1
|
Tian H, Wang Z, Meng Y, Geng L, Lian H, Shi Z, Zhuang Z, Cai W, He M. Neural mechanisms underlying cognitive impairment in depression and cognitive benefits of exercise intervention. Behav Brain Res 2025; 476:115218. [PMID: 39182624 DOI: 10.1016/j.bbr.2024.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Depression is associated with functional brain impairments, although comprehensive studies remain limited. This study reviews neural mechanisms underlying cognitive impairment in depression and identifies associated activation abnormalities in brain regions. The study also explores the underlying neural processes of cognitive benefits of exercise intervention for depression. Executive function impairments, including working memory, inhibitory control and cognitive flexibility are associated with frontal cortex and anterior cingulate areas, especially dorsolateral prefrontal cortex. Depression is associated with certain neural impairments of reward processing, especially orbitofrontal cortex, prefrontal cortex, nucleus accumbens and other striatal regions. Depressed patients exhibit decreased activity in the hippocampus during memory function. Physical exercise has been found to enhance memory function, executive function, and reward processing in depression patients by increasing functional brain regions and the brain-derived neurotrophic factor (BDNF) as a nutritional factor also plays a key role in exercise intervention. The study documents neurophysiological mechanisms behind exercise intervention's improved functions. In summary, the study provides insights into neural mechanisms underlying cognitive impairments in depression and the effectiveness of exercise as a treatment.
Collapse
Affiliation(s)
- Huizi Tian
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China
| | - Zhifang Wang
- School of Psychology, Capital Normal University, China
| | - Yao Meng
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, China
| | - Lu Geng
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China
| | - Hao Lian
- Faculty of Psychology, Naval Medical University, Shanghai, China
| | - Zhifei Shi
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China
| | - Zhidong Zhuang
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China
| | - Wenpeng Cai
- Faculty of Psychology, Naval Medical University, Shanghai, China.
| | - Mengyang He
- Department of Psychology, School of Sports Medicine, Wuhan Sports University, China.
| |
Collapse
|
2
|
Zou Y, Yu T, Zhu L, Xu Q, Li Y, Chen J, Luo Q, Peng H. Altered dynamic functional connectivity of nucleus accumbens subregions in major depressive disorder: the interactive effect of childhood trauma and diagnosis. Soc Cogn Affect Neurosci 2024; 19:nsae053. [PMID: 39167467 PMCID: PMC11389612 DOI: 10.1093/scan/nsae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/30/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024] Open
Abstract
Major depressive disorder (MDD) with childhood trauma represents a heterogeneous clinical subtype of depression. Previous research has observed alterations in the reward circuitry centered around the nucleus accumbens (NAc) in MDD patients. However, limited investigations have focused on aberrant functional connectivity (FC) within NAc subregions among MDD with childhood trauma. Thus, this study adopts analyses of both static FC (sFC) and dynamic FC (dFC) to examine neurobiological changes in MDD with childhood trauma. The bilateral nucleus accumbens shell (NAc-shell) and nucleus accumbens core (NAc-core) were selected as the seeds. Four participant groups were included: MDD with childhood trauma (n = 48), MDD without childhood trauma (n = 30), healthy controls (HCs) with childhood trauma (n = 57), and HCs without childhood trauma (n = 46). Our findings revealed both abnormal sFC and dFC between NAc-shell and NAc-core and regions including the middle occipital gyrus (MOG), anterior cingulate cortex, and inferior frontal gyrus in MDD with childhood trauma. Furthermore, a significant correlation was identified between the dFC of the left NAc-shell and the right MOG in relation to childhood trauma. Additionally, abnormal dFC moderated the link between childhood abuse and depression severity. These outcomes shed light on the neurobiological underpinnings of MDD with childhood trauma.
Collapse
Affiliation(s)
- Yurong Zou
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
| | - Tong Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510370, China
| | - Liwen Zhu
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
| | - Qing Xu
- Department of Clinical Psychiatry, The Third Hospital of Longyan, Longyan, Fujian 364000, China
| | - Yuhong Li
- Department of Publicity and Health Education, Shenzhen Longhua District Central Hospital, Shenzhen 518000, China
| | - Juran Chen
- General Outpatient Clinic, The Zhongshan Torch Hi-tech Industrial Development Zone Community Health Service, Zhongshan 528437, China
| | - Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510370, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510370, China
| |
Collapse
|
3
|
Chen G, Guo Z, Chen P, Yang Z, Yan H, Sun S, Ma W, Zhang Y, Qi Z, Fang W, Jiang L, Tao Q, Wang Y. Bright light therapy-induced improvements of mood, cognitive functions and cerebellar functional connectivity in subthreshold depression: A randomized controlled trial. Int J Clin Health Psychol 2024; 24:100483. [PMID: 39101053 PMCID: PMC11296024 DOI: 10.1016/j.ijchp.2024.100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Background The efficacy of bright light therapy (BLT) in ameliorating depression has been validated. The present study is to investigate the changes of depressive symptoms, cognitive function and cerebellar functional connectivity (FC) following BLT in individuals with subthreshold depression (StD). Method Participants were randomly assigned to BLT group (N = 47) or placebo (N = 41) in this randomized controlled trial between March 2020 and June 2022. Depression severity and cognitive function were assessed, as well as resting-state functional MRI scan was conducted before and after 8-weeks treatment. Seed-based whole-brain static FC (sFC) and dynamic FC (dFC) analyses of the bilateral cerebellar subfields were conducted. Besides, a multivariate regression model examined whether baseline brain FC was associated with changes of depression severity and cognitive function during BLT treatment. Results After 8-week BLT treatment, individuals with StD showed improved depressive symptoms and attention/vigilance cognitive function. BLT also increased sFC between the right cerebellar lobule IX and left temporal pole, and decreased sFC within the cerebellum, and dFC between the right cerebellar lobule IX and left medial prefrontal cortex. Moreover, the fusion of sFC and dFC at baseline could predict the improvement of attention/vigilance in response to BLT. Conclusions The current study identified that BLT improved depressive symptoms and attention/vigilance, as well as changed cerebellum-DMN connectivity, especially in the cerebellar-frontotemporal and cerebellar internal FC. In addition, the fusion features of sFC and dFC at pre-treatment could serve as an imaging biomarker for the improvement of attention/vigilance cognitive function after BLT in StD.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Zixuan Guo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Zibin Yang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Hong Yan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Shilin Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Wenhao Ma
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Yuan Zhang
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Wenjie Fang
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Lijun Jiang
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Qian Tao
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
4
|
Nie H, Yu T, Zou Y, Li Y, Chen J, Xia J, Luo Q, Peng H. Effects of childhood maltreatment and major depressive disorder on functional connectivity in hippocampal subregions. Brain Imaging Behav 2024; 18:598-611. [PMID: 38324083 DOI: 10.1007/s11682-024-00859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Major Depressive Disorder (MDD) with childhood maltreatment is a prevalent clinical phenotype. Prior studies have observed abnormal hippocampal activity in MDD patients, considering the hippocampus as a single nucleus. However, there is limited research investigating the static and dynamic changes in hippocampal subregion functional connectivity (FC) in MDD patients with childhood maltreatment. Therefore, we employed static and dynamic FC analyses using hippocampal subregions, including the anterior hippocampus and posterior hippocampus, as seed regions to investigate the neurobiological alterations associated with MDD resulting from childhood maltreatment. This study involved four groups: MDD with (n = 48) and without childhood maltreatment (n = 30), as well as healthy controls with (n = 57) and without (n = 46) childhood maltreatment. Compared to MDD patients without childhood maltreatment, those with childhood maltreatment exhibit altered FC between the hippocampal subregion and multiple brain regions, including the anterior cingulate gyrus, superior frontal gyrus, putamen, calcarine gyrus, superior temporal gyrus, angular gyrus, and supplementary motor area. Additionally, dynamic FC between the right medial-2 hippocampal head and the right calcarine gyrus shows a positive correlation with childhood maltreatment across all its subtypes. Moreover, dFC between the right hippocampal tail and the left angular gyrus moderates the relationship between childhood maltreatment and the depression severity. Our findings of distinct FC patterns within hippocampal subregions provide new clues for understanding the neurobiological basis of MDD with childhood maltreatment.
Collapse
Affiliation(s)
- Huiqin Nie
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Tong Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Yurong Zou
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Yuhong Li
- Department of Publicity and Health Education, Shenzhen Longhua District Central Hospital, Shenzhen, 518000, China
| | - Juran Chen
- The Zhongshan Torch Hi-tech Industrial Development Zone Community Health Service, Zhongshan, 528437, China
| | - Jinrou Xia
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
| |
Collapse
|
5
|
Chu Z, Yuan L, Lian K, He M, Lu Y, Cheng Y, Xu X, Shen Z. Reduced gray matter volume of the hippocampal tail in melancholic depression: evidence from an MRI study. BMC Psychiatry 2024; 24:183. [PMID: 38443878 PMCID: PMC10913289 DOI: 10.1186/s12888-024-05630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Melancholic depression (MD) is one of the most prevalent and severe subtypes of major depressive disorder (MDD). Previous studies have revealed inconsistent results regarding alterations in grey matter volume (GMV) of the hippocampus and amygdala of MD patients, possibly due to overlooking the complexity of their internal structure. The hippocampus and amygdala consist of multiple and functionally distinct subregions, and these subregions may play different roles in MD. This study aims to investigate the volumetric alterations of each subregion of the hippocampus and amygdala in patients with MD and non-melancholic depression (NMD). METHODS A total of 146 drug-naïve, first-episode MDD patients (72 with MD and 74 with NMD) and 81 gender-, age-, and education-matched healthy controls (HCs) were included in the study. All participants underwent magnetic resonance imaging (MRI) scans. The subregional segmentation of hippocampus and amygdala was performed using the FreeSurfer 6.0 software. The multivariate analysis of covariance (MANCOVA) was used to detect GMV differences of the hippocampal and amygdala subregions between three groups. Partial correlation analysis was conducted to explore the relationship between hippocampus or amygdala subfields and clinical characteristics in the MD group. Age, gender, years of education and intracranial volume (ICV) were included as covariates in both MANCOVA and partial correlation analyses. RESULTS Patients with MD exhibited a significantly lower GMV of the right hippocampal tail compared to HCs, which was uncorrelated with clinical characteristics of MD. No significant differences were observed among the three groups in overall and subregional GMV of amygdala. CONCLUSIONS Our findings suggest that specific hippocampal subregions in MD patients are more susceptible to volumetric alterations than the entire hippocampus. The reduced right hippocampal tail may underlie the unique neuropathology of MD. Future longitudinal studies are required to better investigate the associations between reduced right hippocampal tail and the onset and progression of MD.
Collapse
Affiliation(s)
- Zhaosong Chu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Lijin Yuan
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Kun Lian
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Mengxin He
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Yi Lu
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China.
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China.
| | - Zonglin Shen
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China.
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China.
| |
Collapse
|
6
|
Lin J, Xiao Y, Yao C, Sun L, Wang P, Deng Y, Pu J, Xue SW. Linking inter-subject variability of cerebellar functional connectome to clinical symptoms in major depressive disorder. J Psychiatr Res 2024; 171:9-16. [PMID: 38219285 DOI: 10.1016/j.jpsychires.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder with remarkable inter-subject variability in clinical manifestations. Neuroimaging changes of the cerebellum have been recently proposed as a way to characterize MDD-related brain disruptions and might further explain various clinical symptoms. However, the cerebellar contributions to MDD clinical heterogeneity remain largely unknown. The analyzed data consisted of 251 MDD patients and 235 matching healthy controls (HC). The inter-subject variability of functional connectomes (IVFC) was estimated via Pearson's correlation analysis between each pair of the cerebellar and cerebral regions based on resting-state functional magnetic resonance imaging (rs-fMRI). A partial least squares (PLS) regression analysis was performed to determine the potential dimension linking the IVFC to clinical symptom measures. The results indicated that similar spatial distribution patterns of the cerebellar IVFC were observed between MDD and HC, but the MDD group exhibited abnormal IVFC alterations in the bilateral Cerebelum_4_5, bilateral Cerebelum_6, Vermis_1_2 and Vermis_8. The PLS model revealed that the IVFC pattern in the left Cerebelum_6 was significantly associated with three HAMD-17 items including the work and activities, psychomotor retardation, and depressed mood. These findings provided new evidence for the cerebellar changes in MDD. Specifically, we found that the altered inter-subject variability measurements correlated with clinical manifestations of this illness. Elucidating this variability could prove helpful for the evaluation of MDD heterogeneity as well as for understanding its pathophysiological mechanism.
Collapse
Affiliation(s)
- Jia Lin
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Yang Xiao
- Peking University Sixth Hospital, Peking University, Beijing, PR China
| | - Chi Yao
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Li Sun
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Peng Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Yanxin Deng
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Jiayong Pu
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
7
|
Yu T, Zou Y, Nie H, Li Y, Chen J, Du Y, Peng H, Luo Q. The role of the thalamic subregions in major depressive disorder with childhood maltreatment: Evidences from dynamic and static functional connectivity. J Affect Disord 2024; 347:237-248. [PMID: 38000476 DOI: 10.1016/j.jad.2023.11.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) with a history of childhood maltreatment represents a highly prevalent clinical phenotype. Previous studies have demonstrated functional alterations of the thalamus among MDD. However, no study has investigated the static and dynamic changes in functional connectivity (FC) within thalamic subregions among MDD with childhood maltreatment. METHODS This study included four groups: MDD with childhood maltreatment (n = 48), MDD without childhood maltreatment (n = 30), healthy controls with childhood maltreatment (n = 57), and healthy controls without childhood maltreatment (n = 46). Sixteen thalamic subregions were selected as seed to investigate group-differences in dynamic FC (dFC) and static FC (sFC). Correlation analyses were performed to assess the associations between abnormal FC and maltreatment severity. Eventually, moderation analyses were employed to explore the moderating role of abnormal FC in the relationship between maltreatment and depressive severity. RESULTS MDD with childhood maltreatment exhibit abnormal thalamic subregions FC compared to MDD without childhood maltreatment, characterized by abnormalities with the sFC of the rostral anterior cingulate cortex, with the dFC of the calcarine, middle cingulate cortex, precuneus cortex and superior temporal gyrus. Furthermore, sFC with the rostral anterior cingulate cortex and dFC with the middle cingulate cortex were correlated with the severity of maltreatment. Additionally, dFC with the superior temporal gyrus moderates the relationship between maltreatment and depression severity. LIMITATIONS The cross-sectional designs fail to infer causality. CONCLUSIONS Our findings support thalamic dysfunction as neurobiological features of childhood maltreatment as well as vulnerability to MDD.
Collapse
Affiliation(s)
- Tong Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Department of Psychiatry, Guangzhou Medical University, Guangzhou 511436, China
| | - Yurong Zou
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huiqin Nie
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yuhong Li
- Department of Publicity and Health Education, Shenzhen Longhua District Central Hospital, Shenzhen 518000, China
| | - Juran Chen
- The Zhongshan Torch Hi-tech Industrial Development Zone Community Health Service, Zhongshan 528437, China
| | - Yingying Du
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| | - Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| |
Collapse
|
8
|
Javaheripour N, Colic L, Opel N, Li M, Maleki Balajoo S, Chand T, Van der Meer J, Krylova M, Izyurov I, Meller T, Goltermann J, Winter NR, Meinert S, Grotegerd D, Jansen A, Alexander N, Usemann P, Thomas-Odenthal F, Evermann U, Wroblewski A, Brosch K, Stein F, Hahn T, Straube B, Krug A, Nenadić I, Kircher T, Croy I, Dannlowski U, Wagner G, Walter M. Altered brain dynamic in major depressive disorder: state and trait features. Transl Psychiatry 2023; 13:261. [PMID: 37460460 DOI: 10.1038/s41398-023-02540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
Temporal neural synchrony disruption can be linked to a variety of symptoms of major depressive disorder (MDD), including mood rigidity and the inability to break the cycle of negative emotion or attention biases. This might imply that altered dynamic neural synchrony may play a role in the persistence and exacerbation of MDD symptoms. Our study aimed to investigate the changes in whole-brain dynamic patterns of the brain functional connectivity and activity related to depression using the hidden Markov model (HMM) on resting-state functional magnetic resonance imaging (rs-fMRI) data. We compared the patterns of brain functional dynamics in a large sample of 314 patients with MDD (65.9% female; age (mean ± standard deviation): 35.9 ± 13.4) and 498 healthy controls (59.4% female; age: 34.0 ± 12.8). The HMM model was used to explain variations in rs-fMRI functional connectivity and averaged functional activity across the whole-brain by using a set of six unique recurring states. This study compared the proportion of time spent in each state and the average duration of visits to each state to assess stability between different groups. Compared to healthy controls, patients with MDD showed significantly higher proportional time spent and temporal stability in a state characterized by weak functional connectivity within and between all brain networks and relatively strong averaged functional activity of regions located in the somatosensory motor (SMN), salience (SN), and dorsal attention (DAN) networks. Both proportional time spent and temporal stability of this brain state was significantly associated with depression severity. Healthy controls, in contrast to the MDD group, showed proportional time spent and temporal stability in a state with relatively strong functional connectivity within and between all brain networks but weak averaged functional activity across the whole brain. These findings suggest that disrupted brain functional synchrony across time is present in MDD and associated with current depression severity.
Collapse
Affiliation(s)
- Nooshin Javaheripour
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120, Magdeburg, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
- German Center for Mental Health (DZPG), Jena, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
- German Center for Mental Health (DZPG), Jena, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120, Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany
| | - Somayeh Maleki Balajoo
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Jülich, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, 52425, Jülich, Germany
| | - Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120, Magdeburg, Germany
- Department of Clinical Psychology, Friedrich Schiller University Jena, Am Steiger 3-1, 07743, Jena, Germany
| | - Johan Van der Meer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marina Krylova
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Igor Izyurov
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils R Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
| | - Ulrika Evermann
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
| | - Ilona Croy
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany
- Department of Clinical Psychology, Friedrich Schiller University Jena, Am Steiger 3-1, 07743, Jena, Germany
- Department of Psychotherapie and Psychosomatic Medicine, Carl Gustav Carus University Hospital Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany.
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany.
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany.
- Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120, Magdeburg, Germany.
- German Center for Mental Health (DZPG), Jena, Germany.
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany.
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- Leibniz Institute for Neurobiology, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
9
|
Xu X, Li X, Qi X, Jiang X, Xing H, Huang X, Gong Q. Effect of regional intrinsic activity following two kinds of theta burst stimulation on precuneus. Hum Brain Mapp 2023; 44:2254-2265. [PMID: 36661276 PMCID: PMC10028626 DOI: 10.1002/hbm.26207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Theta burst stimulation (TBS) has been widely used in the treatment of mental disorders, but the cerebral functional difference between intermittent TBS (iTBS) and continuous TBS (cTBS) after one single session of stimulation is not clear. Here we applied resting-state functional magnetic resonance imaging (RS-FMRI) to evaluate the alterations in intrinsic brain activity after iTBS and cTBS in the precuneus. We recruited 32 healthy young adults and performed a single session each of iTBS and cTBS at a 1-week interval. RS-fMRI was collected at baseline before and immediately after the stimulation. Parameters for regional brain activity (ALFF/fALFF/ReHo) and functional connectivity (FC) with the stimulated site of the precuneus after iTBS and cTBS were calculated and compared between each stimulation using a paired t-test. Correlation analysis among those parameters was calculated to explore whether changes in functional connectivity were associated with local spontaneous activity. After iTBS stimulation, fALFF increased in the bilateral precuneus, while fALFF decreased in the bilateral middle temporal gyrus. Reductions in precuneus FC were found in the bilateral cuneus, superior occipital gyrus, superior temporal gyrus, precentral gyrus, and postcentral gyrus, which correlated with regional activity. After cTBS, fALFF decreased in the bilateral insula, and precuneus FC was decreased in the bilateral inferior occipital gyrus and increased in the thalamus. In the current study, we observed that one session of iTBS or cTBS could cause inhibitory effects in remote brain regions, but only iTBS caused significant local activation in the target region.
Collapse
Affiliation(s)
- Xin Xu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Xue Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- College of Physics, Sichuan University, Chengdu, People's Republic of China
| | - Xu Qi
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- College of Physics, Sichuan University, Chengdu, People's Republic of China
| | - Xi Jiang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- College of Physics, Sichuan University, Chengdu, People's Republic of China
| | - Haoyang Xing
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- College of Physics, Sichuan University, Chengdu, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
10
|
Sun H, Wang G. Local Circuits in the Cerebellum Interact with Biochemical Events. Neurosci Bull 2023; 39:710-712. [PMID: 36350536 PMCID: PMC10073356 DOI: 10.1007/s12264-022-00979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hongyang Sun
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
11
|
Chen B, Yang M, Zhong X, Wang Q, Zhou H, Liu M, Zhang M, Hou L, Wu Z, Zhang S, Lin G, Ning Y. Disrupted dynamic functional connectivity of hippocampal subregions mediated the slowed information processing speed in late-life depression. Psychol Med 2023; 53:1-11. [PMID: 36803969 PMCID: PMC10600940 DOI: 10.1017/s0033291722003786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 02/22/2023]
Abstract
BACKGROUND Slowed information processing speed (IPS) is the core contributor to cognitive impairment in patients with late-life depression (LLD). The hippocampus is an important link between depression and dementia, and it may be involved in IPS slowing in LLD. However, the relationship between a slowed IPS and the dynamic activity and connectivity of hippocampal subregions in patients with LLD remains unclear. METHODS One hundred thirty-four patients with LLD and 89 healthy controls were recruited. Sliding-window analysis was used to assess whole-brain dynamic functional connectivity (dFC), dynamic fractional amplitude of low-frequency fluctuations (dfALFF) and dynamic regional homogeneity (dReHo) for each hippocampal subregion seed. RESULTS Cognitive impairment (global cognition, verbal memory, language, visual-spatial skill, executive function and working memory) in patients with LLD was mediated by their slowed IPS. Compared with the controls, patients with LLD exhibited decreased dFC between various hippocampal subregions and the frontal cortex and decreased dReho in the left rostral hippocampus. Additionally, most of the dFCs were negatively associated with the severity of depressive symptoms and were positively associated with various domains of cognitive function. Moreover, the dFC between the left rostral hippocampus and middle frontal gyrus exhibited a partial mediation effect on the relationships between the scores of depressive symptoms and IPS. CONCLUSIONS Patients with LLD exhibited decreased dFC between the hippocampus and frontal cortex, and the decreased dFC between the left rostral hippocampus and right middle frontal gyrus was involved in the underlying neural substrate of the slowed IPS.
Collapse
Affiliation(s)
- Ben Chen
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Mingfeng Yang
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaomei Zhong
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qiang Wang
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Huarong Zhou
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Meiling Liu
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Min Zhang
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Le Hou
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhangying Wu
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Si Zhang
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Gaohong Lin
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yuping Ning
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
12
|
Li DJ, Huang BL, Peng Y, Liang LY, Liu H. Altered dynamic functional connectivity in the primary visual cortex in patients with primary angle-closure glaucoma. Front Neurosci 2023; 17:1131247. [PMID: 36816121 PMCID: PMC9932926 DOI: 10.3389/fnins.2023.1131247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose Glaucoma is the main blindness-causing disease in the world. Previous neuroimaging studies demonstrated that glaucoma not only causes the loss of optic ganglion cells but also leads to the abnormal function of the optic nerve pathway and the visual cortex. However, previous studies also reported that patients with glaucoma have dysfunction in the visual cortex in a static state. Whether or not patients with primary angle-closure glaucoma (PACG) were accompanied by dynamic functional connectivity (FC) changes in the primary visual cortex (V1) remains unknown. Methods A total of 34 patients with PACG (23 men and 11 women) and 34 well-matched healthy controls (HCs) were enrolled in the study. The dynamic functional connectivity (dFC) with the sliding window method was applied to investigate the dynamic functional connectivity changes in the V1. Results Compared with HCs, patients with PACG showed increased dFC values between left V1 and bilateral calcarine (CAL). Meanwhile, patients with PACG showed increased dFC values between right V1 and bilateral CAL. Conclusion Our study demonstrated that patients with PACG showed increased dFC within the visual network, which might indicate the increased variability FC in the V1 in patients with PACG.
Collapse
Affiliation(s)
- Dong-Jin Li
- Health Management Center, The First People’s Hospital of Jiujiang City, Jiujiang, Jiangxi, China
| | - Bing-Lin Huang
- College of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China,*Correspondence: Bing-Lin Huang,
| | - Yuan Peng
- Department of Ophthalmology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Ling-Yan Liang
- College of Graduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Hui Liu
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Li W, Wang C, Lan X, Fu L, Zhang F, Ye Y, Liu H, Wu K, Zhou Y, Ning Y. Variability and concordance among indices of brain activity in major depressive disorder with suicidal ideation: A temporal dynamics resting-state fMRI analysis. J Affect Disord 2022; 319:70-78. [PMID: 36075401 DOI: 10.1016/j.jad.2022.08.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/04/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE The resting-state functional magnetic resonance imaging (rs-fMRI) have been used to explore functional abnormality of the brain in MDD patients with suicidal ideation (SI). However, few studies reported the variability and concordance of alterations of rs-fMRI indices in MDD with SI. In this study, we aimed to explore the variability and concordance of alterations of rs-fMRI indices in MDD with SI. METHODS A sliding window analysis was performed among 36 MDD patients with SI, 66 MDD patients without SI (NSI), and 50 healthy controls (HCs). Furthermore, the correlation between voxel-wise concordance and cognitive function was examined in the SI group. RESULTS The SI group had a lower dynamics degree centrality (dDC) value than the NSI group in left inferior occipital gyrus, and a lower voxel mirrored homotopic connectivity (dVMHC) value than the NSI group in the right and left inferior occipital gyrus. The mean values of volume wise concordance of HCs group shown higher than SI group and NSI group. SI group revealed decreased voxel-wise concordance in right cerebellum, left fusiform gyrus, left lingual gyrus, right middle temporal gyrus, left postcentral gyrus, and right supplementary motor area compared to NSI group. Moreover, the voxel-wise concordance of left middle occipital gyrus was negatively correlated with verbal learning and memory and working memory in the SI group. LIMITATION This is a cross-sectional analysis, limiting causal inferences. CONCLUSIONS The abnormal voxel-wise concordance of left middle occipital gyrus could be useful in understanding the pathophysiology of MDD patients with SI.
Collapse
Affiliation(s)
- Weicheng Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Chengyu Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Xiaofeng Lan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Ling Fu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Fan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Yanxiang Ye
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Haiyan Liu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China.
| | - Yuping Ning
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China.
| |
Collapse
|
14
|
Zhong X, Chen B, Hou L, Wang Q, Liu M, Yang M, Zhang M, Zhou H, Wu Z, Zhang S, Lin G, Ning Y. Shared and specific dynamics of brain activity and connectivity in amnestic and nonamnestic mild cognitive impairment. CNS Neurosci Ther 2022; 28:2053-2065. [PMID: 35975454 PMCID: PMC9627396 DOI: 10.1111/cns.13937] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS The present study aimed to compare temporal variability in the spontaneous fluctuations of activity and connectivity between amnestic MCI (aMCI) and nonamnestic MCI (naMCI), which enhances the understanding of their different pathophysiologies and provides targets for individualized intervention. METHODS Sixty-five naMCI and 48 aMCI subjects and 75 healthy controls were recruited. A sliding window analysis was used to evaluate the dynamic amplitude of low-frequency fluctuations (dALFF), dynamic regional homogeneity (dReHo), and dynamic functional connectivity (dFC). The caudal/rostral hippocampus was selected as the seeds for calculating dFC. RESULTS Both aMCI and naMCI exhibited abnormal dALFF, dReHo, and hippocampal dFC compared with healthy controls. Compared with individuals with naMCI, those with aMCI exhibited (1) higher dALFF variability in the right putamen, left Rolandic operculum, and right middle cingulum, (2) lower dReHo variability in the right superior parietal lobule, and (3) lower dFC variability between the hippocampus and other regions (left superior occipital gyrus, middle frontal gyrus, inferior cerebellum, precuneus, and right superior frontal gyrus). Additionally, variability in dALFF, dReHo, and hippocampal dFC exhibited different associations with cognitive scores in aMCI and naMCI patients, respectively. Finally, dReHo variability in the right superior parietal lobule and dFC variability between the right caudal hippocampus and left inferior cerebellum exhibited partially mediated effects on the different memory scores between people with aMCI and naMCI. CONCLUSION The aMCI and naMCI patients exhibited shared and specific patterns of dynamic brain activity and connectivity. The dReHo of the superior parietal lobule and dFC of the hippocampus-cerebellum contributed to the memory heterogeneity of MCI subtypes. Analyzing the temporal variability in the spontaneous fluctuations of brain activity and connectivity provided a new perspective for exploring the different pathophysiological mechanisms in MCI subtypes.
Collapse
Affiliation(s)
- Xiaomei Zhong
- Center for Geriatric NeuroscienceThe Affiliated Brain Hospital of Guangzhou Medical University, Memory ClinicGuangzhouGuangdong ProvinceChina
| | - Ben Chen
- Center for Geriatric NeuroscienceThe Affiliated Brain Hospital of Guangzhou Medical University, Memory ClinicGuangzhouGuangdong ProvinceChina
| | - Le Hou
- Department of NeurologyThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Qiang Wang
- Center for Geriatric NeuroscienceThe Affiliated Brain Hospital of Guangzhou Medical University, Memory ClinicGuangzhouGuangdong ProvinceChina
- Department of Geriatric PsychiatryThe Second People's Hospital of Dali Bai Autonomous PrefectureDaliYunnan ProvinceChina
| | - Meiling Liu
- Center for Geriatric NeuroscienceThe Affiliated Brain Hospital of Guangzhou Medical University, Memory ClinicGuangzhouGuangdong ProvinceChina
| | - Mingfeng Yang
- Center for Geriatric NeuroscienceThe Affiliated Brain Hospital of Guangzhou Medical University, Memory ClinicGuangzhouGuangdong ProvinceChina
| | - Min Zhang
- Center for Geriatric NeuroscienceThe Affiliated Brain Hospital of Guangzhou Medical University, Memory ClinicGuangzhouGuangdong ProvinceChina
| | - Huarong Zhou
- Center for Geriatric NeuroscienceThe Affiliated Brain Hospital of Guangzhou Medical University, Memory ClinicGuangzhouGuangdong ProvinceChina
| | - Zhangying Wu
- Center for Geriatric NeuroscienceThe Affiliated Brain Hospital of Guangzhou Medical University, Memory ClinicGuangzhouGuangdong ProvinceChina
| | - Si Zhang
- Center for Geriatric NeuroscienceThe Affiliated Brain Hospital of Guangzhou Medical University, Memory ClinicGuangzhouGuangdong ProvinceChina
| | - Gaohong Lin
- Center for Geriatric NeuroscienceThe Affiliated Brain Hospital of Guangzhou Medical University, Memory ClinicGuangzhouGuangdong ProvinceChina
| | - Yuping Ning
- Center for Geriatric NeuroscienceThe Affiliated Brain Hospital of Guangzhou Medical University, Memory ClinicGuangzhouGuangdong ProvinceChina
- The First School of Clinical Medicine, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
| |
Collapse
|
15
|
Luo Q, Chen J, Li Y, Wu Z, Lin X, Yao J, Yu H, Wu H, Peng H. Aberrant static and dynamic functional connectivity of amygdala subregions in patients with major depressive disorder and childhood maltreatment. Neuroimage Clin 2022; 36:103270. [PMID: 36451372 PMCID: PMC9668673 DOI: 10.1016/j.nicl.2022.103270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Major depressive disorder (MDD) with childhood maltreatment is a heterogeneous clinical phenotype of depression with prominent features of brain disconnectivity in areas linked to maltreatment-related emotion processing (e.g., the amygdala). However, static and dynamic alterations of functional connectivity in amygdala subregions have not been investigated in MDD with childhood maltreatment. Here, we explored whether amygdala subregions (i.e., medial amygdala [MeA] and lateral amygdala [LA]) exhibited static functional connectivity (sFC) and dynamic functional connectivity (dFC) disruption, and whether these disruptions were related to childhood maltreatment. We compared sFC and dFC patterns in MDD with childhood maltreatment (n = 48), MDD without childhood maltreatment (n = 30), healthy controls with childhood maltreatment (n = 57), and healthy controls without childhood maltreatment (n = 46). The bilateral MeA and LA were selected as the seeds in the FC analysis. The results revealed a functional connectivity disruption pattern in maltreated MDD patients, characterized by sFC and dFC abnormalities involving the MeA, LA, and theory of mind-related brain areas including the middle occipital area, middle frontal gyrus, superior medial frontal gyrus, angular gyrus, supplementary motor areas, middle temporal gyrus, middle cingulate gyrus, and calcarine gyrus. Significant correlations were detected between impaired dFC patterns and childhood maltreatment. Furthermore, the dFC disruption pattern served as a moderator in the relationship between sexual abuse and depression severity. Our findings revealed neurobiological features of childhood maltreatment, providing new evidence regarding vulnerability to psychiatric disorders.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Juran Chen
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yuhong Li
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Zhiyao Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Xinyi Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Jiazheng Yao
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huiwen Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China,Corresponding authors at: Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China (H. Wu); Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China (H. Peng).
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China,Corresponding authors at: Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China (H. Wu); Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China (H. Peng).
| |
Collapse
|
16
|
Li W, Wang C, Lan X, Fu L, Zhang F, Ye Y, Liu H, Wu K, Lao G, Chen J, Li G, Zhou Y, Ning Y. Aberrant Dynamic Functional Connectivity of Posterior Cingulate Cortex Subregions in Major Depressive Disorder With Suicidal Ideation. Front Neurosci 2022; 16:937145. [PMID: 35928017 PMCID: PMC9344055 DOI: 10.3389/fnins.2022.937145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence indicates the presence of structural and functional abnormalities of the posterior cingulate cortex (PCC) in patients with major depressive disorder (MDD) with suicidal ideation (SI). Nevertheless, the subregional-level dynamic functional connectivity (dFC) of the PCC has not been investigated in MDD with SI. We therefore sought to investigate the presence of aberrant dFC variability in PCC subregions in MDD patients with SI. We analyzed resting-state functional magnetic resonance imaging (fMRI) data from 31 unmedicated MDD patients with SI (SI group), 56 unmedicated MDD patients without SI (NSI group), and 48 matched healthy control (HC) subjects. The sliding-window method was applied to characterize the whole-brain dFC of each PCC subregion [the ventral PCC (vPCC) and dorsal PCC (dPCC)]. In addition, we evaluated associations between clinical variables and the aberrant dFC variability of those brain regions showing significant between-group differences. Compared with HCS, the SI and the NSI groups exhibited higher dFC variability between the left dPCC and left fusiform gyrus and between the right vPCC and left inferior frontal gyrus (IFG). The SI group showed higher dFC variability between the left vPCC and left IFG than the NSI group. Furthermore, the dFC variability between the left vPCC and left IFG was positively correlated with Scale for Suicidal Ideation (SSI) score in patients with MDD (i.e., the SI and NSI groups). Our results indicate that aberrant dFC variability between the vPCC and IFG might provide a neural-network explanation for SI and may provide a potential target for future therapeutic interventions in MDD patients with SI.
Collapse
Affiliation(s)
- Weicheng Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chengyu Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaofeng Lan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Ling Fu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Fan Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanxiang Ye
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haiyan Liu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Kai Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Guohui Lao
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Jun Chen
- Guangdong Institute of Medical Instruments, Guangzhou, China
| | - Guixiang Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
17
|
Lin H, Xiang X, Huang J, Xiong S, Ren H, Gao Y. Abnormal degree centrality values as a potential imaging biomarker for major depressive disorder: A resting-state functional magnetic resonance imaging study and support vector machine analysis. Front Psychiatry 2022; 13:960294. [PMID: 36147977 PMCID: PMC9486164 DOI: 10.3389/fpsyt.2022.960294] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Previous studies have revealed abnormal degree centrality (DC) in the structural and functional networks in the brains of patients with major depressive disorder (MDD). There are no existing reports on the DC analysis method combined with the support vector machine (SVM) to distinguish patients with MDD from healthy controls (HCs). Here, the researchers elucidated the variations in DC values in brain regions of MDD patients and provided imaging bases for clinical diagnosis. METHODS Patients with MDD (N = 198) and HCs (n = 234) were scanned using resting-state functional magnetic resonance imaging (rs-fMRI). DC and SVM were applied to analyze imaging data. RESULTS Compared with HCs, MDD patients displayed elevated DC values in the vermis, left anterior cerebellar lobe, hippocampus, and caudate, and depreciated DC values in the left posterior cerebellar lobe, left insula, and right caudate. As per the results of the SVM analysis, DC values in the left anterior cerebellar lobe and right caudate could distinguish MDD from HCs with accuracy, sensitivity, and specificity of 87.71% (353/432), 84.85% (168/198), and 79.06% (185/234), respectively. Our analysis did not reveal any significant correlation among the DC value and the disease duration or symptom severity in patients with MDD. CONCLUSION Our study demonstrated abnormal DC patterns in patients with MDD. Aberrant DC values in the left anterior cerebellar lobe and right caudate could be presented as potential imaging biomarkers for the diagnosis of MDD.
Collapse
Affiliation(s)
- Hang Lin
- Department of Psychiatry, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.,Key Laboratory of Occupational Hazards and Identification, Wuhan University of Science and Technology, Wuhan, China
| | - Xi Xiang
- Department of Spine and Orthopedics, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Junli Huang
- Department of Medical Imaging, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shihong Xiong
- Department of Nephrology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yujun Gao
- Department of Psychiatry, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.,Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Brosch K, Stein F, Schmitt S, Pfarr JK, Ringwald KG, Thomas-Odenthal F, Meller T, Steinsträter O, Waltemate L, Lemke H, Meinert S, Winter A, Breuer F, Thiel K, Grotegerd D, Hahn T, Jansen A, Dannlowski U, Krug A, Nenadić I, Kircher T. Reduced hippocampal gray matter volume is a common feature of patients with major depression, bipolar disorder, and schizophrenia spectrum disorders. Mol Psychiatry 2022; 27:4234-4243. [PMID: 35840798 PMCID: PMC9718668 DOI: 10.1038/s41380-022-01687-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia spectrum disorder (SSD, schizophrenia, and schizoaffective disorder) overlap in symptomatology, risk factors, genetics, and other biological measures. Based on previous findings, it remains unclear what transdiagnostic regional gray matter volume (GMV) alterations exist across these disorders, and with which factors they are associated. GMV (3-T magnetic resonance imaging) was compared between healthy controls (HC; n = 110), DSM-IV-TR diagnosed MDD (n = 110), BD (n = 110), and SSD patients (n = 110), matched for age and sex. We applied a conjunction analysis to identify shared GMV alterations across the disorders. To identify potential origins of identified GMV clusters, we associated them with early and current risk and protective factors, psychopathology, and neuropsychology, applying multiple regression models. Common to all diagnoses (vs. HC), we identified GMV reductions in the left hippocampus. This cluster was associated with the neuropsychology factor working memory/executive functioning, stressful life events, and with global assessment of functioning. Differential effects between groups were present in the left and right frontal operculae and left insula, with volume variances across groups highly overlapping. Our study is the first with a large, matched, transdiagnostic sample to yield shared GMV alterations in the left hippocampus across major mental disorders. The hippocampus is a major network hub, orchestrating a range of mental functions. Our findings underscore the need for a novel stratification of mental disorders, other than categorical diagnoses.
Collapse
Affiliation(s)
- Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany. .,Center for Mind, Brain and Behavior (CMBB), Marburg, Germany.
| | - Frederike Stein
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Simon Schmitt
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany ,grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Julia-Katharina Pfarr
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Kai G. Ringwald
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Florian Thomas-Odenthal
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Tina Meller
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Olaf Steinsträter
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.10253.350000 0004 1936 9756Core-Facility BrainImaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
| | - Lena Waltemate
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany ,grid.5949.10000 0001 2172 9288Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Alexandra Winter
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Andreas Jansen
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany ,grid.10253.350000 0004 1936 9756Core-Facility BrainImaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
| | - Udo Dannlowski
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Axel Krug
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.10388.320000 0001 2240 3300Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Igor Nenadić
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Tilo Kircher
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| |
Collapse
|