benznidazole. In contrast, pyronaridine as monotherapy or combined with benznidazole lacked efficacy in the chronic mouse model, whereas 100 mg/kg benznidazole alone demonstrated undetectable parasites in the heart of mice. Pyronaridine requires further assessment in other chronic models to identify if it can be used beyond the acute stage of T. cruzi infection.
Collapse
Affiliation(s)
- Jair Lage Siqueira-Neto
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Jean A. Bernatchez
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Claudia Magalhaes Calvet Alvarez
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Laboratório
de Ultraestrutura Celular, Instituto Oswaldo
Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro 21040-300, Brazil
| | - Elany Barbosa da Silva
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Miriam A. Giardini
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
2
|
Silvestrini MMA, Alessio GD, Frias BED, Sales Júnior PA, Araújo MSS, Silvestrini CMA, Brito Alvim de Melo GE, Martins-Filho OA, Teixeira-Carvalho A, Martins HR. New insights into Trypanosoma cruzi genetic diversity, and its influence on parasite biology and clinical outcomes. Front Immunol 2024; 15:1342431. [PMID: 38655255 PMCID: PMC11035809 DOI: 10.3389/fimmu.2024.1342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.
Collapse
Affiliation(s)
| | - Glaucia Diniz Alessio
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Estefânia Diniz Frias
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Policarpo Ademar Sales Júnior
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio Sobreira Silva Araújo
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Rodrigues Martins
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
3
|
Barnabé C, Brenière SF, Santillán-Guayasamín S, Douzery EJP, Waleckx E. Revisiting gene typing and phylogeny of Trypanosoma cruzi reference strains: Comparison of the relevance of mitochondrial DNA, single-copy nuclear DNA, and the intergenic region of mini-exon gene. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105504. [PMID: 37739149 DOI: 10.1016/j.meegid.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Chagas disease is a widespread neglected disease in Latin America. Trypanosoma cruzi, the causative agent of the disease, is currently subdivided into six DTUs (discrete typing units) named TcI-TcVI, and although no clear association has been found between parasite genetics and different clinical outcomes of the disease or different transmission cycles, genetic characterization of T. cruzi strains remains crucial for integrated epidemiological studies. Numerous markers have been used for this purpose, although without consensus. These include mitochondrial genes, single or multiple-copy nuclear genes, ribosomal RNA genes, and the intergenic region of the repeated mini-exon gene. To increase our knowledge of these gene sequences and their usefulness for strain typing, we sequenced fragments of three mitochondrial genes, nine single-copy nuclear genes, and the repeated intergenic part of the mini-exon gene by Next Generation Sequencing (NGS) on a sample constituted of 16 strains representative of T. cruzi genetic diversity, to which we added the corresponding genetic data of the 38 T. cruzi genomes fully sequenced until 2022. Our results show that single-copy nuclear genes remain the gold standard for characterizing T. cruzi strains; the phylogenetic tree from concatenated genes (3959 bp) confirms the six DTUs previously recognized and provides additional information about the alleles present in the hybrid strains. In the tree built from the three mitochondrial concatenated genes (1274 bp), three main clusters are identified, including one with TcIII, TcIV, TcV, and TcVI DTUs which are not separated. Nevertheless, mitochondrial markers remain necessary for detecting introgression and heteroplasmy. The phylogenetic tree built from the sequence alignment of the repeated mini-exon gene fragment (327 bp) displayed six clusters, but only TcI was associated with a single cluster. The sequences obtained from strains belonging to the other DTUs were scattered into different clusters. Therefore, while the mini-exon marker may bring, for some biological samples, some advantages in terms of sensibility due to its repeated nature, mini-exon sequences must be used with caution and, when possible, avoided for T. cruzi typing and phylogenetic studies.
Collapse
Affiliation(s)
- Christian Barnabé
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France.
| | - Simone Frédérique Brenière
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France
| | - Soledad Santillán-Guayasamín
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France; Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Emmanuel J P Douzery
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France.
| | - Etienne Waleckx
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France; Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico; ACCyC, Asociación Chagas con Ciencia y Conocimiento, A. C, Orizaba, Mexico.
| |
Collapse
|
4
|
Flores-López CA, Esquivias-Flores EA, Guevara-Carrizales A. Phylogenetic description of Trypanosoma cruzi isolates from Dipetalogaster maxima: Occurrence of TcI, TcIV, and TcIV-USA. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105465. [PMID: 37331498 DOI: 10.1016/j.meegid.2023.105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Trypanosoma cruzi is the parasite responsible for Chagas disease. The parasite has been classified into six taxonomic assemblages: TcI-TcVI and TcBat (aka Discrete Typing Units or Near-Clades). No studies have focused on describing the genetic diversity of T. cruzi in the northwestern region of Mexico. Within the Baja California peninsula lives Dipetalogaster maxima, the largest vector species for CD. The study aimed to describe the genetic diversity of T. cruzi within D. maxima. A total of three Discrete Typing Units (DTUs) were found (TcI, TcIV, and TcIV-USA). TcI was the predominant DTU found (∼75% of samples), in concordance with studies from the southern USA, one sample was described as TcIV while the other ∼20% pertained to TcIV-USA, which has recently been proposed to have enough genetic divergence from TcIV, to merit its own DTU. Potential phenotype differences between TcIV and TcIV-USA should be assessed in future studies.
Collapse
Affiliation(s)
- Carlos A Flores-López
- Facultad de Ciencias, Universidad Autonoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Colonia Playitas C.P. 22860, Ensenada, Baja California, Mexico.
| | - Esteban A Esquivias-Flores
- Facultad de Ciencias, Universidad Autonoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Colonia Playitas C.P. 22860, Ensenada, Baja California, Mexico
| | - Aldo Guevara-Carrizales
- Facultad de Ciencias, Universidad Autonoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Colonia Playitas C.P. 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
5
|
Christopher DM, Curtis-Robles R, Hamer GL, Bejcek J, Saunders AB, Roachell WD, Cropper TL, Hamer SA. Collection of triatomines from sylvatic habitats by a Trypanosoma cruzi-infected scent detection dog in Texas, USA. PLoS Negl Trop Dis 2023; 17:e0010813. [PMID: 36940217 PMCID: PMC10063167 DOI: 10.1371/journal.pntd.0010813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/30/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Triatomine insects, vectors of the etiologic agent of Chagas disease (Trypanosoma cruzi), are challenging to locate in sylvatic habitats. Collection techniques used in the United States often rely on methods to intercept seasonally dispersing adults or on community scientists' encounters. Neither method is suited for detecting nest habitats likely to harbor triatomines, which is important for vector surveillance and control. Furthermore, manual inspection of suspected harborages is difficult and unlikely to reveal novel locations and host associations. Similar to a team that used a trained dog to detect sylvatic triatomines in Paraguay, we worked with a trained scent detection dog to detect triatomines in sylvatic locations across Texas. PRINCIPLE METHODOLOGY/FINDINGS Ziza, a 3-year-old German Shorthaired Pointer previously naturally infected with T. cruzi, was trained to detect triatomines. Over the course of 6 weeks in the fall of 2017, the dog and her handler searched at 17 sites across Texas. The dog detected 60 triatomines at 6 sites; an additional 50 triatomines were contemporaneously collected at 1 of these sites and 2 additional sites without the assistance of the dog. Approximately 0.98 triatomines per hour were found when only humans were conducting searches; when working with the dog, approximately 1.71 triatomines per hour were found. In total, 3 adults and 107 nymphs of four species (Triatoma gerstaeckeri, Triatoma protracta, Triatoma sanguisuga, and Triatoma indictiva) were collected. PCR testing of a subset revealed T. cruzi infection, including DTUs TcI and TcIV, in 27% of nymphs (n = 103) and 66% of adults (n = 3). Bloodmeal analysis of a subset of triatomines (n = 5) revealed feeding on Virginia opossum (Didelphis virginiana), Southern plains woodrat (Neotoma micropus), and eastern cottontail (Sylvilagus floridanus). CONCLUSION/SIGNIFICANCE A trained scent detection dog enhanced triatomine detections in sylvatic habitats. This approach is effective at detecting nidicolous triatomines. Control of sylvatic sources of triatomines is challenging, but this new knowledge of specific sylvatic habitats and key hosts may reveal opportunities for novel vector control methods to block the transmission of T. cruzi to humans and domestic animals.
Collapse
Affiliation(s)
| | - Rachel Curtis-Robles
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Justin Bejcek
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Ashley B. Saunders
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Walter D. Roachell
- Public Health Command Central, JBSA-Fort Sam Houston, San Antonio, Texas, United States of America
| | - Thomas Leo Cropper
- Wilford Hall Ambulatory Surgical Center, Joint Base San Antonio, San Antonio Texas
| | - Sarah A. Hamer
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
6
|
Tibayrenc M, Ayala FJ. Microevolution and subspecific taxonomy of Trypanosoma cruzi. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105344. [PMID: 35926722 DOI: 10.1016/j.meegid.2022.105344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Trypanosoma cruzi, the agent of Chagas disease, is a highly polymorphic species, subdivided into 6 main evolutionary lineages or near-clades (formerly discrete typing units or DTUs). An additional near-clade (TC-bat) has recently been evidenced. This pattern is considered to be the result of predominant clonal evolution (PCE). PCE is compatible with occasional mating/hybridization, which do not break the prevalent pattern of clonal evolution, the main trait of it being the presence of Multigene Bifurcating Trees (MGBTs) at all evolutionary levels ("clonal frame"). The development of highly resolutive genetic (microsatellites*) and genomic (sequencing and multi-single nucleotide polymorphism {SNP}* typing) markers shows that PCE also operates at a microevolutionary* level within each of the near-clades ("Russian doll pattern"), in spite of occasional meiosis and hybridization events. Within each near-clade, one can evidence widespread clonal multilocus genotypes*, linkage disequilibrium*, Multigene Bifurcating Trees and lesser near-clades. The within near-clade population structure is like a miniature picture of that of the whole species, suggesting gradual rather than saltatory evolution. Additional data are required to evaluate the stability of these lesser near-clades in the long run and to evaluate the need for an adequate nomenclature for this microevolutionary level.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Institut de Recherche Pour le Développement, BP 6450134394 Montpellier Cedex 5, France.
| | - Francisco J Ayala
- Catedra Francisco Jose Ayala of Science, Technology, and Religion, University of Comillas, 28015 Madrid, Spain. 2 Locke Court, Irvine, CA 92617, USA
| |
Collapse
|
7
|
Flores-López CA, Mitchell EA, Reisenman CE, Sarkar S, Williamson PC, Machado CA. Phylogenetic diversity of two common Trypanosoma cruzi lineages in the Southwestern United States. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105251. [PMID: 35183751 DOI: 10.1016/j.meegid.2022.105251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a devastating parasitic disease endemic to Central and South America, Mexico, and the USA. We characterized the genetic diversity of Trypanosoma cruzi circulating in five triatomine species (Triatoma gerstaeckeri, T. lecticularia, T.indictiva, T. sanguisuga and T. recurva) collected in Texas and Southern Arizona using multilocus sequence typing (MLST) with four single-copy loci (cytochrome oxidase subunit II- NADH dehydrogensase subunit 1 region (COII-ND1), mismatch-repair class 2 (MSH2), dihydrofolate reductase-thymidylate synthase (DHFR-TS) and a nuclear gene with ID TcCLB.506529.310). All T. cruzi variants fall in two main genetic lineages: 75% of the samples corresponded to T. cruzi Discrete Typing Unit (DTU) I (TcI), and 25% to a North American specific lineage previously labelled TcIV-USA. Phylogenetic and sequence divergence analyses of our new data plus all previously published sequence data from those four loci collected in the USA, show that TcIV-USA is significantly different from any other previously defined T. cruzi DTUs. The significant level of genetic divergence between TcIV-USA and other T. cruzi DTUs should lead to an increased focus on understanding the epidemiological importance of this DTU, as well as its geographical range and pathogenicity in humans and domestic animals. Our findings further corroborate the fact that there is a high genetic diversity of the parasite in North America and emphasize the need for appropriate surveillance and vector control programs for Chagas disease in southern USA and Mexico.
Collapse
Affiliation(s)
- Carlos A Flores-López
- Department of Biology, University of Maryland, College Park, MD, USA; Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Elizabeth A Mitchell
- Tick-Borne Disease Research Laboratory, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carolina E Reisenman
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Sahotra Sarkar
- Department of Philosophy and Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Philip C Williamson
- Tick-Borne Disease Research Laboratory, Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA; Creative Testing Solutions, Tempe, AZ, USA
| | - Carlos A Machado
- Department of Biology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
8
|
Geographic variations in test reactivity for the serological diagnosis of Trypanosoma cruzi infection. J Clin Microbiol 2021; 59:e0106221. [PMID: 34469183 PMCID: PMC8601237 DOI: 10.1128/jcm.01062-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chagas disease is a neglected disease caused by Trypanosoma cruzi parasites. Most diagnosis is based on serological tests, but the lack of a gold standard test complicates the measurement of test performance. To overcome this limitation, we used samples from a cohort of well-characterized T. cruzi-infected women to evaluate the reactivity of two rapid diagnostic tests and one enzyme-linked immunosorbent assay (ELISA). Our cohort was derived from a previous study on congenital transmission of T. cruzi and consisted of 481 blood/plasma samples from Argentina (n = 149), Honduras (n = 228), and Mexico (n = 104), with at least one positive T. cruzi PCR. Reactivity of the three tests ranged from 70.5% for the Wiener ELISA to 81.0% for the T-Detect and 90.4% for the Stat-Pak rapid tests. Test reactivity varied significantly among countries and was highest in Argentina and lowest in Mexico. When considering at least two reactive serological tests to confirm seropositivity, over 12% of T. cruzi infection cases from Argentina were missed by serological tests, over 21% in Honduras, and an alarming 72% in Mexico. Differences in test performance among countries were not due to differences in parasitemia, but differences in antibody levels against ELISA antigens were observed. Geographic differences in T. cruzi parasite strains as well as genetic differences among human populations both may contribute to the discrepancies in serological testing. Improvements in serological diagnostics for T. cruzi infections are critically needed to ensure an optimum identification of cases.
Collapse
|
9
|
Vela A, Coral-Almeida M, Sereno D, Costales JA, Barnabé C, Brenière SF. In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: A systematic review and meta-analysis. PLoS Negl Trop Dis 2021; 15:e0009269. [PMID: 33750958 PMCID: PMC8016252 DOI: 10.1371/journal.pntd.0009269] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/01/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chagas disease, a neglected tropical disease endemic to Latin America caused by the parasite Trypanosoma cruzi, currently affects 6-7 million people and is responsible for 12,500 deaths each year. No vaccine exists at present and the only two drugs currently approved for the treatment (benznidazole and nifurtimox), possess serious limitations, including long treatment regimes, undesirable side effects, and frequent clinical failures. A link between parasite genetic variability and drug sensibility/efficacy has been suggested, but remains unclear. Therefore, we investigated associations between T. cruzi genetic variability and in vitro benznidazole susceptibility via a systematic article review and meta-analysis. METHODOLOGY/PRINCIPAL FINDINGS In vitro normalized benznidazole susceptibility indices (LC50 and IC50) for epimastigote, trypomastigote and amastigote stages of different T. cruzi strains were recorded from articles in the scientific literature. A total of 60 articles, which include 189 assays, met the selection criteria for the meta-analysis. Mean values for each discrete typing unit (DTU) were estimated using the meta and metaphor packages through R software, and presented in a rainforest plot. Subsequently, a meta-regression analysis was performed to determine differences between estimated mean values by DTU/parasite stage/drug incubation times. For each parasite stage, some DTU mean values were significantly different, e.g. at 24h of drug incubation, a lower sensitivity to benznidazole of TcI vs. TcII trypomastigotes was noteworthy. Nevertheless, funnel plots detected high heterogeneity of the data within each DTU and even for a single strain. CONCLUSIONS/SIGNIFICANCE Several limitations of the study prevent assigning DTUs to different in vitro benznidazole sensitivity groups; however, ignoring the parasite's genetic variability during drug development and evaluation would not be advisable. Our findings highlight the need for establishment of uniform experimental conditions as well as a screening of different DTUs during the optimization of new drug candidates for Chagas disease treatment.
Collapse
Affiliation(s)
- Andrea Vela
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador
| | - Marco Coral-Almeida
- One Health Research group, Facultad de Ciencias de la salud, Universidad de las Américas-Quito, Calle de los Colimes y Avenida De los Granados, Quito, Ecuador
| | - Denis Sereno
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador
| | - Christian Barnabé
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
| | - Simone Frédérique Brenière
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
10
|
Vivas RJ, García JE, Guhl F, Hernández C, Velásquez N, Ramírez JD, Carranza JC, Vallejo GA. Systematic review on the biology, ecology, genetic diversity and parasite transmission potential of Panstrongylus geniculatus (Latreille 1811) in Latin America. Mem Inst Oswaldo Cruz 2021; 116:e200528. [PMID: 33656141 PMCID: PMC7919531 DOI: 10.1590/0074-02760200528] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
Panstrongylus geniculatus (Latreille, 1811) is the triatomine with the largest geographic distribution in Latin America. It has been reported in 18 countries from southern Mexico to northern Argentina, including the Caribbean islands. Although most reports indicate that P. geniculatus has wild habitats, this species has intrusive habits regarding human dwellings mainly located in intermediate deforested areas. It is attracted by artificial light from urban and rural buildings, raising the risk of transmission of Trypanosoma cruzi. Despite the wide body of published information on P. geniculatus, many knowledge gaps exist about its biology and epidemiological potential. For this reason, we analysed the literature for P. geniculatus in Scopus, PubMed, Scielo, Google Scholar and the BibTriv3.0 databases to update existing knowledge and provide better information on its geographic distribution, life cycle, genetic diversity, evidence of intrusion and domiciliation, vector-related circulating discrete taxonomic units, possible role in oral T. cruzi transmission, and the effect of climate change on its biology and epidemiology.
Collapse
Affiliation(s)
- Ricardo José Vivas
- Universidad del Tolima, Laboratorio de Investigaciones en Parasitología Tropical, Ibagué, Colombia
| | - Jorge Enrique García
- Universidad de Ibagué, Facultad de Ciencias Naturales y Matemáticas, Ibagué, Colombia
| | - Felipe Guhl
- Universidad de los Andes, Centro de Investigaciones en Microbiología y Parasitología Tropical, Bogotá, Colombia
| | - Carolina Hernández
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Departamento de Biología, Grupo de Investigaciones Microbiológicas, Bogotá, Colombia
| | - Natalia Velásquez
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Departamento de Biología, Grupo de Investigaciones Microbiológicas, Bogotá, Colombia
| | - Juan David Ramírez
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Departamento de Biología, Grupo de Investigaciones Microbiológicas, Bogotá, Colombia
| | - Julio César Carranza
- Universidad del Tolima, Laboratorio de Investigaciones en Parasitología Tropical, Ibagué, Colombia
| | - Gustavo Adolfo Vallejo
- Universidad del Tolima, Laboratorio de Investigaciones en Parasitología Tropical, Ibagué, Colombia
| |
Collapse
|
11
|
Majeau A, Murphy L, Herrera C, Dumonteil E. Assessing Trypanosoma cruzi Parasite Diversity through Comparative Genomics: Implications for Disease Epidemiology and Diagnostics. Pathogens 2021; 10:212. [PMID: 33669197 PMCID: PMC7919814 DOI: 10.3390/pathogens10020212] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/21/2023] Open
Abstract
Chagas disease is an important vector-borne neglected tropical disease that causes great health and economic losses. The etiological agent, Trypanosoma cruzi, is a protozoan parasite endemic to the Americas, comprised by important diversity, which has been suggested to contribute to poor serological diagnostic performance. Current nomenclature describes seven discrete typing units (DTUs), or lineages. We performed the first large scale analysis of T. cruzi diversity among 52 previously published genomes from strains covering multiple countries and parasite DTUs and assessed how different markers summarize this genetic diversity. We also examined how seven antigens currently used in commercial serologic tests are conserved across this diversity of strains. DTU structuration was confirmed at the whole-genome level, with evidence of sub-DTU diversity, associated in part to geographic structuring. We observed very comparable phylogenetic tree topographies for most of the 32 markers investigated, with clear clustering of sequences by DTU, and a few of these markers suggested some degree of intra-lineage diversity. At least three of the currently used antigens represent poorly conserved sequences, with sequences used in tests quite divergent from sequences in many strains. Most markers are well suited for estimating parasite diversity to DTU level, and a few are particularly well-suited to assess intra-DTU diversity. Analysis of antigen sequences across all strains indicates that antigenic diversity is a likely explanation for limited diagnostic performance in Central and North America.
Collapse
Affiliation(s)
| | | | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector Borne Infectious Disease Research Center, Tulane University, New Orleans, LA 70112, USA; (A.M.); (L.M.)
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector Borne Infectious Disease Research Center, Tulane University, New Orleans, LA 70112, USA; (A.M.); (L.M.)
| |
Collapse
|
12
|
DeCuir J, Tu W, Dumonteil E, Herrera C. Sequence of Trypanosoma cruzi reference strain SC43 nuclear genome and kinetoplast maxicircle confirms a strong genetic structure among closely related parasite discrete typing units. Genome 2020; 64:525-531. [PMID: 33086026 DOI: 10.1139/gen-2020-0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chagas disease is a zoonotic, parasitic, vector-borne neglected tropical disease that affects the lives of over 6 million people throughout the Americas. Trypanosoma cruzi, the causative agent, presents extensive genetic diversity. Here we report the genome sequence of reference strain SC43cl1, a hybrid strain belonging to the TcV discrete typing unit (DTU). The assembled diploid genome was 79 Mbp in size, divided into 1236 contigs with an average coverage reaching 180×. There was extensive synteny of SC43cl1 genome with closely related TcV and TcVI genomes, with limited sequence rearrangements. TcVI genomes included several expansions not present in TcV strains. Comparative analysis of both nuclear and kinetoplast sequences clearly separated TcV from TcVI strains, which strongly supports the current DTU classification.
Collapse
Affiliation(s)
- James DeCuir
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Weihong Tu
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Eric Dumonteil
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Claudia Herrera
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
13
|
Induction of Effective Immunity against Trypanosoma cruzi. Infect Immun 2020; 88:IAI.00908-19. [PMID: 31907197 DOI: 10.1128/iai.00908-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, is a major public health issue. Limitations in immune responses to natural T. cruzi infection usually result in parasite persistence with significant complications. A safe, effective, and reliable vaccine would reduce the threat of T. cruzi infections; however, no suitable vaccine is currently available due to a lack of understanding of the requirements for induction of fully protective immunity. We established a T. cruzi strain expressing green fluorescent protein (GFP) under the control of dihydrofolate reductase degradation domain (DDD) with a hemagglutinin (HA) tag, GFP-DDDHA, which was induced by trimethoprim-lactate (TMP-lactate), which results in the death of intracellular parasites. This attenuated strain induces very strong protection against reinfection. Using this GFP-DDDHA strain, we investigated the mechanisms underlying the protective immune response in mice. Immunization with this strain led to a response that included high levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), as well as a rapid expansion of effector and memory T cells in the spleen. More CD8+ T cells differentiate to memory cells following GFP-DDDHA infection than after infection with a wild-type (WT) strain. The GFP-DDDHA strain also provides cross-protection against another T. cruzi isolate. IFN-γ is important in mediating the protection, as IFN-γ knockout (KO) mice failed to acquire protection when infected with the GFP-DDDHA strain. Immune cells demonstrated earlier and stronger protective responses in immunized mice after reinfection with T. cruzi than those in naive mice. Adoptive transfers with several types of immune cells or with serum revealed that several branches of the immune system mediated protection. A combination of serum and natural killer cells provided the most effective protection against infection in these transfer experiments.
Collapse
|
14
|
Elucidating diversity in the class composition of the minicircle hypervariable region of Trypanosoma cruzi: New perspectives on typing and kDNA inheritance. PLoS Negl Trop Dis 2019; 13:e0007536. [PMID: 31247047 PMCID: PMC6619836 DOI: 10.1371/journal.pntd.0007536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/10/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022] Open
Abstract
Background Trypanosoma cruzi, the protozoan causative of Chagas disease, is classified into six main Discrete Typing Units (DTUs): TcI-TcVI. This parasite has around 105 copies of the minicircle hypervariable region (mHVR) in their kinetoplastic DNA (kDNA). The genetic diversity of the mHVR is virtually unknown. However, cross-hybridization assays using mHVRs showed hybridization only between isolates belonging to the same genetic group. Nowadays there is no methodologic approach with a good sensibility, specificity and reproducibility for direct typing on biological samples. Due to its high copy number and apparently high diversity, mHVR becomes a good target for typing. Methodology/Principal findings Around 22 million reads, obtained by amplicon sequencing of the mHVR, were analyzed for nine strains belonging to six T. cruzi DTUs. The number and diversity of mHVR clusters was variable among DTUs and even within a DTU. However, strains of the same DTU shared more mHVR clusters than strains of different DTUs and clustered together. In addition, hybrid DTUs (TcV and TcVI) shared similar percentages (1.9–3.4%) of mHVR clusters with their parentals (TcII and TcIII). Conversely, just 0.2% of clusters were shared between TcII and TcIII suggesting biparental inheritance of the kDNA in hybrids. Sequencing at low depth (20,000–40,000 reads) also revealed 95% of the mHVR clusters for each of the analyzed strains. Finally, the method revealed good correlation in cluster identity and abundance between different replications of the experiment (r = 0.999). Conclusions/Significance Our work sheds light on the sequence diversity of mHVRs at intra and inter-DTU level. The mHVR amplicon sequencing workflow described here is a reproducible technique, that allows multiplexed analysis of hundreds of strains and results promissory for direct typing on biological samples in a future. In addition, such approach may help to gain knowledge on the mechanisms of the minicircle evolution and phylogenetic relationships among strains. Chagas disease is an important public health problem in Latin America showing a wide diversity of clinical manifestations and epidemiological patterns. It is caused by the parasite Trypanosoma cruzi. This parasite is genetically diverse and classified into six main lineages. However, the relationship between intra-specific genetic diversity and clinical or epidemiological features is not clear, mainly because low sensitivity for direct typing on biological samples. For this reason, genetic markers with high copy number are required to achieve sensitivity. Here, we deep sequenced and analyzed a DNA region present in the large mitochondria of the parasite (named as mHVR, 105 copies per parasite) from strains belonging to the six main lineages in order to analyze mHVR diversity and to evaluate its usefulness for typing. Despite the high sequence diversity, strains of the same lineage shared more sequences than strains of different lineages. Curiously, hybrid lineages shared mHVR sequences with both parents suggesting that mHVR (and DNA minicircles from the mitochondria) are inherited from both parentals. The mHVR amplicon sequencing workflow proposed here is reproducible and, potentially, it would be useful for typing hundreds of biological samples at time. It also provides a valuable approach to perform evolutionary and functional studies.
Collapse
|
15
|
Muñoz-San Martín C, Zulantay I, Saavedra M, Fuentealba C, Muñoz G, Apt W. Discrete typing units of Trypanosoma cruzi detected by real-time PCR in Chilean patients with chronic Chagas cardiomyopathy. Acta Trop 2018; 185:280-284. [PMID: 29746871 DOI: 10.1016/j.actatropica.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/13/2018] [Accepted: 05/06/2018] [Indexed: 12/19/2022]
Abstract
Chagas disease is a major public health problem in Latin America and has spread to other countries due to immigration of infected persons. 10-30% of patients with chronic Chagas disease will develop cardiomyopathy. Chagas cardiomyopathy is the worst form of the disease, due to its high morbidity and mortality. Because of its prognostic value and adequate medical monitoring, it is very important to identify infected people who could develop Chagas cardiomyopathy. The aim of this study was to determine if discrete typing units (DTUs) of Trypanosoma cruzi are related to the presence of heart disease in patients with chronic Chagas disease. A total of 86 untreated patients, 41 with cardiomyopathy and 45 without heart involvement were submitted to clinical study. Electrocardiograms and echocardiograms were performed on the group of cardiopaths, in which all important known causes of cardiomyopathy were discarded. Sinus bradycardia and prolonged QTc interval were the most frequent electrocardiographic alterations and patients were classified in group I (46%) and group II (54%) of New York Hearth Association. In all cases real-time PCR genotyping assays were performed. In the group with cardiomyopathy, the most frequent DTU was TcI (56.1%), followed by TcII (19.5%). Mixed infections TcI + TcII were observed in 7.3% of the patients. In the group without cardiac pathologies, TcI and TcII were found at similar rates (28.9 and 31.1%, respectively) and mixed infections TcI + TcII in 17.8% of the cases. TcIII and TcIV were not detected in any sample. Taken together, our data indicate that chronic Chagas cardiomyopathy in Chile can be caused by strains belonging to TcI and TcII.
Collapse
|
16
|
Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2018; 146:1-27. [PMID: 29898792 DOI: 10.1017/s0031182018000951] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.
Collapse
|
17
|
Muñoz-San Martín C, Apt W, Zulantay I. Real-time PCR strategy for the identification of Trypanosoma cruzi discrete typing units directly in chronically infected human blood. INFECTION GENETICS AND EVOLUTION 2017; 49:300-308. [PMID: 28185987 DOI: 10.1016/j.meegid.2017.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
Abstract
The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, a major public health problem in Latin America. This parasite has a complex population structure comprised by six or seven major evolutionary lineages (discrete typing units or DTUs) TcI-TcVI and TcBat, some of which have apparently resulted from ancient hybridization events. Because of the existence of significant biological differences between these lineages, strain characterization methods have been essential to study T. cruzi in its different vectors and hosts. However, available methods can be laborious and costly, limited in resolution or sensitivity. In this study, a new genotyping strategy by real-time PCR to identify each of the six DTUs in clinical blood samples have been developed and evaluated. Two nuclear (SL-IR and 18S rDNA) and two mitochondrial genes (COII and ND1) were selected to develop original primers. The method was evaluated with eight genomic DNA of T. cruzi populations belonging to the six DTUs, one genomic DNA of Trypanosoma rangeli, and 53 blood samples from individuals with chronic Chagas disease. The assays had an analytical sensitivity of 1-25fg of DNA per reaction tube depending on the DTU analyzed. The selectivity of trials with 20fg/μL of genomic DNA identified each DTU, excluding non-targets DTUs in every test. The method was able to characterize 67.9% of the chronically infected clinical samples with high detection of TcII followed by TcI. With the proposed original genotyping methodology, each DTU was established with high sensitivity after a single real-time PCR assay. This novel protocol reduces carryover contamination, enables detection of each DTU independently and in the future, the quantification of each DTU in clinical blood samples.
Collapse
Affiliation(s)
- Catalina Muñoz-San Martín
- Laboratorio de Parasitología Básico-Clínico, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Werner Apt
- Laboratorio de Parasitología Básico-Clínico, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Inés Zulantay
- Laboratorio de Parasitología Básico-Clínico, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
18
|
Izeta-Alberdi A, Ibarra-Cerdeña CN, Moo-Llanes DA, Ramsey JM. Geographical, landscape and host associations of Trypanosoma cruzi DTUs and lineages. Parasit Vectors 2016; 9:631. [PMID: 27923409 PMCID: PMC5142175 DOI: 10.1186/s13071-016-1918-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/28/2016] [Indexed: 01/04/2023] Open
Abstract
Background The evolutionary history and ecological associations of Trypanosoma cruzi, the need to identify genetic markers that can distinguish parasite subpopulations, and understanding the parasite’s evolutionary and selective processes have been the subject of a significant number of publications since 1998, the year when the first DNA sequence analysis for the species was published. Methods The current analysis systematizes and re-analyzes this original research, focusing on critical methodological and analytical variables and results that have given rise to interpretations of putative patterns of genetic diversity and diversification of T. cruzi lineages, discrete typing units (DTUs), and populations, and their associations with hosts, vectors, and geographical distribution that have been interpreted as evidence for parasite subpopulation specificities. Results Few studies use hypothesis-driven or quantitative analysis for T. cruzi phylogeny (16/58 studies) or phylogeography (10/13). Among these, only one phylogenetic and five phylogeographic studies analyzed molecular markers directly from tissues (i.e. not from isolates). Analysis of T. cruzi DTU or lineage niche and its geographical projection demonstrate extensive sympatry among all clades across the continent and no significant niche differences among DTUs. DTU beta-diversity was high, indicating diverse host assemblages across regions, while host dissimilarity was principally due to host species turnover and to a much lesser degree to nestedness. DTU-host order specificities appear related to trophic or microenvironmental interactions. Conclusions More rigorous study designs and analyses will be required to discern evolutionary processes and the impact of landscape modification on population dynamics and risk for T. cruzi transmission to humans. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1918-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Carlos N Ibarra-Cerdeña
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav) Unidad Mérida, Mérida, Yucatán, Mexico
| | - David A Moo-Llanes
- Centro Regional de Investigación en Salud Pública (CRISP), Instituto Nacional de Salud Pública (INSP), Tapachula, Chiapas, Mexico
| | - Janine M Ramsey
- Centro Regional de Investigación en Salud Pública (CRISP), Instituto Nacional de Salud Pública (INSP), Tapachula, Chiapas, Mexico.
| |
Collapse
|
19
|
Brenière SF, Waleckx E, Barnabé C. Over Six Thousand Trypanosoma cruzi Strains Classified into Discrete Typing Units (DTUs): Attempt at an Inventory. PLoS Negl Trop Dis 2016; 10:e0004792. [PMID: 27571035 PMCID: PMC5003387 DOI: 10.1371/journal.pntd.0004792] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/31/2016] [Indexed: 01/06/2023] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, presents wide genetic diversity. Currently, six discrete typing units (DTUs), named TcI to TcVI, and a seventh one called TcBat are used for strain typing. Beyond the debate concerning this classification, this systematic review has attempted to provide an inventory by compiling the results of 137 articles that have used it. A total of 6,343 DTU identifications were analyzed according to the geographical and host origins. Ninety-one percent of the data available is linked to South America. This sample, although not free of potential bias, nevertheless provides today's picture of T. cruzi genetic diversity that is closest to reality. DTUs were genotyped from 158 species, including 42 vector species. Remarkably, TcI predominated in the overall sample (around 60%), in both sylvatic and domestic cycles. This DTU known to present a high genetic diversity, is very widely distributed geographically, compatible with a long-term evolution. The marsupial is thought to be its most ancestral host and the Gran Chaco region the place of its putative origin. TcII was rarely sampled (9.6%), absent, or extremely rare in North and Central America, and more frequently identified in domestic cycles than in sylvatic cycles. It has a low genetic diversity and has probably found refuge in some mammal species. It is thought to originate in the south-Amazon area. TcIII and TcIV were also rarely sampled. They showed substantial genetic diversity and are thought to be composed of possible polyphyletic subgroups. Even if they are mostly associated with sylvatic transmission cycles, a total of 150 human infections with these DTUs have been reported. TcV and TcVI are clearly associated with domestic transmission cycles. Less than 10% of these DTUs were identified together in sylvatic hosts. They are thought to originate in the Gran Chaco region, where they are predominant and where putative parents exist (TcII and TcIII). Trends in host-DTU specificities exist, but generally it seems that the complexity of the cycles and the participation of numerous vectors and mammal hosts in a shared area, maintains DTU diversity.
Collapse
Affiliation(s)
- Simone Frédérique Brenière
- IRD-CIRAD, INTERTRYP (Interactions hôtes-vecteurs-parasites-environnement dans les maladies tropicales négligées dues aux Trypanosomatidés), IRD Center, Montpellier, France
- Pontificia Universidad Católica del Ecuador, Centro de Investigación para la Salud en América Latina (CISeAL), Quito, Ecuador
- * E-mail:
| | - Etienne Waleckx
- Centro de Investigaciones Regionales “Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Christian Barnabé
- IRD-CIRAD, INTERTRYP (Interactions hôtes-vecteurs-parasites-environnement dans les maladies tropicales négligées dues aux Trypanosomatidés), IRD Center, Montpellier, France
| |
Collapse
|
20
|
Avila CC, Almeida FG, Palmisano G. Direct identification of trypanosomatids by matrix-assisted laser desorption ionization-time of flight mass spectrometry (DIT MALDI-TOF MS). JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:549-557. [PMID: 27659938 DOI: 10.1002/jms.3763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 06/06/2023]
Abstract
Accurate and rapid determination of trypanosomatids is essential in epidemiological surveillance and therapeutic studies. Matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS) has been shown to be a useful and powerful technique to identify bacteria, fungi, metazoa and human intact cells with applications in clinical settings. Here, we developed and optimized a MALDI-TOF MS method to profile trypanosomatids. trypanosomatid cells were deposited on a MALDI target plate followed by addition of matrix solution. The plate was then subjected to MALDI-TOF MS measurement to create reference mass spectra library and unknown samples were identified by pattern matching using the BioTyper software tool. Several m/z peaks reproducibly and uniquely identified trypanosomatids species showing the potentials of direct identification of trypanosomatids by MALDI-TOF MS. Moreover, this method discriminated different life stages of Trypanosoma cruzi, epimastigote and bloodstream trypomastigote and Trypanosoma brucei, procyclic and bloodstream. T. cruzi Discrete Typing Units (DTUs) were also discriminated in three clades. However, it was not possible to achieve enough resolution and software-assisted identification at the strain level. Overall, this study shows the importance of MALDI-TOF MS for the direct identification of trypanosomatids and opens new avenues for mass spectrometry-based detection of parasites in biofluids. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- C C Avila
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - F G Almeida
- Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - G Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| |
Collapse
|
21
|
Martínez MF, Kowalewski MM, Salomón OD, Schijman AG. Molecular characterization of trypanosomatid infections in wild howler monkeys (Alouatta caraya) in northeastern Argentina. Int J Parasitol Parasites Wildl 2016; 5:198-206. [PMID: 27617205 PMCID: PMC5005429 DOI: 10.1016/j.ijppaw.2016.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 01/06/2023]
Abstract
The transmission of Trypanosoma cruzi by vectors is confined to the Americas, and the infection circulates in at least two broadly defined transmission cycles occurring in domestic and sylvatic habitats. This study sought to detect and characterize infection by T. cruzi and other trypanosomes using PCR strategies in blood samples from free-ranging howler monkeys, Alouatta caraya, in the northeastern Argentina. Blood samples were collected at four sites with variable levels of habitat modification by human activity. PCR was conducted using primers for kinetoplast DNA, satellite DNA and ribosomal DNA of the trypanosomatid parasites. Ribosomal and satellite DNA fragments were sequenced to identify the trypanosomatid species and to characterize the discrete typing units (DTUs) of T. cruzi. Overall, 46% (50/109) of the howlers were positive according to the kDNA-PCR assay, but only 7 of the howlers were positive according to the SatDNA-PCR protocol. We sequenced the amplicons of the satellite DNA obtained from five specimens, and the sequences were 99% and 100% similar to T. cruzi. A sequence typical of DTU T. cruzi I was found in one howler monkey from the "remote" site, while sequences compatible with DTUs II, V, and VI were found in howlers from the "remote", "rural" and "village" sites. We detected 96% positive samples for RibDNA-PCR, 9 of which were sequenced and displayed 99% identity with Trypanosoma minasense, while none showed identity with T. cruzi. The results demonstrated the presence of T. cruzi and a species closely related to T. minasense in blood samples from free-ranging A. caraya, belonging to different T. cruzi DTUs circulating in these howler monkey populations. The results obtained in this study could help evaluate the role of A. caraya as a reservoir of T. cruzi in regions where Chagas disease is hyper-endemic and where the human-wildlife interface is increasing.
Collapse
Affiliation(s)
- Mariela Florencia Martínez
- Instituto Nacional de Medicina Tropical, Ministerio de Salud de la Nación, Neuquén y Jujuy s/n, 3370, Puerto Iguazú, Misiones, Argentina
- Estación Biológica Corrientes (EBCo), Museo Argentino de Ciencias Naturales (MACN–CONICET), San Cayetano, Corrientes, Argentina
| | - Martín Miguel Kowalewski
- Estación Biológica Corrientes (EBCo), Museo Argentino de Ciencias Naturales (MACN–CONICET), San Cayetano, Corrientes, Argentina
| | - Oscar Daniel Salomón
- Instituto Nacional de Medicina Tropical, Ministerio de Salud de la Nación, Neuquén y Jujuy s/n, 3370, Puerto Iguazú, Misiones, Argentina
- Centro Nacional de Diagnóstico e Investigación de Endemo-epidemias (CeNDIE–ANLIS Malbrán), Av. Paseo Colón 568, 1063, Ciudad de Buenos Aires, Argentina
| | - Alejandro Gabriel Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Vuelta de Obligado 2490, 2do piso, 1428, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
22
|
Barnabé C, Mobarec HI, Jurado MR, Cortez JA, Brenière SF. Reconsideration of the seven discrete typing units within the species Trypanosoma cruzi , a new proposal of three reliable mitochondrial clades. INFECTION GENETICS AND EVOLUTION 2016; 39:176-186. [DOI: 10.1016/j.meegid.2016.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
|
23
|
Molecular Approaches for Diagnosis of Chagas' Disease and Genotyping of Trypanosoma cruzi. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Tibayrenc M, Ayala FJ. The population genetics of Trypanosoma cruzi revisited in the light of the predominant clonal evolution model. Acta Trop 2015; 151:156-65. [PMID: 26188332 PMCID: PMC7117470 DOI: 10.1016/j.actatropica.2015.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/02/2015] [Accepted: 05/06/2015] [Indexed: 01/18/2023]
Abstract
Comparing the population structure of Trypanosoma cruzi with that of other pathogens, including parasitic protozoa, fungi, bacteria and viruses, shows that the agent of Chagas disease shares typical traits with many other species, related to a predominant clonal evolution (PCE) pattern: statistically significant linkage disequilibrium, overrepresented multilocus genotypes, near-clades (genetic subdivisions somewhat blurred by occasional genetic exchange/hybridization) and "Russian doll" patterns (PCE is observed, not only at the level of the whole species, but also, within the near-clades). Moreover, T. cruzi population structure exhibits linkage with the diversity of several strongly selected genes, with gene expression profiles, and with some major phenotypic traits. We discuss the evolutionary significance of these results, and their implications in terms of applied research (molecular epidemiology/strain typing, analysis of genes of interest, vaccine and drug design, immunological diagnosis) and of experimental evolution. Lastly, we revisit the long-term debate of describing new species within the T. cruzi taxon.
Collapse
|
25
|
de Oliveira MT, de Assis GFM, Oliveira e Silva JCV, Machado EMM, da Silva GN, Veloso VM, Macedo AM, Martins HR, de Lana M. Trypanosoma cruzi Discret Typing Units (TcII and TcVI) in samples of patients from two municipalities of the Jequitinhonha Valley, MG, Brazil, using two molecular typing strategies. Parasit Vectors 2015; 8:568. [PMID: 26520576 PMCID: PMC4628324 DOI: 10.1186/s13071-015-1161-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/09/2015] [Indexed: 02/04/2023] Open
Abstract
Background Trypanosoma cruzi is classified into six discrete taxonomic units (DTUs). For this classification, different biological markers and classification criteria have been used. The objective was to identify the genetic profile of T. cruzi samples isolated from patients of two municipalities of Jequitinhonha Valley, MG, Brazil. Methods Molecular characterization was performed using two different criteria for T. cruzi typing to characterize 63 T. cruzi samples isolated from chronic Chagas disease patients. The characterizations followed two distinct methodologies. Additionally, the RAPD technique was used to evaluate the existence of genetic intragroup variability. Results The first methodology identified 89 % of the samples as TcII, but it was not possible to define the genetic identity of seven isolates. The results obtained with the second methodology corroborated the classification as TcII of the same samples and defined the classification of the other seven as TcVI. RAPD analysis showed lower intra-group variability in TcII. Conclusions The results confirmed the preliminary data obtained in other municipalities of the Jequitinhonha Valley, showing a predominance of TcII, similar to that verified in northeast/south axis of Brazil and the first detection of TcVI in the study region. The second protocol was more simple and reliable to identify samples of hybrid character.
Collapse
Affiliation(s)
- Maykon Tavares de Oliveira
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil.
| | - Girley Francisco Machado de Assis
- Departamento- Básico de Saúde, Universidade Federal de Juiz de Fora (UFJF), CEP: 35010-177, Campus Governador Valadares, Governador Valadares, MG, Brazil.
| | - Jaquelline Carla Valamiel Oliveira e Silva
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil.
| | - Evandro Marques Menezes Machado
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil.
| | - Glenda Nicioli da Silva
- Departamento de Análises Clínicas, Escola de Farmácia, UFOP, CEP: 35400-000 Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil. .,Programa de Pós-Graduação em Ciências Farmacêuticas (CiPHARMA), Escola de Farmácia, UFOP, Campus Universitário Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brazil.
| | - Vanja Maria Veloso
- Departamento de Análises Clínicas, Escola de Farmácia, UFOP, CEP: 35400-000 Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil. .,Programa de Pós-Graduação em Ciências Farmacêuticas (CiPHARMA), Escola de Farmácia, UFOP, Campus Universitário Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brazil.
| | - Andrea Mara Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), 6627, Belo Horizonte, 31270-901, MG, Brazil.
| | - Helen Rodrigues Martins
- Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000, Diamantina, MG, Brazil.
| | - Marta de Lana
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil. .,Departamento de Análises Clínicas, Escola de Farmácia, UFOP, CEP: 35400-000 Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil. .,Programa de Pós-Graduação em Ciências Farmacêuticas (CiPHARMA), Escola de Farmácia, UFOP, Campus Universitário Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brazil.
| |
Collapse
|
26
|
Messenger LA, Miles MA, Bern C. Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti Infect Ther 2015; 13:995-1029. [PMID: 26162928 PMCID: PMC4784490 DOI: 10.1586/14787210.2015.1056158] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the last 30 years, concomitant with successful transnational disease control programs across Latin America, Chagas disease has expanded from a neglected, endemic parasitic infection of the rural poor to an urbanized chronic disease, and now a potentially emergent global health problem. Trypanosoma cruzi infection has a highly variable clinical course, ranging from complete absence of symptoms to severe and often fatal cardiovascular and/or gastrointestinal manifestations. To date, few correlates of clinical disease progression have been identified. Elucidating a putative role for T. cruzi strain diversity in Chagas disease pathogenesis is complicated by the scarcity of parasites in clinical specimens and the limitations of our contemporary genotyping techniques. This article systematically reviews the historical literature, given our current understanding of parasite genetic diversity, to evaluate the evidence for any association between T. cruzi genotype and chronic clinical outcome, risk of congenital transmission or reactivation and orally transmitted outbreaks.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael A Miles
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Caryn Bern
- Global Health Sciences, Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Cura CI, Duffy T, Lucero RH, Bisio M, Péneau J, Jimenez-Coello M, Calabuig E, Gimenez MJ, Valencia Ayala E, Kjos SA, Santalla J, Mahaney SM, Cayo NM, Nagel C, Barcán L, Málaga Machaca ES, Acosta Viana KY, Brutus L, Ocampo SB, Aznar C, Cuba Cuba CA, Gürtler RE, Ramsey JM, Ribeiro I, VandeBerg JL, Yadon ZE, Osuna A, Schijman AG. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples. PLoS Negl Trop Dis 2015; 9:e0003765. [PMID: 25993316 PMCID: PMC4437652 DOI: 10.1371/journal.pntd.0003765] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/16/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI-TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). METHODS/PRINCIPAL FINDINGS The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. CONCLUSIONS/SIGNIFICANCE Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.
Collapse
Affiliation(s)
- Carolina I. Cura
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
| | - Tomas Duffy
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
| | - Raúl H. Lucero
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina
| | - Margarita Bisio
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
| | - Julie Péneau
- Laboratoire Hospitalier et Universitaire-CH Andrée Rosemon, Cayenne, French Guiana, France
| | - Matilde Jimenez-Coello
- Laboratorio Biología Celular, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Eva Calabuig
- Servicio de Medicina Interna, Hospital Politécnico LA FE, Valencia, Spain
| | - María J. Gimenez
- Servicio de Microbiología, Hospital Universitario y Politécnico LA FE, Valencia, Spain
| | - Edward Valencia Ayala
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sonia A. Kjos
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| | - José Santalla
- Laboratorio de Parasitología, Instituto Nacional de Laboratorios en Salud, Ministerio de Salud y Deportes de Bolivia, La Paz, Bolivia
| | - Susan M. Mahaney
- Southwest National Primate Research Center and Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Nelly M. Cayo
- Instituto de Biología de la Altura, Universidad Nacional de Jujuy, Jujuy, Argentina
| | - Claudia Nagel
- Epidemiología e Infectología Clínica, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - Laura Barcán
- Sección Infectología, Servicio de Clínica Médica, Hospital Italiano, Buenos Aires, Argentina
| | - Edith S. Málaga Machaca
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Karla Y. Acosta Viana
- Laboratorio Biología Celular, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Laurent Brutus
- Institut de Recherche pour le Développement and University Paris Descartes, UMR 216, Mother and Child Facing Tropical Diseases, Paris, France
| | - Susana B. Ocampo
- Instituto de Biología de la Altura, Universidad Nacional de Jujuy, Jujuy, Argentina
| | - Christine Aznar
- Laboratoire Hospitalier et Universitaire-CH Andrée Rosemon, Cayenne, French Guiana, France
| | - Cesar A. Cuba Cuba
- Parasitologia Médica e Biologia de Vetores, Área de Patologia, Faculdade de Medicina, Universidade de Brasilia, Brasilia DF, Brazil
| | - Ricardo E. Gürtler
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Janine M. Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | - Isabela Ribeiro
- Drugs and Neglected Diseases Initiative, Genève, Switzerland
| | - John L. VandeBerg
- Southwest National Primate Research Center and Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Zaida E. Yadon
- Pan American Health Organization (PAHO), World Health Organization (WHO), Washington, D.C., United States of America
| | - Antonio Osuna
- Institute of Biotechnology, Molecular Parasitology Group, University of Granada, Granada, Spain
| | - Alejandro G. Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
28
|
Tomasini N, Diosque P. Evolution of Trypanosoma cruzi: clarifying hybridisations, mitochondrial introgressions and phylogenetic relationships between major lineages. Mem Inst Oswaldo Cruz 2015; 110:403-13. [PMID: 25807469 PMCID: PMC4489478 DOI: 10.1590/0074-02760140401] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/12/2015] [Indexed: 11/21/2022] Open
Abstract
Several different models of Trypanosoma cruzi evolution have been proposed. These
models suggest that scarce events of genetic exchange occurred during the
evolutionary history of this parasite. In addition, the debate has focused on the
existence of one or two hybridisation events during the evolution of T. cruzi
lineages. Here, we reviewed the literature and analysed available sequence data to
clarify the phylogenetic relationships among these different lineages. We observed
that TcI, TcIII and TcIV form a monophyletic group and that TcIII and TcIV are not,
as previously suggested, TcI-TcII hybrids. Particularly, TcI and TcIII are sister
groups that diverged around the same time that a widely distributed TcIV split into
two clades (TcIVS and TcIVN). In addition, we collected
evidence that TcIII received TcIVS kDNA by introgression on several
occasions. Different demographic hypotheses (surfing and asymmetrical introgression)
may explain the origin and expansion of the TcIII group. Considering these
hypotheses, genetic exchange should have been relatively frequent between TcIII and
TcIVS in the geographic area in which their distributions overlapped.
In addition, our results support the hypothesis that two independent hybridisation
events gave rise to TcV and TcVI. Consequently, TcIVS kDNA was first
transferred to TcIII and later to TcV and TcVI in TcII/TcIII hybridisation
events.
Collapse
|
29
|
Messenger LA, Yeo M, Lewis MD, Llewellyn MS, Miles MA. Molecular genotyping of Trypanosoma cruzi for lineage assignment and population genetics. Methods Mol Biol 2015; 1201:297-337. [PMID: 25388123 DOI: 10.1007/978-1-4939-1438-8_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, remains a major public health problem in Latin America. Infection with T. cruzi is lifelong and can lead to a spectrum of pathological sequelae ranging from subclinical to lethal cardiac and/or gastrointestinal complications. Isolates of T. cruzi can be assigned to six genetic lineages or discrete typing units (DTUs), which are broadly associated with disparate ecologies, transmission cycles, and geographical distributions. This extensive genetic diversity is also believed to contribute to the clinical variation observed among chagasic patients. Unravelling the population structure of T. cruzi is fundamental to understanding Chagas disease epidemiology, developing control strategies, and resolving the relationship between parasite genotype and clinical prognosis. To date, no single, widely validated, genetic target allows unequivocal resolution to DTU-level. In this chapter we present standardized methods for strain DTU assignment using PCR-restriction fragment length polymorphism analysis (PCR-RFLP) and nuclear multilocus sequence typing (MLST). PCR-RFLPs have the advantages of simplicity and reproducibility, requiring limited expertise and few laboratory consumables. MLST data are more laborious to generate but more informative; DNA sequences are readily transferable between research groups and amenable to recombination detection and intra-lineage analyses. We also recommend a mitochondrial (maxicircle) MLST scheme and a panel of 28 microsatellite loci for higher resolution population genetics studies. Due to the scarcity of T. cruzi in blood and tissue, all of these genotyping techniques have limited sensitivity when applied directly to clinical or biological specimens, particularly when targets are single (MLST) or low copy number (PCR-RFLPs). We therefore describe essential protocols to isolate parasites, derive biological clones, and extract T. cruzi genomic DNA from field and clinical samples.
Collapse
Affiliation(s)
- Louisa A Messenger
- London School of Hygiene and Tropical Medicine, Room 331A, Keppel Street, London, WC1E 7HT, UK
| | | | | | | | | |
Collapse
|
30
|
Guidolin AS, Fresia P, Cônsoli FL. The genetic structure of an invasive pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae). PLoS One 2014; 9:e115749. [PMID: 25545788 PMCID: PMC4278764 DOI: 10.1371/journal.pone.0115749] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 12/01/2014] [Indexed: 11/19/2022] Open
Abstract
The Asian citrus psyllid Diaphorina citri is currently the major threat to the citrus industry as it is the vector of Candidatus Liberibacter, the causal agent of huanglongbing disease (HLB). D. citri is native to Asia and now colonizes the Americas. Although it has been known in some countries for a long time, invasion routes remain undetermined. There are no efficient control methods for the HLB despite the intensive management tools currently in use. We investigated the genetic variability and structure of populations of D. citri to aid in the decision making processes toward sustainable management of this species/disease. We employed different methods to quantify and compare the genetic diversity and structure of D. citri populations among 36 localities in Brazil, using an almost complete sequence of the cytochrome oxidase I (COI) gene. Our analyses led to the identification of two geographically and genetically structured groups. The indices of molecular diversity pointed to a recent population expansion, and we discuss the role of multiple invasion events in this scenario. We also argue that such genetic diversity and population structure may have implications for the best management strategies to be adopted for controlling this psyllid and/or the disease it vectors in Brazil.
Collapse
Affiliation(s)
- Aline S. Guidolin
- Lab de Interações em Insetos, Depto de Entomologia & Acarologia, ESALQ, Univ de São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brasil
| | - Pablo Fresia
- Lab de Resistência de Artrópodes a Táticas de Controle, Depto de Entomologia & Acarologia, ESALQ, Univ de São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brasil
| | - Fernando L. Cônsoli
- Lab de Interações em Insetos, Depto de Entomologia & Acarologia, ESALQ, Univ de São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brasil
| |
Collapse
|
31
|
Fernández MDP, Cecere MC, Lanati LA, Lauricella MA, Schijman AG, Gürtler RE, Cardinal MV. Geographic variation of Trypanosoma cruzi discrete typing units from Triatoma infestans at different spatial scales. Acta Trop 2014; 140:10-8. [PMID: 25090650 DOI: 10.1016/j.actatropica.2014.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/07/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
Abstract
We assessed the diversity and distribution of Trypanosoma cruzi discrete typing units (DTU) in Triatoma infestans populations and its association with local vector-borne transmission levels at various geographic scales. At a local scale, we found high predominance (92.4%) of TcVI over TcV in 68 microscope-positive T. infestans collected in rural communities in Santiago del Estero province in northern Argentina. TcV was more often found in communities with higher house infestation prevalence compatible with active vector-borne transmission. Humans and dogs were the main bloodmeal sources of the TcV- and TcVI-infected bugs. At a broader scale, the greatest variation in DTU diversity was found within the Argentine Chaco (227 microscope-positive bugs), mainly related to differences in equitability between TcVI and TcV among study areas. At a country-wide level, a meta-analysis of published data revealed clear geographic variations in the distribution of DTUs across countries. A correspondence analysis showed that DTU distributions in domestic T. infestans were more similar within Argentina (dominated by TcVI) and within Bolivia (where TcI and TcV had similar relative frequencies), whereas large heterogeneity was found within Chile. DTU diversity was lower in the western Argentine Chaco region and Paraguay (D=0.14-0.22) than in the eastern Argentine Chaco, Bolivia and Chile (D=0.20-0.68). Simultaneous DTU identifications of T. cruzi-infected hosts and triatomines across areas differing in epidemiological status are needed to shed new light on the structure and dynamics of parasite transmission cycles.
Collapse
|
32
|
Diosque P, Tomasini N, Lauthier JJ, Messenger LA, Monje Rumi MM, Ragone PG, Alberti-D'Amato AM, Pérez Brandán C, Barnabé C, Tibayrenc M, Lewis MD, Llewellyn MS, Miles MA, Yeo M. Optimized multilocus sequence typing (MLST) scheme for Trypanosoma cruzi. PLoS Negl Trop Dis 2014; 8:e3117. [PMID: 25167160 PMCID: PMC4148231 DOI: 10.1371/journal.pntd.0003117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022] Open
Abstract
Trypanosoma cruzi, the aetiological agent of Chagas disease possess extensive genetic diversity. This has led to the development of a plethora of molecular typing methods for the identification of both the known major genetic lineages and for more fine scale characterization of different multilocus genotypes within these major lineages. Whole genome sequencing applied to large sample sizes is not currently viable and multilocus enzyme electrophoresis, the previous gold standard for T. cruzi typing, is laborious and time consuming. In the present work, we present an optimized Multilocus Sequence Typing (MLST) scheme, based on the combined analysis of two recently proposed MLST approaches. Here, thirteen concatenated gene fragments were applied to a panel of T. cruzi reference strains encompassing all known genetic lineages. Concatenation of 13 fragments allowed assignment of all strains to the predicted Discrete Typing Units (DTUs), or near-clades, with the exception of one strain that was an outlier for TcV, due to apparent loss of heterozygosity in one fragment. Monophyly for all DTUs, along with robust bootstrap support, was restored when this fragment was subsequently excluded from the analysis. All possible combinations of loci were assessed against predefined criteria with the objective of selecting the most appropriate combination of between two and twelve fragments, for an optimized MLST scheme. The optimum combination consisted of 7 loci and discriminated between all reference strains in the panel, with the majority supported by robust bootstrap values. Additionally, a reduced panel of just 4 gene fragments displayed high bootstrap values for DTU assignment and discriminated 21 out of 25 genotypes. We propose that the seven-fragment MLST scheme could be used as a gold standard for T. cruzi typing, against which other typing approaches, particularly single locus approaches or systematic PCR assays based on amplicon size, could be compared. The single-celled parasite Trypanosoma cruzi occurs in mammals and insect vectors in the Americas. When transmitted to humans it causes Chagas disease (American trypanosomiasis) a major public health problem. T. cruzi is genetically diverse and currently split into six groups, known as TcI to TcVI. Multilocus sequence typing (MLST) is a method used for studying the population structure and diversity of pathogens and involves sequencing DNA of several different genes and comparing the sequences between isolates. Here, we assess 13 T. cruzi genes and select the best combination for diversity studies. Outputs reveal that a combination of 7 genes can be used for both lineage assignment and high resolution studies of genetic diversity, and a reduced combination of four loci for lineage assignment. Application of MLST for assigning field isolates of T. cruzi to genetic groups and for detailed investigation of diversity provides a valuable approach to understanding the taxonomy, population structure, genetics, ecology and epidemiology of this important human pathogen.
Collapse
Affiliation(s)
- Patricio Diosque
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, CONICET- Universidad Nacional de Salta, Salta, Argentina
- * E-mail:
| | - Nicolás Tomasini
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, CONICET- Universidad Nacional de Salta, Salta, Argentina
| | - Juan José Lauthier
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, CONICET- Universidad Nacional de Salta, Salta, Argentina
| | - Louisa Alexandra Messenger
- Faculty of Infectious and Tropical Diseases, Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - María Mercedes Monje Rumi
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, CONICET- Universidad Nacional de Salta, Salta, Argentina
| | - Paula Gabriela Ragone
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, CONICET- Universidad Nacional de Salta, Salta, Argentina
| | - Anahí Maitén Alberti-D'Amato
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, CONICET- Universidad Nacional de Salta, Salta, Argentina
| | - Cecilia Pérez Brandán
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, CONICET- Universidad Nacional de Salta, Salta, Argentina
| | - Christian Barnabé
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), IRD Center, Montpellier, France
| | - Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), IRD Center, Montpellier, France
| | - Michael David Lewis
- Faculty of Infectious and Tropical Diseases, Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin Stephen Llewellyn
- Faculty of Infectious and Tropical Diseases, Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael Alexander Miles
- Faculty of Infectious and Tropical Diseases, Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
33
|
Arnaud-Haond S, Moalic Y, Barnabé C, Ayala FJ, Tibayrenc M. Discriminating micropathogen lineages and their reticulate evolution through graph theory-based network analysis: the case of Trypanosoma cruzi, the agent of Chagas disease. PLoS One 2014; 9:e103213. [PMID: 25148574 PMCID: PMC4141739 DOI: 10.1371/journal.pone.0103213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 06/28/2014] [Indexed: 12/02/2022] Open
Abstract
Micropathogens (viruses, bacteria, fungi, parasitic protozoa) share a common trait, which is partial clonality, with wide variance in the respective influence of clonality and sexual recombination on the dynamics and evolution of taxa. The discrimination of distinct lineages and the reconstruction of their phylogenetic history are key information to infer their biomedical properties. However, the phylogenetic picture is often clouded by occasional events of recombination across divergent lineages, limiting the relevance of classical phylogenetic analysis and dichotomic trees. We have applied a network analysis based on graph theory to illustrate the relationships among genotypes of Trypanosoma cruzi, the parasitic protozoan responsible for Chagas disease, to identify major lineages and to unravel their past history of divergence and possible recombination events. At the scale of T. cruzi subspecific diversity, graph theory-based networks applied to 22 isoenzyme loci (262 distinct Multi-Locus-Enzyme-Electrophoresis -MLEE) and 19 microsatellite loci (66 Multi-Locus-Genotypes -MLG) fully confirms the high clustering of genotypes into major lineages or "near-clades". The release of the dichotomic constraint associated with phylogenetic reconstruction usually applied to Multilocus data allows identifying putative hybrids and their parental lineages. Reticulate topology suggests a slightly different history for some of the main "near-clades", and a possibly more complex origin for the putative hybrids than hitherto proposed. Finally the sub-network of the near-clade T. cruzi I (28 MLG) shows a clustering subdivision into three differentiated lesser near-clades ("Russian doll pattern"), which confirms the hypothesis recently proposed by other investigators. The present study broadens and clarifies the hypotheses previously obtained from classical markers on the same sets of data, which demonstrates the added value of this approach. This underlines the potential of graph theory-based network analysis for describing the nature and relationships of major pathogens, thereby opening stimulating prospects to unravel the organization, dynamics and history of major micropathogen lineages.
Collapse
Affiliation(s)
- Sophie Arnaud-Haond
- IFREMER (Institut Français de Recherche pour l'Exploitation de la Mer) - Département Ecosystèmes Marins Exploités, Sète, France
| | - Yann Moalic
- IFREMER (Institut Français de Recherche pour l'Exploitation de la Mer) - Département Ecosystèmes Marins Exploités, Sète, France
| | - Christian Barnabé
- Interactions hôte-vecteur-parasite dans les maladies dues aux Trypanosomatidés, INTERTRYP (IRD-CIRAD), Montpellier, France
| | - Francisco José Ayala
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Montpellier, France
| |
Collapse
|
34
|
Tomasini N, Lauthier JJ, Ayala FJ, Tibayrenc M, Diosque P. How often do they have sex? A comparative analysis of the population structure of seven eukaryotic microbial pathogens. PLoS One 2014; 9:e103131. [PMID: 25054834 PMCID: PMC4108389 DOI: 10.1371/journal.pone.0103131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
The model of predominant clonal evolution (PCE) proposed for micropathogens does not state that genetic exchange is totally absent, but rather, that it is too rare to break the prevalent PCE pattern. However, the actual impact of this “residual” genetic exchange should be evaluated. Multilocus Sequence Typing (MLST) is an excellent tool to explore the problem. Here, we compared online available MLST datasets for seven eukaryotic microbial pathogens: Trypanosoma cruzi, the Fusarium solani complex, Aspergillus fumigatus, Blastocystis subtype 3, the Leishmania donovani complex, Candida albicans and Candida glabrata. We first analyzed phylogenetic relationships among genotypes within each dataset. Then, we examined different measures of branch support and incongruence among loci as signs of genetic structure and levels of past recombination. The analyses allow us to identify three types of genetic structure. The first was characterized by trees with well-supported branches and low levels of incongruence suggesting well-structured populations and PCE. This was the case for the T. cruzi and F. solani datasets. The second genetic structure, represented by Blastocystis spp., A. fumigatus and the L. donovani complex datasets, showed trees with weakly-supported branches but low levels of incongruence among loci, whereby genetic structuration was not clearly defined by MLST. Finally, trees showing weakly-supported branches and high levels of incongruence among loci were observed for Candida species, suggesting that genetic exchange has a higher evolutionary impact in these mainly clonal yeast species. Furthermore, simulations showed that MLST may fail to show right clustering in population datasets even in the absence of genetic exchange. In conclusion, these results make it possible to infer variable impacts of genetic exchange in populations of predominantly clonal micro-pathogens. Moreover, our results reveal different problems of MLST to determine the genetic structure in these organisms that should be considered.
Collapse
Affiliation(s)
- Nicolás Tomasini
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
- * E-mail:
| | - Juan José Lauthier
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Francisco José Ayala
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), IRD Center, Montpellier, France
| | - Patricio Diosque
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| |
Collapse
|
35
|
Genetic profiling of the isoprenoid and sterol biosynthesis pathway genes of Trypanosoma cruzi. PLoS One 2014; 9:e96762. [PMID: 24828104 PMCID: PMC4020770 DOI: 10.1371/journal.pone.0096762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/04/2014] [Indexed: 12/02/2022] Open
Abstract
In Trypanosoma cruzi the isoprenoid and sterol biosynthesis pathways are validated targets for chemotherapeutic intervention. In this work we present a study of the genetic diversity observed in genes from these pathways. Using a number of bioinformatic strategies, we first identified genes that were missing and/or were truncated in the T. cruzi genome. Based on this analysis we obtained the complete sequence of the ortholog of the yeast ERG26 gene and identified a non-orthologous homolog of the yeast ERG25 gene (sterol methyl oxidase, SMO), and we propose that the orthologs of ERG25 have been lost in trypanosomes (but not in Leishmanias). Next, starting from a set of 16 T. cruzi strains representative of all extant evolutionary lineages, we amplified and sequenced ∼24 Kbp from 22 genes, identifying a total of 975 SNPs or fixed differences, of which 28% represent non-synonymous changes. We observed genes with a density of substitutions ranging from those close to the average (∼2.5/100 bp) to some showing a high number of changes (11.4/100 bp, for the putative lathosterol oxidase gene). All the genes of the pathway are under apparent purifying selection, but genes coding for the sterol C14-demethylase, the HMG-CoA synthase, and the HMG-CoA reductase have the lowest density of missense SNPs in the panel. Other genes (TcPMK, TcSMO-like) have a relatively high density of non-synonymous SNPs (2.5 and 1.9 every 100 bp, respectively). However, none of the non-synonymous changes identified affect a catalytic or ligand binding site residue. A comparative analysis of the corresponding genes from African trypanosomes and Leishmania shows similar levels of apparent selection for each gene. This information will be essential for future drug development studies focused on this pathway.
Collapse
|
36
|
de Sá ARN, Steindel M, Demeu LMK, Lückemeyer DD, Grisard EC, Neto QADL, de Araújo SM, Toledo MJDO, Gomes ML. Cytochrome oxidase subunit 2 gene allows simultaneous detection and typing of Trypanosoma rangeli and Trypanosoma cruzi. Parasit Vectors 2013; 6:363. [PMID: 24360167 PMCID: PMC3891993 DOI: 10.1186/1756-3305-6-363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 11/18/2022] Open
Abstract
Background The parasites Trypanosoma rangeli and Trypanosoma cruzi share vectors and hosts over a wide geographical area in Latin America. In this study, we propose a single molecular approach for simultaneous detection and typing of T. rangeli and T. cruzi. Methods A restriction fragment length polymorphism analysis of the mitochondrial cytochrome oxidase II gene (COII-RFLP) using enzyme AluI and different amounts of DNA from the major genetic groups of T. rangeli and T. cruzi (KP1+/KP1- and DTU-I/DTU-II) was carried out. The same marker was tested on the other T. cruzi DTUs (DTU-III to DTU-VI) and on DNA extracted from gut contents of experimentally infected triatomines. Results The COII PCR generates a ~400 bp fragment, which after digestion with AluI (COII-RFLP) can be used to distinguish T. rangeli from T. cruzi and simultaneously differentiate the major genetic groups of T. rangeli (KP1+ and KP1-) and T. cruzi (DTU-I and DTU-II). The COII-RFLP generated bands of ~120 bp and ~280 bp for KP1+, whereas for KP1- no amplicon cleavage was observed. For T. cruzi, digestion of COII revealed a ~300 bp band for DTU-I and a ~250 bp band for DTU-II. For DTU-III to DTU-VI, COII-RFLP generated bands ranging from ~310 to ~330 bp, but the differentiation of these DTUs was not as clear as the separation between DTU-I and DTU-II. After AluI digestion, a species-specific fragment of ~80 bp was observed for all DTUs of T. cruzi. No cross-amplification was observed for Leishmania spp., T. vivax or T. evansi. Conclusions The COII-RFLP allowed simultaneous detection and typing of T. rangeli and T. cruzi strains according to their major genetic groups (KP1+/KP1- and DTU-I/DTU-II) in vitro and in vivo, providing a reliable and sensitive tool for epidemiological studies in areas where T. rangeli and T. cruzi coexist.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mônica Lúcia Gomes
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá (UEM), Av, Colombo, 5790, Zona 7, CEP: 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
37
|
Phylogenetic character mapping of RADES Probing, a new marker for exploring the clonal evolution of expressed coding sequences in Trypanosoma cruzi, the agent of Chagas disease. INFECTION GENETICS AND EVOLUTION 2013; 19:287-91. [DOI: 10.1016/j.meegid.2013.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/19/2013] [Accepted: 03/18/2013] [Indexed: 11/21/2022]
|
38
|
Lima FM, Souza RT, Santori FR, Santos MF, Cortez DR, Barros RM, Cano MI, Valadares HMS, Macedo AM, Mortara RA, da Silveira JF. Interclonal variations in the molecular karyotype of Trypanosoma cruzi: chromosome rearrangements in a single cell-derived clone of the G strain. PLoS One 2013; 8:e63738. [PMID: 23667668 PMCID: PMC3646811 DOI: 10.1371/journal.pone.0063738] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 04/11/2013] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure.
Collapse
Affiliation(s)
- Fabio Mitsuo Lima
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Renata Torres Souza
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Fábio Rinaldo Santori
- Skirball Institute of Biomolecular Medicine, New York University Cancer Center, New York University School of Medicine, New York, New York, United States of America
| | - Michele Fernandes Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Danielle Rodrigues Cortez
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Roberto Moraes Barros
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Maria Isabel Cano
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, Brazil
| | - Helder Magno Silva Valadares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del-Rey, Divinópolis, Minas Gerais, Brazil
| | - Andréa Mara Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
39
|
Orozco MM, Enriquez GF, Alvarado-Otegui JA, Cardinal MV, Schijman AG, Kitron U, Gürtler RE. New sylvatic hosts of Trypanosoma cruzi and their reservoir competence in the humid Chaco of Argentina: a longitudinal study. Am J Trop Med Hyg 2013; 88:872-82. [PMID: 23530075 DOI: 10.4269/ajtmh.12-0519] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A four-year longitudinal study of the structure of sylvatic transmission cycles of Trypanosoma cruzi, reservoir host competence and parasite discrete typing units was conducted in a disturbed rural area of the humid Chaco in Argentina. Among 190 mammals examined by xenodiagnosis and polymerase chain reaction amplification, the composite prevalence of infection was substantially higher in Dasypus novemcinctus armadillos (57.7%) and Didelphis albiventris opossums (38.1%) than in Euphractus sexcinctus (20.0%), Tolypeutes matacus (12.5%), and Chaetophractus vellerosus (6.3%) armadillos. Trypanosoma cruzi was detected for the first time in Thylamys pusilla small opossums and in two unidentified small rodents. Infection was spatially aggregated only in armadillos. All Didelphis were infected with T. cruzi I and all armadillo species were infected with T. cruzi III, implying two distinct sylvatic cycles with no inputs from the domestic cycle. Dasypus armadillos and Didelphis opossums were much more infectious to vectors than other armadillos, small opossums, or rodents.
Collapse
Affiliation(s)
- M Marcela Orozco
- Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
40
|
Burgos JM, Risso MG, Brenière SF, Barnabé C, Campetella O, Leguizamón MS. Differential distribution of genes encoding the virulence factor trans-sialidase along Trypanosoma cruzi Discrete typing units. PLoS One 2013; 8:e58967. [PMID: 23536842 PMCID: PMC3594200 DOI: 10.1371/journal.pone.0058967] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/08/2013] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma cruzi the agent of Chagas disease is a monophyletic but heterogeneous group conformed by several Discrete Typing Units (DTUs) named TcI to TcVI characterized by genetic markers. The trans-sialidase (TS) is a virulence factor involved in cell invasion and pathogenesis that is differentially expressed in aggressive and less virulent parasite stocks. Genes encoding TS-related proteins are included in a large family divided in several groups but only one of them contains TS genes. Two closely related genes differing in a T/C transition encode the enzymatically active TS (aTS) and a lectin-like TS (iTS). We quantified the aTS/iTS genes from TcII and TcVI aggressive and TcI low virulent strains and found variable aTS number (1-32) per haploid genome. In spite of being low TS enzyme-expressers, TcI strains carry 28-32 aTS gene copies. The intriguing absence of iTS genes in TcI strains together with the presence of aTS/iTS in TcII and TcVI strains (virulent) were observed. Moreover, after sequencing aTS/iTS from 38 isolates collected along the Americas encompassing all DTUs, the persistent absence of the iTS gene in TcI, TcIII and TcIV was found. In addition, the sequence clustering together with T/C transition analysis correlated to DTUs of T. cruzi. The consistence of TS results with both evolutionary genome models proposed for T. cruzi, namely the "Two Hybridization" and the "Three Ancestor" was discussed and reviewed to fit present findings. Parasite stocks to attempt genetic KO or to assay the involvement of iTS in parasite biology and virulence are finally available.
Collapse
Affiliation(s)
- Juan M. Burgos
- Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marikena G. Risso
- Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Simone Frédérique Brenière
- Unité de Recherche MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement (IRD), Représentation de l'IRD en Bolivie, La Paz, Bolivia
| | - Christian Barnabé
- Unité de Recherche MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement (IRD), Représentation de l'IRD en Bolivie, La Paz, Bolivia
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - María Susana Leguizamón
- Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
41
|
da Câmara ACJ, Lages-Silva E, Sampaio GHF, D’Ávila DA, Chiari E, Galvão LMDC. Homogeneity of Trypanosoma cruzi I, II, and III populations and the overlap of wild and domestic transmission cycles by Triatoma brasiliensis in northeastern Brazil. Parasitol Res 2013; 112:1543-50. [DOI: 10.1007/s00436-013-3301-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/11/2013] [Indexed: 11/29/2022]
|
42
|
Ackermann AA, Panunzi LG, Cosentino RO, Sánchez DO, Agüero F. A genomic scale map of genetic diversity in Trypanosoma cruzi. BMC Genomics 2012; 13:736. [PMID: 23270511 PMCID: PMC3545726 DOI: 10.1186/1471-2164-13-736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 12/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the causal agent of Chagas Disease, affects more than 16 million people in Latin America. The clinical outcome of the disease results from a complex interplay between environmental factors and the genetic background of both the human host and the parasite. However, knowledge of the genetic diversity of the parasite, is currently limited to a number of highly studied loci. The availability of a number of genomes from different evolutionary lineages of T. cruzi provides an unprecedented opportunity to look at the genetic diversity of the parasite at a genomic scale. RESULTS Using a bioinformatic strategy, we have clustered T. cruzi sequence data available in the public domain and obtained multiple sequence alignments in which one or two alleles from the reference CL-Brener were included. These data covers 4 major evolutionary lineages (DTUs): TcI, TcII, TcIII, and the hybrid TcVI. Using these set of alignments we have identified 288,957 high quality single nucleotide polymorphisms and 1,480 indels. In a reduced re-sequencing study we were able to validate ~ 97% of high-quality SNPs identified in 47 loci. Analysis of how these changes affect encoded protein products showed a 0.77 ratio of synonymous to non-synonymous changes in the T. cruzi genome. We observed 113 changes that introduce or remove a stop codon, some causing significant functional changes, and a number of tri-allelic and tetra-allelic SNPs that could be exploited in strain typing assays. Based on an analysis of the observed nucleotide diversity we show that the T. cruzi genome contains a core set of genes that are under apparent purifying selection. Interestingly, orthologs of known druggable targets show statistically significant lower nucleotide diversity values. CONCLUSIONS This study provides the first look at the genetic diversity of T. cruzi at a genomic scale. The analysis covers an estimated ~ 60% of the genetic diversity present in the population, providing an essential resource for future studies on the development of new drugs and diagnostics, for Chagas Disease. These data is available through the TcSNP database (http://snps.tcruzi.org).
Collapse
Affiliation(s)
- Alejandro A Ackermann
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín - Consejo de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
43
|
Alvarado-Otegui J, Ceballos L, Orozco M, Enriquez G, Cardinal M, Cura C, Schijman A, Kitron U, Gürtler R. The sylvatic transmission cycle of Trypanosoma cruzi in a rural area in the humid Chaco of Argentina. Acta Trop 2012; 124:79-86. [PMID: 22771688 DOI: 10.1016/j.actatropica.2012.06.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/22/2012] [Accepted: 06/26/2012] [Indexed: 01/01/2023]
Abstract
Little is known about the sylvatic transmission cycle of Trypanosoma cruzi in the Gran Chaco ecoregion. We conducted surveys to identify the main sylvatic hosts of T. cruzi, parasite discrete typing units and vector species involved in Pampa del Indio, a rural area in the humid Argentinean Chaco. A total of 44 mammals from 14 species were captured and examined for infection by xenodiagnosis and polymerase chain reaction amplification of the hyper-variable region of kinetoplast DNA minicircles of T. cruzi (kDNA-PCR). Ten (22.7%) mammals were positive by xenodiagnosis or kDNA-PCR. Four of 11 (36%) Didelphis albiventris (white-eared opossums) and six of nine (67%) Dasypus novemcinctus (nine-banded armadillos) were positive by xenodiagnosis and or kDNA-PCR. Rodents, other armadillo species, felids, crab-eating raccoons, hares and rabbits were not infected. Positive animals were highly infectious to the bugs that fed upon them as determined by xenodiagnosis. All positive opossums were infected with T. cruzi I and all positive nine-banded armadillos with T. cruzi III. Extensive searches in sylvatic habitats using 718 Noireau trap-nights only yielded Triatoma sordida whereas no bug was collected in 26 light-trap nights. Four armadillos or opossums fitted with a spool-and-line device were successfully tracked to their refuges; only one Panstrongylus geniculatus was found in an armadillo burrow. No sylvatic triatomine was infected with T. cruzi by microscopical examination or kDNA-PCR. Our results indicate that two independent sylvatic transmission cycles of T. cruzi occur in the humid Chaco. The putative vectors of both cycles need to be identified conclusively.
Collapse
|
44
|
Ramos-Ligonio A, Torres-Montero J, López-Monteon A, Dumonteil E. Extensive diversity of Trypanosoma cruzi discrete typing units circulating in Triatoma dimidiata from central Veracruz, Mexico. INFECTION GENETICS AND EVOLUTION 2012; 12:1341-3. [DOI: 10.1016/j.meegid.2012.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/23/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
|
45
|
Cosentino RO, Agüero F. A simple strain typing assay for Trypanosoma cruzi: discrimination of major evolutionary lineages from a single amplification product. PLoS Negl Trop Dis 2012; 6:e1777. [PMID: 22860154 PMCID: PMC3409129 DOI: 10.1371/journal.pntd.0001777] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/29/2012] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi is the causative agent of Chagas' Disease. The parasite has a complex population structure, with six major evolutionary lineages, some of which have apparently resulted from ancestral hybridization events. Because there are important biological differences between these lineages, strain typing methods are essential to study the T. cruzi species. Currently, there are a number of typing methods available for T. cruzi, each with its own advantages and disadvantages. However, most of these methods are based on the amplification of a variable number of loci. METHODOLOGY/PRINCIPAL FINDINGS We present a simple typing assay for T. cruzi, based on the amplification of a single polymorphic locus: the TcSC5D gene. When analyzing sequences from this gene (a putative lathosterol/episterol oxidase) we observed a number of interesting polymorphic sites, including 1 tetra-allelic, and a number of informative tri- and bi-allelic SNPs. Furthermore, some of these SNPs were located within the recognition sequences of two commercially available restriction enzymes. A double digestion with these enzymes generates a unique restriction pattern that allows a simple classification of strains in six major groups, corresponding to DTUs TcI-TcIV, the recently proposed Tcbat lineage, and TcV/TcVI (as a group). Direct sequencing of the amplicon allows the classification of strains into seven groups, including the six currently recognized evolutionary lineages, by analyzing only a few discriminant polymorphic sites. CONCLUSIONS/SIGNIFICANCE Based on these findings we propose a simple typing assay for T. cruzi that requires a single PCR amplification followed either by restriction fragment length polymorphism analysis, or direct sequencing. In the panel of strains tested, the sequencing-based method displays equivalent inter-lineage resolution to recent multi- locus sequence typing assays. Due to their simplicity and low cost, the proposed assays represent a good alternative to rapidly screen strain collections, providing the cornerstone for the development of robust typing strategies.
Collapse
Affiliation(s)
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martín, San Martín, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
46
|
Aquilino C, Gonzalez Rubio ML, Seco EM, Escudero L, Corvo L, Soto M, Fresno M, Malpartida F, Bonay P. Differential trypanocidal activity of novel macrolide antibiotics; correlation to genetic lineage. PLoS One 2012; 7:e40901. [PMID: 22859958 PMCID: PMC3409201 DOI: 10.1371/journal.pone.0040901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/14/2012] [Indexed: 12/18/2022] Open
Abstract
Here we report the systematic study of the anti-trypanocidal activity of some new products derived from S. diastatus on 14 different T. cruzi strains spanning the six genetic lineages of T. cruzi. As the traditional growth inhibition curves giving similar IC(50) showed great differences on antibiotic and lineage tested, we decided to preserve the wealth of information derived from each inhibition curve and used an algorithm related to potency of the drugs, combined in a matrix data set used to generate a cluster tree. The cluster thus generated based just on drug susceptibility data closely resembles the phylogenies of the lineages derived from genetic data and provides a novel approach to correlate genetic data with phenotypes related to pathogenesis of Chagas disease. Furthermore we provide clues on the drugs mechanism of action.
Collapse
Affiliation(s)
- Carolina Aquilino
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Maria Luisa Gonzalez Rubio
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Elena Maria Seco
- Centro Nacional de Biotecnología, Campus de Cantoblanco, Madrid, Spain
| | - Leticia Escudero
- Centro Nacional de Biotecnología, Campus de Cantoblanco, Madrid, Spain
| | - Laura Corvo
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Manuel Soto
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | | | - Pedro Bonay
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
47
|
Genetic characterization of Trypanosoma cruzi DTUs in wild Triatoma infestans from Bolivia: predominance of TcI. PLoS Negl Trop Dis 2012; 6:e1650. [PMID: 22685616 PMCID: PMC3368956 DOI: 10.1371/journal.pntd.0001650] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 04/07/2012] [Indexed: 11/20/2022] Open
Abstract
Background The current persistence of Triatoma infestans (one of the main vectors of Chagas disease) in some domestic areas could be related to re-colonization by wild populations which are increasingly reported. However, the infection rate and the genetic characterization of the Trypanosoma cruzi strains infecting these populations are very limited. Methodology/Principal Findings Of 333 wild Triatoma infestans specimens collected from north to south of a Chagas disease endemic area in Bolivia, we characterized 234 stocks of Trypanosoma cruzi using mini-exon multiplex PCR (MMPCR) and sequencing the glucose phosphate isomerase (Gpi) gene. Of the six genetic lineages (“discrete typing units”; DTU) (TcI-VI) presently recognized in T. cruzi, TcI (99.1%) was overdominant on TcIII (0.9%) in wild Andean T. infestans, which presented a 71.7% infection rate as evaluated by microscopy. In the lowlands (Bolivian Chaco), 17 “dark morph” T. infestans were analyzed. None of them were positive for parasites after microscopic examination, although one TcI stock and one TcII stock were identified using MMPCR and sequencing. Conclusions/Significance By exploring large-scale DTUs that infect the wild populations of T. infestans, this study opens the discussion on the origin of TcI and TcV DTUs that are predominant in domestic Bolivian cycles. Chagas disease is a neglected parasitic disease transmitted by bugs (vectors) and represents a serious health problem in the Americas. Although the transmission generally occurs in the houses where the bugs are living, wild populations of vectors are now considered a problem because these populations might enter the houses and recolonize them after eliminating of house populations by insecticide spraying. This is the case of the Southern countries where Triatoma infestans, the principal vector, transmits Trypanosoma cruzi the agent of the disease. This parasite presents a large genetic variability and it is important to know which T. cruzi genotypes are carried by the vectors. The authors found that in the wild T. infestans from the Bolivian Andean region, a principal group of genotype was circulating. In the lowlands (Bolivian Chaco), another additional genotype group was detected. Together with exploring at large scale which genotypes are infecting T. infestans wild populations, this study opens the discussion on the origin T. cruzi genotype groups. Also this study completes our basic knowledge on T. cruzi subspecific genetic variability, and therefore brings new tools for molecular epidemiology of Chagas disease.
Collapse
|
48
|
Messenger LA, Llewellyn MS, Bhattacharyya T, Franzén O, Lewis MD, Ramírez JD, Carrasco HJ, Andersson B, Miles MA. Multiple mitochondrial introgression events and heteroplasmy in trypanosoma cruzi revealed by maxicircle MLST and next generation sequencing. PLoS Negl Trop Dis 2012; 6:e1584. [PMID: 22506081 PMCID: PMC3323513 DOI: 10.1371/journal.pntd.0001584] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/15/2012] [Indexed: 11/19/2022] Open
Abstract
Background Mitochondrial DNA is a valuable taxonomic marker due to its relatively fast rate of evolution. In Trypanosoma cruzi, the causative agent of Chagas disease, the mitochondrial genome has a unique structural organization consisting of 20–50 maxicircles (∼20 kb) and thousands of minicircles (0.5–10 kb). T. cruzi is an early diverging protist displaying remarkable genetic heterogeneity and is recognized as a complex of six discrete typing units (DTUs). The majority of infected humans are asymptomatic for life while 30–35% develop potentially fatal cardiac and/or digestive syndromes. However, the relationship between specific clinical outcomes and T. cruzi genotype remains elusive. The availability of whole genome sequences has driven advances in high resolution genotyping techniques and re-invigorated interest in exploring the diversity present within the various DTUs. Methodology/Principal Findings To describe intra-DTU diversity, we developed a highly resolutive maxicircle multilocus sequence typing (mtMLST) scheme based on ten gene fragments. A panel of 32 TcI isolates was genotyped using the mtMLST scheme, GPI, mini-exon and 25 microsatellite loci. Comparison of nuclear and mitochondrial data revealed clearly incongruent phylogenetic histories among different geographical populations as well as major DTUs. In parallel, we exploited read depth data, generated by Illumina sequencing of the maxicircle genome from the TcI reference strain Sylvio X10/1, to provide the first evidence of mitochondrial heteroplasmy (heterogeneous mitochondrial genomes in an individual cell) in T. cruzi. Conclusions/Significance mtMLST provides a powerful approach to genotyping at the sub-DTU level. This strategy will facilitate attempts to resolve phenotypic variation in T. cruzi and to address epidemiologically important hypotheses in conjunction with intensive spatio-temporal sampling. The observations of both general and specific incidences of nuclear-mitochondrial phylogenetic incongruence indicate that genetic recombination is geographically widespread and continues to influence the natural population structure of TcI, a conclusion which challenges the traditional paradigm of clonality in T. cruzi. Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is an important public health problem in Latin America. While molecular techniques can differentiate the major T. cruzi genetic lineages, few have sufficient resolution to describe diversity among closely related strains. The online availability of three mitochondrial genomes allowed us to design a multilocus sequence typing (mtMLST) scheme to exploit these rapidly evolving markers. We compared mtMLST with current nuclear typing tools using isolates belonging to the oldest and most widely occurring lineage TcI. T. cruzi is generally believed to reproduce clonally. However, in this study, distinct branching patterns between mitochondrial and nuclear phylogenetic trees revealed multiple incidences of genetic exchange within different geographical populations and major lineages. We also examined Illumina sequencing data from the TcI genome strain which revealed multiple different mitochondrial genomes within an individual parasite (heteroplasmy) that were, however, not sufficiently divergent to represent a major source of typing error. We strongly recommend this combined nuclear and mitochondrial genotyping methodology to reveal cryptic diversity and genetic exchange in T. cruzi. The level of resolution that this mtMLST provides should greatly assist attempts to elucidate the complex interactions between parasite genotype, clinical outcome and disease distribution.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Microscopy still remains the gold standard procedure for the diagnosis of many protozoan infections in animals, but the specific identification requires skilled and experienced personnel. Immunoassays, detecting antibodies or specific protozoan antigens, have been developed but often lack sensitivity and specificity due to close relationship between many protozoa. Recent research has focussed almost exclusively on molecular based techniques for the identification and quantification of parasite DNA in samples. Opinion differ on most appropriate targets to use and there are very few diagnostic kits available making comparison between laboratories difficult. Future research needs to focus on robust, cheap field diagnostic assays.
Collapse
|
50
|
Candidate targets for Multilocus Sequence Typing of Trypanosoma cruzi: Validation using parasite stocks from the Chaco Region and a set of reference strains. INFECTION GENETICS AND EVOLUTION 2012; 12:350-8. [DOI: 10.1016/j.meegid.2011.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 01/08/2023]
|