1
|
Kurakin S, Ivankov O, Dushanov E, Murugova T, Ermakova E, Efimov S, Mukhametzyanov T, Smerdova S, Klochkov V, Kuklin A, Kučerka N. Calcium ions do not influence the Aβ(25-35) triggered morphological changes of lipid membranes. Biophys Chem 2024; 313:107292. [PMID: 39018778 DOI: 10.1016/j.bpc.2024.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
We have studied the effect of calcium ions (Ca2+) at various concentrations on the structure of lipid vesicles in the presence of amyloid-beta peptide Aβ(25-35). In particular, we have investigated the influence of calcium ions on the formation of recently documented bicelle-like structures (BLSs) emerged as a result of Aβ(25-35) triggered membrane disintegration. First, we have shown by using small-angle X-ray and neutron scattering that peptide molecules rigidify the lipid bilayer of gel phase DPPC unilamellar vesicles (ULVs), while addition of the calcium ions to the system hinders this effect of Aβ(25-35). Secondly, the Aβ(25-35) demonstrates a critical peptide concentration at which the BLSs reorganize from ULVs due to heating and cooling the samples through the lipid main phase transition temperature (Tm). However, addition of calcium ions does not affect noticeably the Aβ-induced formation of BLSs and their structural parameters, though the changes in peptide's secondary structure, e.g. the increased α-helix fraction, has been registered by circular dichroism spectroscopy. Finally, according to 31P nuclear magnetic resonance (NMR) measurements, calcium ions do not affect the lipid-peptide arrangement in BLSs and their ability to align in the magnetic field of NMR spectrometer. The influences of various concentrations of calcium ions on the lipid-peptide interactions may prove biologically important because their local concentrations vary widely in in-vivo conditions. In the present work, calcium ions were investigated as a possible tool aimed at regulating the lipid-peptide interactions that demonstrated the disruptive effect of Aβ(25-35) on lipid membranes.
Collapse
Affiliation(s)
- Sergei Kurakin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia.
| | - Oleksandr Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Ermuhammad Dushanov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Department of Biophysics, Dubna State University, Universitetskaya 19, Dubna, Moscow Region 141982, Russia
| | - Tatiana Murugova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Elena Ermakova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Sergey Efimov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Timur Mukhametzyanov
- Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Svetlana Smerdova
- Kazan National Research Technological University, Karl Marx 68, Kazan 420015, Russia
| | - Vladimir Klochkov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Alexander Kuklin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Moscow Institute of Physics and Technology, Instytutskiy Pereulok 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Norbert Kučerka
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, Bratislava 832 32, Slovakia.
| |
Collapse
|
2
|
Taylor JM, Conboy JC. Sum-frequency vibrational spectroscopy, a tutorial: Applications for the study of lipid membrane structure and dynamics. Biointerphases 2024; 19:031201. [PMID: 38738942 DOI: 10.1116/6.0003594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Planar supported lipid bilayers (PSLBs) are an ideal model for the study of lipid membrane structures and dynamics when using sum-frequency vibrational spectroscopy (SFVS). In this paper, we describe the construction of asymmetric PSLBs and the basic SFVS theory needed to understand and make measurements on these membranes. Several examples are presented, including the determination of phospholipid orientation and measuring phospholipid transmembrane translocation (flip-flop).
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112
| |
Collapse
|
3
|
Zhang Z, Chen Y, Gao J, Yang M, Zhang D, Wang L, Zhang T, Cao Q, Mwangi J, He C, Li Y, Liu X, Jiang X, Kamau PM, Lai R. Orientational Nanoconjugation with Gold Endows Marked Antimicrobial Potential and Drugability of Ultrashort Dipeptides. NANO LETTERS 2023; 23:11874-11883. [PMID: 38097378 PMCID: PMC10755742 DOI: 10.1021/acs.nanolett.3c03909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Antibiotic resistance is a global threat. Antimicrobial peptides (AMPs) are highly desirable to treat multidrug-resistant pathogen infection. However, few AMPs are clinically available, due to high cost, instability, and poor selectivity. Here, ultrashort AMPs (2-3 residues with an N-terminal cysteine) are designed and assembled as gold nanoparticles. Au-S conjugation and ultrashort size restrict nonspecific reactions and peptide orientation, thus concentrating positively charged residues on the surface. The nanostructured assemblies enormously enhance antimicrobial abilities by 1000-6000-fold and stability. One representative (Au-Cys-Arg-NH2, Au_CR) shows selective antibacterial activity against Staphylococcus aureus with 10 nM minimal inhibitory concentration. Au_CR has comparable or better in vivo antimicrobial potency than vancomycin and methicillin, with low propensity to induce resistance, little side effects, and high stability (17.5 h plasma half-life). Au_CR acts by inducing collapse of membrane potential and rupture of the bacterial membrane. The report provides insights for developing AMP-metal nanohybrids, particularly tethering nonspecific reactions and AMP orientation on the metal surface.
Collapse
Affiliation(s)
- Zhiye Zhang
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yaoyao Chen
- Department
of Zoology, College of Life Sciences, Nanjing
Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jinai Gao
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School
of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| | - Min Yang
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming
College of Life Science, University of Chinese
Academy of Sciences, Kunming 650204, Yunnan, China
| | - Dengdeng Zhang
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Department
of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Le Wang
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Tianyu Zhang
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine
(HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Qiqi Cao
- Department
of Zoology, College of Life Sciences, Nanjing
Agricultural University, Nanjing 210095, Jiangsu, China
| | - James Mwangi
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming
College of Life Science, University of Chinese
Academy of Sciences, Kunming 650204, Yunnan, China
| | - Chenglu He
- Department
of Clinical Laboratory, First Affiliated
Hospital of Kunming Medical College, Kunming 650032, Yunnan, China
| | - Ya Li
- Department
of Clinical Laboratory, First Affiliated
Hospital of Kunming Medical College, Kunming 650032, Yunnan, China
| | - Xiangsheng Liu
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine
(HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Xingyu Jiang
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Peter Muiruri Kamau
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming
College of Life Science, University of Chinese
Academy of Sciences, Kunming 650204, Yunnan, China
| | - Ren Lai
- Engineering
Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory
of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory
of Bioresources and Molecular Research in Common Diseases, National
Resource Center for Non-Human Primates, National Research Facility
for Phenotypic & Genetic Analysis of Model Animals (Primate Facility),
and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School
of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
4
|
Miller EJ, Phan MD, Shah J, Honerkamp-Smith AR. Passive and reversible area regulation of supported lipid bilayers in response to fluid flow. Biophys J 2023; 122:2242-2255. [PMID: 36639867 PMCID: PMC10257118 DOI: 10.1016/j.bpj.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Biological and model membranes are frequently subjected to fluid shear stress. However, membrane mechanical responses to flow remain incompletely described. This is particularly true of membranes supported on a solid substrate, and the influences of membrane composition and substrate roughness on membrane flow responses remain poorly understood. Here, we combine microfluidics, fluorescence microscopy, and neutron reflectivity to explore how supported lipid bilayer patches respond to controlled shear stress. We demonstrate that lipid membranes undergo a significant, passive, and partially reversible increase in membrane area due to flow. We show that these fluctuations in membrane area can be constrained, but not prevented, by increasing substrate roughness. Similar flow-induced changes to membrane structure may contribute to the ability of living cells to sense and respond to flow.
Collapse
Affiliation(s)
| | - Minh D Phan
- Large-Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Center for Neutron Science, Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware
| | | | | |
Collapse
|
5
|
Molugu TR, Thurmond RL, Alam TM, Trouard TP, Brown MF. Phospholipid headgroups govern area per lipid and emergent elastic properties of bilayers. Biophys J 2022; 121:4205-4220. [PMID: 36088534 PMCID: PMC9674990 DOI: 10.1016/j.bpj.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Phospholipid bilayers are liquid-crystalline materials whose intermolecular interactions at mesoscopic length scales have key roles in the emergence of membrane physical properties. Here we investigated the combined effects of phospholipid polar headgroups and acyl chains on biophysical functions of membranes with solid-state 2H NMR spectroscopy. We compared the structural and dynamic properties of phosphatidylethanolamine and phosphatidylcholine with perdeuterated acyl chains in the solid-ordered (so) and liquid-disordered (ld) phases. Our analysis of spectral lineshapes of 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE-d62) and 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphocholine (DPPC-d62) in the so (gel) phase indicated an all-trans rotating chain structure for both lipids. Greater segmental order parameters (SCD) were observed in the ld (liquid-crystalline) phase for DPPE-d62 than for DPPC-d62 membranes, while their mixtures had intermediate values irrespective of the deuterated lipid type. Our results suggest the SCD profiles of the acyl chains are governed by methylation of the headgroups and are averaged over the entire system. Variations in the acyl chain molecular dynamics were further investigated by spin-lattice (R1Z) and quadrupolar-order relaxation (R1Q) measurements. The two acyl-perdeuterated lipids showed distinct differences in relaxation behavior as a function of the order parameter. The R1Z rates had a square-law dependence on SCD, implying collective mesoscopic dynamics, with a higher bending rigidity for DPPE-d62 than for DPPC-d62 lipids. Remodeling of lipid average and dynamic properties by methylation of the headgroups thus provides a mechanism to control the actions of peptides and proteins in biomembranes.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | | | - Todd M Alam
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, New Mexico
| | - Theodore P Trouard
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
6
|
Nickels JD, Bonifer KS, Tindall RR, Yahya A, Tan L, Do C, Davison BH, Elkins JG. Improved chemical and isotopic labeling of biomembranes in Bacillus subtilis by leveraging CRISPRi inhibition of beta-ketoacyl-ACP synthase ( fabF). Front Mol Biosci 2022; 9:1011981. [PMID: 36339713 PMCID: PMC9634059 DOI: 10.3389/fmolb.2022.1011981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/05/2022] [Indexed: 09/08/2024] Open
Abstract
Assessing the structure of living microbial cell membranes is a challenging analytical goal. The cell membrane is defined by its transverse structure, an approximately 5 nm-thick selectively permeable bilayer that serves many important cellular functions. Compositionally complex, dynamic, and organized in both the transverse and lateral dimensions, understanding the cell membrane structure-and the role that structure plays in cellular function, communication, and environmental sensing is an active scientific effort. Previously, we have devised a novel isotopic labeling approach for membrane lipids to enable direct in vivo structural studies of the cell membrane in the Gram-positive bacterium, Bacillus subtilis, using small-angle neutron scattering. This was accomplished through a genetic inhibition of fatty acid (FA) degradation (ΔfadN) and a chemical inhibition of FA biosynthesis using cerulenin, an irreversible inhibitor of type II fatty acid synthases. Here, we improve upon the previous system by introducing a dCas9/sgRNA-fabF complex that blocks transcription of the essential fabF gene when under xylose induction. This leads to greater sensitivity to cerulenin in the mutant strain (JEBS102) and more robust cell growth when supplementary FAs are introduced to the culture medium. A subtle change in FA uptake is noted when compared to the prior labeling strategy. This is seen in the gas chromatography/mass spectrometry (GC/MS) data as a higher ratio of n16:0 to a15:0, and manifests in an apparent increase in the membrane thickness determined via neutron scattering. This represents an improved method of isotopic labeling for the cell membrane of Bacillus subtilis; enabling improved investigations of cellular uptake and utilization of FAs, cell membrane structure and organization as a phenotypic response to metabolic and environmental changes.
Collapse
Affiliation(s)
- Jonathan D. Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Kyle S. Bonifer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Rachel R. Tindall
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ahmad Yahya
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Luoxi Tan
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Changwoo Do
- Neutron Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brian H. Davison
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - James G. Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
7
|
Kim S, Hyeon C. Location of the TEMPO moiety of TEMPO-PC in phosphatidylcholine bilayers is membrane phase-dependent. Biophys J 2022; 121:2550-2556. [PMID: 35651317 DOI: 10.1016/j.bpj.2022.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
The (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) moiety tethered to the headgroup of phosphatidylcholine (PC) lipid is employed in spin labeling electron paramagnetic resonance (EPR) spectroscopy to probe the water dynamics near lipid bilayer interfaces. Due to its amphiphilic character, however, TEMPO spin label could partition between aqueous and lipid phases, and may even be stabilized in the lipid phase. Accurate assessment of the TEMPO-PC configuration in bilayer membranes is essential for correctly interpreting the data from measurements. Here, we carry out all-atom molecular dynamics (MD) simulations of TEMPO-PC probe in single-component lipid bilayers at varying temperatures, using two standard MD force fields. We find that for DPPC membrane whose gel-to-fluid lipid phase transition occurs at 314 K, while the TEMPO spin label is stabilized above the bilayer interface in the gel phase, there is a preferential location of TEMPO below the membrane interface in the fluid phase. For bilayers made of unsaturated lipids, DOPC and POPC, which adopt the fluid phase at ambient temperature, TEMPO is unequivocally stabilized inside the bilayers. Our finding of membrane phase-dependent positioning of TEMPO moiety highlights the importance of assessing the packing order and fluidity of lipids under a given measurement condition.
Collapse
Affiliation(s)
- Seonghoon Kim
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Korea.
| |
Collapse
|
8
|
Hernández-Muñoz J, Bresme F, Tarazona P, Chacón E. Bending Modulus of Lipid Membranes from Density Correlation Functions. J Chem Theory Comput 2022; 18:3151-3163. [PMID: 35389648 PMCID: PMC9097289 DOI: 10.1021/acs.jctc.2c00099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/28/2022]
Abstract
The bending modulus κ quantifies the elasticity of biological membranes in terms of the free energy cost of increasing the membrane corrugation. Molecular dynamics (MD) simulations provide a powerful approach to quantify κ by analyzing the thermal fluctuations of the lipid bilayer. However, existing methods require the identification and filtering of non-mesoscopic fluctuation modes. State of the art methods rely on identifying a smooth surface to describe the membrane shape. These methods introduce uncertainties in calculating κ since they rely on different criteria to select the relevant fluctuation modes. Here, we present a method to compute κ using molecular simulations. Our approach circumvents the need to define a mesoscopic surface or an orientation field for the lipid tails explicitly. The bending and tilt moduli can be extracted from the analysis of the density correlation function (DCF). The method introduced here builds on the Bedeaux and Weeks (BW) theory for the DCF of fluctuating interfaces and on the coupled undulatory (CU) mode introduced by us in previous work. We test the BW-DCF method by computing the elastic properties of lipid membranes with different system sizes (from 500 to 6000 lipid molecules) and using coarse-grained (for POPC and DPPC lipids) and fully atomistic models (for DPPC). Further, we quantify the impact of cholesterol on the bending modulus of DPPC bilayers. We compare our results with bending moduli obtained with X-ray diffraction data and different computer simulation methods.
Collapse
Affiliation(s)
- Jose Hernández-Muñoz
- Departamento
de Física Teórica de la Materia Condensada, IFIMAC
Condensed Matter Physics Center, Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Fernando Bresme
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College, W12 0BZ, London, United Kingdom
| | - Pedro Tarazona
- Departamento
de Física Teórica de la Materia Condensada, IFIMAC
Condensed Matter Physics Center, Universidad
Autónoma de Madrid, Madrid 28049, Spain
- Instituto
Nicolás Cabrera de Ciencia de Materiales, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Enrique Chacón
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Madrid 28049, Spain
| |
Collapse
|
9
|
Dong H, Cronan JE. Temperature regulation of membrane composition in the Firmicute, Enterococcus faecalis, parallels that of Escherichia coli. Environ Microbiol 2021; 23:2683-2691. [PMID: 33830615 DOI: 10.1111/1462-2920.15512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/05/2021] [Indexed: 11/30/2022]
Abstract
Both Enterococcus faecalis and Escherichia coli can undergo abrupt temperature transitions in nature. E. coli changes the composition of its phospholipid acyl chains in response to shifts growth temperature. This is mediated by a naturally temperature sensitive enzyme, FabF (3-ketoacyl-acyl carrier protein synthase II), that elongates the 16 carbon unsaturated acyl chain palmitoleate to the 18 carbon unsaturated acyl chain, cis-vaccenate. FabF is more active at low temperatures resulting in increased incorporation of cis-vaccenoyl acyl chains into the membrane phospholipids. This response to temperature is an intrinsic property of FabF and does not require increased synthesis of the enzyme. We report that the FabF of the very divergent bacterium, E. faecalis, has properties very similar to E. coli FabF and is responsible for changing E. faecalis membrane phospholipid acyl chain composition in response to temperature. Moreover, expression E. faecalis FabF in an E. coli ∆fabF strain restores temperature regulation to the E. coli strain.
Collapse
Affiliation(s)
- Huijuan Dong
- Department of Microbiology, University of Illinois, Urbana, Illinois, 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, 61801, USA.,Department of Biochemistry, University of Illinois, Urbana, Illinois, 61801, USA
| |
Collapse
|
10
|
Bouquiaux C, Tonnelé C, Castet F, Champagne B. Second-Order Nonlinear Optical Properties of an Amphiphilic Dye Embedded in a Lipid Bilayer. A Combined Molecular Dynamics–Quantum Chemistry Study. J Phys Chem B 2020; 124:2101-2109. [DOI: 10.1021/acs.jpcb.9b10988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Charlotte Bouquiaux
- Theoretical Chemistry Laboratory, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Claire Tonnelé
- University of Bordeaux, Institut des Sciences Moléculaires, UMR 5255 CNRS, Cours de la Libération 351, F-33405 Talence Cedex, France
| | - Frédéric Castet
- University of Bordeaux, Institut des Sciences Moléculaires, UMR 5255 CNRS, Cours de la Libération 351, F-33405 Talence Cedex, France
| | - Benoît Champagne
- Theoretical Chemistry Laboratory, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| |
Collapse
|
11
|
Ermakova E, Kurbanov R, Zuev Y. Coarse-grained molecular dynamics of membrane semitoroidal pore formation in model lipid-peptide systems. J Mol Graph Model 2019; 87:1-10. [DOI: 10.1016/j.jmgm.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022]
|
12
|
Nagle JF, Cognet P, Dupuy FG, Tristram-Nagle S. Structure of gel phase DPPC determined by X-ray diffraction. Chem Phys Lipids 2019; 218:168-177. [DOI: 10.1016/j.chemphyslip.2018.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 11/29/2022]
|
13
|
Molugu TR, Brown MF. Cholesterol Effects on the Physical Properties of Lipid Membranes Viewed by Solid-state NMR Spectroscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:99-133. [PMID: 30649757 DOI: 10.1007/978-3-030-04278-3_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this chapter, we review the physical properties of lipid/cholesterol mixtures involving studies of model membranes using solid-state NMR spectroscopy. The approach allows one to quantify the average membrane structure, fluctuations, and elastic deformation upon cholesterol interaction. Emphasis is placed on understanding the membrane structural deformation and emergent fluctuations at an atomistic level. Lineshape measurements using solid-state NMR spectroscopy give equilibrium structural properties, while relaxation time measurements study the molecular dynamics over a wide timescale range. The equilibrium properties of glycerophospholipids, sphingolipids, and their binary and tertiary mixtures with cholesterol are accessible. Nonideal mixing of cholesterol with other lipids explains the occurrence of liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids, and may drive formation of lipid rafts. The functional dependence of 2H NMR spin-lattice relaxation (R 1Z) rates on segmental order parameters (S CD) for lipid membranes is indicative of emergent viscoelastic properties. Addition of cholesterol shows stiffening of the bilayer relative to the pure lipids and this effect is diminished for lanosterol. Opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale can potentially affect lipid raft formation in cellular membranes.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA. .,Department of Physics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
14
|
Lipid bilayer position and orientation of novel carprofens, modulators of γ-secretase in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2224-2233. [PMID: 30409518 DOI: 10.1016/j.bbamem.2018.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022]
Abstract
γ-Secretase is an integral membrane protein complex and is involved in the cleavage of the amyloid precursor protein APP to produce amyloid-β peptides. Amyloid-β peptides are considered causative agents for Alzheimer's disease and drugs targeted at γ-secretase are investigated as therapeutic treatments. We synthesized new carprofen derivatives, which showed γ-secretase modulating activity and determined their precise position, orientation, and dynamics in lipid membranes by combining neutron diffraction, solid-state NMR spectroscopy, and molecular dynamics simulations. Our data indicate that the carprofen derivatives are inserted into the membrane interface, where the exact position and orientation depends on the lipid phase. This knowledge will help to understand the docking of carprofen derivatives to γ-secretase and in the design of new potent drugs. The approach presented here promises to serve as a general guideline how drug/target interactions in membranes can be analyzed in a comprehensive manner.
Collapse
|
15
|
Ghosh C, Harmouche N, Bechinger B, Haldar J. Aryl-Alkyl-Lysines Interact with Anionic Lipid Components of Bacterial Cell Envelope Eliciting Anti-Inflammatory and Antibiofilm Properties. ACS OMEGA 2018; 3:9182-9190. [PMID: 31459052 PMCID: PMC6645134 DOI: 10.1021/acsomega.8b01052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/30/2018] [Indexed: 05/05/2023]
Abstract
The emergence of bacterial resistance and hesitance in approving new drugs has bolstered research on membrane-active agents such as antimicrobial peptides and their synthetic derivatives as therapeutic alternatives against bacterial infections. Herein, we document the action of aryl-alkyl-lysines on liposomes mimicking bacterial membranes using solid-state nuclear magnetic resonance spectroscopy. A significant perturbation of the lipid thickness and order parameter of the lipid membrane was observed upon treatment with this class of compounds. Encouraged by these results, the ability of the most active compound (NCK-10) to interact with aggregates of lipopolysaccharides (LPSs) was studied. In vitro experiments showed that NCK-10 was able to prevent the LPS-induced stimulation of proinflammatory cytokines such as tumor necrosis factor-α and interleukin-6. The compound could also disrupt the biofilms of Pseudomonas aeruginosa in vitro and bring down the bacterial burden by more than 99% in a mice model of burn infections caused by the biofilms of P. aeruginosa.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Antimicrobial Research
Laboratory, New Chemistry Unit, Jawaharlal
Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Nicole Harmouche
- Université
de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67008 Strasbourg, France
| | - Burkhard Bechinger
- Université
de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67008 Strasbourg, France
| | - Jayanta Haldar
- Antimicrobial Research
Laboratory, New Chemistry Unit, Jawaharlal
Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
- E-mail: (J.H.)
| |
Collapse
|
16
|
Fernandes E, Soares TB, Gonçalves H, Lúcio M. Spectroscopic Studies as a Toolbox for Biophysical and Chemical Characterization of Lipid-Based Nanotherapeutics. Front Chem 2018; 6:323. [PMID: 30109226 PMCID: PMC6080416 DOI: 10.3389/fchem.2018.00323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/11/2018] [Indexed: 01/22/2023] Open
Abstract
The goal of this study is to provide tools to minimize trial-and-error in the development of novel lipid-based nanotherapeutics, in favor of a rational design process. For this purpose, we present case-study examples of biophysical assays that help addressing issues of lipid-based nanotherapeutics' profiling and assist in the design of lipid nanocarriers for therapeutic usage. The assays presented are rooted in spectroscopic methods (steady-state and time-resolved fluorescence; UV-Vis derivative spectroscopy; fluorescence anisotropy and fluorescence lifetime image microscopy) and allow accessing physical-chemical interactions between drugs and lipid nanocarriers, as well as studying interactions between lipid-based nanotherapeutics and membranes and/or proteins, as this is a key factor in predicting their therapeutic and off target effects. Derivative spectroscopy revealed Naproxen's high distribution (LogD ≈ 3) in different lipid-based nanocarriers (micelles and unilamellar or multilamellar vesicles) confirming the adequacy of such systems for encapsulating this anti-inflammatory drug. Fluorescence quenching studies revealed that the anti-inflammatory drugs Acemetacin and Indomethacin can reach an inner location at the lipid nanocarrier while being anchored with its carboxylic moiety at the polar headgroup. The least observed quenching effect suggested that Tolmetin is probably located at the polar headgroup region of the lipid nanocarriers and this superficial location may translate in a fast drug release from the nanocarriers. Fluorescent anisotropy measurements indicated that the drugs deeply buried within the lipid nanocarrier where the ones that had a greater fluidizing effect which can also translate in a faster drug release. The drug binding strength to serum albumin was also compared for a free drug (Clonixin) or for the same drug after encapsulation in a lipid nanocarrier DSPC:DODAP (2:1). Under both conditions there is a strong binding to serum albumin, at one binding site, suggesting the need to produce a stealth nanosystem. Finally the cellular uptake of lipid nanocarriers loaded with Daunorubicin was investigated in cancer cells using fluorescence lifetime imaging microscopy. From the images obtained it was possible to conclude that even at short incubation times (15 min) there was a distribution of the drug in the cytoplasm, whereas for longer incubation periods (4 h) the drug has reached the nucleus.
Collapse
Affiliation(s)
- Eduarda Fernandes
- Department of Physics, Centre of Physics of University of Minho and Porto, University of Minho, Braga, Portugal
| | - Telma B Soares
- Department of Physics, Centre of Physics of University of Minho and Porto, University of Minho, Braga, Portugal
| | - Hugo Gonçalves
- Department of Physics, Centre of Physics of University of Minho and Porto, University of Minho, Braga, Portugal
| | - Marlene Lúcio
- Department of Physics, Centre of Physics of University of Minho and Porto, University of Minho, Braga, Portugal
| |
Collapse
|
17
|
New insights into the influence of monofluorination on dimyristoylphosphatidylcholine membrane properties: A solid-state NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:654-663. [DOI: 10.1016/j.bbamem.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
|
18
|
Towards the use of monofluorinated dimyristoylphosphatidylcholines as 19F NMR reporters in bacterial model membranes. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2017.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Lethu S, Ano H, Murata M, Matsuoka S. Enantioselective Deuteration of β-Substituted α,β-Unsaturated Esters by Rhodium-1,2-Bis(2,5-diphenylphospholano)ethane. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sébastien Lethu
- JST ERATO, Lipid Active Structure Project and Project Research Center for Fundamental Sciences; Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka 560-0043 Osaka Japan
| | - Hikaru Ano
- JST ERATO, Lipid Active Structure Project and Project Research Center for Fundamental Sciences; Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka 560-0043 Osaka Japan
| | - Michio Murata
- JST ERATO, Lipid Active Structure Project and Project Research Center for Fundamental Sciences; Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka 560-0043 Osaka Japan
| | | |
Collapse
|
20
|
Ermakova E, Zuev Y. Effect of ergosterol on the fungal membrane properties. All-atom and coarse-grained molecular dynamics study. Chem Phys Lipids 2017; 209:45-53. [PMID: 29122611 DOI: 10.1016/j.chemphyslip.2017.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/27/2017] [Accepted: 11/04/2017] [Indexed: 01/04/2023]
Abstract
Cell membranes are complex multicomponent systems consisting of thousands of different lipids with numerous embedded membrane proteins and many types of sterols. We used all-atom and coarse-grained molecular dynamics simulations to study the structural and dynamical properties of phospholipid bilayers containing four types of phospholipids and different amount of ergosterol, main sterol component in the fungal membranes. To characterize the influence of ergosterol on the membrane properties we analyzed the surface area per lipid, bilayer thickness, area compressibility modulus, mass density profiles, deuterium order parameters, and lateral diffusion coefficients. The presence of ergosterol induces the ordering of lipids leading to their denser packing, to reducing the lateral diffusion of lipids and lipid surface area, to increasing the thickness of bilayer and compressibility modulus. In addition, we evaluated each calculated property between the two simulation methods.
Collapse
Affiliation(s)
- Elena Ermakova
- Kazan Institute of Biochemistry and Biophysics RAS, Kazan, 420111, Russian Federation.
| | - Yuriy Zuev
- Kazan Institute of Biochemistry and Biophysics RAS, Kazan, 420111, Russian Federation; Kazan State Power Engineering University, Kazan, 420066, Russian Federation
| |
Collapse
|
21
|
Piggot TJ, Allison JR, Sessions RB, Essex JW. On the Calculation of Acyl Chain Order Parameters from Lipid Simulations. J Chem Theory Comput 2017; 13:5683-5696. [PMID: 28876925 DOI: 10.1021/acs.jctc.7b00643] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For molecular dynamics simulations of biological membrane systems to live up to the potential of providing accurate atomic level detail into membrane properties and functions, it is essential that the force fields used to model such systems are as accurate as possible. One membrane property that is often used to assess force field accuracy is the carbon-hydrogen (or carbon-deuterium) order parameters of the lipid tails, which can be accurately measured using experimental NMR techniques. There are a variety of analysis tools available to calculate these order parameters from simulations and it is essential that these computational tools work correctly to ensure the accurate assessment of the simulation force fields. In this work we compare many of these computational tools for calculating the order parameters of POPC membranes. While tools that work on all-atom systems and tools that work on saturated lipid tails in general work extremely well, we demonstrate that the majority of the tested tools that calculate the order parameters for unsaturated united-atom lipid tails do so incorrectly. We identify tools that do perform accurate calculations and include one such program with this work, enabling rapid and accurate calculation of united-atom lipid order parameters. Furthermore, we discuss cases in which it is nontrivial to appropriately predict the unsaturated carbon order parameters in united-atom systems. Finally, we examine order parameter splitting for carbon 2 in sn-2 lipid chains, demonstrating substantial deviations from experimental values in several all-atom and united-atom lipid force fields.
Collapse
Affiliation(s)
- Thomas J Piggot
- Chemical, Biological and Radiological Sciences, Defence Science and Technology Laboratory , Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K.,Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, U.K
| | - Jane R Allison
- Centre for Theoretical Chemistry and Physics, Institute of Natural and Mathematical Sciences, Massey University , Auckland 0632, New Zealand
| | - Richard B Sessions
- School of Biochemistry, University of Bristol , University Walk, Bristol BS8 1TD, U.K
| | - Jonathan W Essex
- Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|
22
|
Molugu TR, Lee S, Brown MF. Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes. Chem Rev 2017; 117:12087-12132. [PMID: 28906107 DOI: 10.1021/acs.chemrev.6b00619] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Concepts of solid-state NMR spectroscopy and applications to fluid membranes are reviewed in this paper. Membrane lipids with 2H-labeled acyl chains or polar head groups are studied using 2H NMR to yield knowledge of their atomistic structures in relation to equilibrium properties. This review demonstrates the principles and applications of solid-state NMR by unifying dipolar and quadrupolar interactions and highlights the unique features offered by solid-state 2H NMR with experimental illustrations. For randomly oriented multilamellar lipids or aligned membranes, solid-state 2H NMR enables direct measurement of residual quadrupolar couplings (RQCs) due to individual C-2H-labeled segments. The distribution of RQC values gives nearly complete profiles of the segmental order parameters SCD(i) as a function of acyl segment position (i). Alternatively, one can measure residual dipolar couplings (RDCs) for natural abundance lipid samples to obtain segmental SCH order parameters. A theoretical mean-torque model provides acyl-packing profiles representing the cumulative chain extension along the normal to the aqueous interface. Equilibrium structural properties of fluid bilayers and various thermodynamic quantities can then be calculated, which describe the interactions with cholesterol, detergents, peptides, and integral membrane proteins and formation of lipid rafts. One can also obtain direct information for membrane-bound peptides or proteins by measuring RDCs using magic-angle spinning (MAS) in combination with dipolar recoupling methods. Solid-state NMR methods have been extensively applied to characterize model membranes and membrane-bound peptides and proteins, giving unique information on their conformations, orientations, and interactions in the natural liquid-crystalline state.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Soohyun Lee
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Michael F Brown
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
23
|
Wolf J, Aisenbrey C, Harmouche N, Raya J, Bertani P, Voievoda N, Süss R, Bechinger B. pH-Dependent Membrane Interactions of the Histidine-Rich Cell-Penetrating Peptide LAH4-L1. Biophys J 2017; 113:1290-1300. [PMID: 28734478 DOI: 10.1016/j.bpj.2017.06.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/01/2017] [Accepted: 06/23/2017] [Indexed: 01/17/2023] Open
Abstract
The histidine-rich designer peptide LAH4-L1 exhibits antimicrobial and potent cell-penetrating activities for a wide variety of cargo including nucleic acids, polypeptides, adeno-associated viruses, and nanodots. The non-covalent complexes formed between the peptide and cargo enter the cell via an endosomal pathway where the pH changes from neutral to acidic. Here, we investigated the membrane interactions of the peptide with phospholipid bilayers and its membrane topology using static solid-state NMR spectroscopy. Oriented 15N solid-state NMR indicates that in membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) 3:1 mol/mole and at neutral pH, the peptide adopts transmembrane topologies. Furthermore, 31P and 2H solid-state NMR spectra show that liquid crystalline 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and POPC/POPS 3:1 liposomes retain a bilayer macroscopic phase even at the highest peptide concentrations investigated, with an oblate orientational distribution of the phospholipids at a peptide/lipid ratio of 1:5. At pH 5, as it occurs in the endosome, the alignment of LAH4-L1 at a peptide/lipid ratio of 1:25 is predominantly parallel to POPC/POPS 3:1 bilayers (prolate deformation) when at the same time it induces a considerable decrease of the deuterium order parameter of POPC/2H31-POPS 3:1. In addition, when studied in mechanically supported lipid membranes, a pronounced disordering of the phospholipid alignment is observed. In the presence of even higher peptide concentrations, lipid spectra are observed that suggest the formation of magnetically oriented or isotropic bicelles. This membrane-disruptive effect is enhanced for gel phase DMPC membranes. By protonation of the four histidines in acidic environments, the overall charge and hydrophobic moment of LAH4-L1 considerably change, and much of the peptide is released from the cargo. Thus, the amphipathic peptide sequences become available to disrupt the endosomal membrane and to assure highly efficient release from this organelle.
Collapse
Affiliation(s)
- Justine Wolf
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Nicole Harmouche
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | - Jesus Raya
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | - Philippe Bertani
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | - Natalia Voievoda
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | - Regine Süss
- Albert-Ludwigs-Universität Freiburg, Pharmazeutische Technologie und Biopharmazie, Freiburg, Germany
| | - Burkhard Bechinger
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France.
| |
Collapse
|
24
|
Nickels JD, Chatterjee S, Stanley CB, Qian S, Cheng X, Myles DAA, Standaert RF, Elkins JG, Katsaras J. The in vivo structure of biological membranes and evidence for lipid domains. PLoS Biol 2017; 15:e2002214. [PMID: 28542493 PMCID: PMC5441578 DOI: 10.1371/journal.pbio.2002214] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Abstract
Examining the fundamental structure and processes of living cells at the nanoscale poses a unique analytical challenge, as cells are dynamic, chemically diverse, and fragile. A case in point is the cell membrane, which is too small to be seen directly with optical microscopy and provides little observational contrast for other methods. As a consequence, nanoscale characterization of the membrane has been performed ex vivo or in the presence of exogenous labels used to enhance contrast and impart specificity. Here, we introduce an isotopic labeling strategy in the gram-positive bacterium Bacillus subtilis to investigate the nanoscale structure and organization of its plasma membrane in vivo. Through genetic and chemical manipulation of the organism, we labeled the cell and its membrane independently with specific amounts of hydrogen (H) and deuterium (D). These isotopes have different neutron scattering properties without altering the chemical composition of the cells. From neutron scattering spectra, we confirmed that the B. subtilis cell membrane is lamellar and determined that its average hydrophobic thickness is 24.3 ± 0.9 Ångstroms (Å). Furthermore, by creating neutron contrast within the plane of the membrane using a mixture of H- and D-fatty acids, we detected lateral features smaller than 40 nm that are consistent with the notion of lipid rafts. These experiments-performed under biologically relevant conditions-answer long-standing questions in membrane biology and illustrate a fundamentally new approach for systematic in vivo investigations of cell membrane structure.
Collapse
Affiliation(s)
- Jonathan D. Nickels
- Shull Wollan Center—A Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sneha Chatterjee
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Christopher B. Stanley
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Shuo Qian
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Xiaolin Cheng
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Dean A. A. Myles
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Robert F. Standaert
- Shull Wollan Center—A Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail: (RFS); (JGE); (JK)
| | - James G. Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail: (RFS); (JGE); (JK)
| | - John Katsaras
- Shull Wollan Center—A Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail: (RFS); (JGE); (JK)
| |
Collapse
|
25
|
Affiliation(s)
- Michael F. Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
- Department of Physics, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
26
|
Jagalski V, Barker R, Topgaard D, Günther-Pomorski T, Hamberger B, Cárdenas M. Biophysical study of resin acid effects on phospholipid membrane structure and properties. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:2827-2838. [PMID: 27544924 DOI: 10.1016/j.bbamem.2016.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
Hydrophobic resin acids (RAs) are synthesized by conifer trees as part of their defense mechanisms. One of the functions of RAs in plant defense is suggested to be the perturbation of the cellular membrane. However, there is a vast diversity of chemical structures within this class of molecules, and there are no clear correlations to the molecular mechanisms behind the RA's toxicity. In this study we unravel the molecular interactions of the three closely related RAs dehydroabietic acid, neoabietic acid, and the synthetic analogue dichlorodehydroabietic acid with dipalmitoylphosphatidylcholine (DPPC) model membranes and the polar lipid extract of soybeans. The complementarity of the biophysical techniques used (NMR, DLS, NR, DSC, Cryo-TEM) allowed correlating changes at the vesicle level with changes at the molecular level and the co-localization of RAs within DPPC monolayer. Effects on DPPC membranes are correlated with the physical chemical properties of the RA and their toxicity.
Collapse
Affiliation(s)
- Vivien Jagalski
- Nano Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Robert Barker
- Institute Laue Langevin, 71 avenue de Matyrs, CS, 20156, 38042 Grenoble Cedex 9, France
| | - Daniel Topgaard
- Division of Physical Chemistry, Department of Chemistry, Lund University, Sweden
| | - Thomas Günther-Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Björn Hamberger
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marité Cárdenas
- Nano Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark; Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Malmö University, Malmö, Sweden.
| |
Collapse
|
27
|
Abstract
Although computer simulation of biological molecules has seen widespread growth and is widely accepted as an important biochemical tool, it is hampered by lim ited computing resources. Biomolecular systems, by necessity, contain a large number of interaction sites. In many cases, these sites interact over quite large dis tances. Further, the time scales of biological interest are long, which requires that simulations of dynamical properties at the atomic level must be lengthy to ade quately probe these motions. We address these issues through discussions of atomic-level molecular dynam ics simulations of biological lipid bilayer membranes, which are key constructs in biochemistry. These simu lations reproduce many experimental observables and provide a degree of resolution currently unavailable experimentally. The lengths of these simulations, the longest of which was 2 nanoseconds, were sufficient to effectively sample many of the motions governing the behavior of biomembranes. Examples are given showing the importance of long-range interactions. The number of interaction sites required by these sim ulations is discussed, particularly the need for explicit representation of solvent molecules.
Collapse
Affiliation(s)
- Terry R. Stouch
- BRISTOL-MYERS SQUIBB PHARMACEUTICAL RESEARCH INSTITUTE P.O. BOX 4000 PRINCETON, NJ 08543-4000
| | - Howard E. Alper
- BRISTOL-MYERS SQUIBB PHARMACEUTICAL RESEARCH INSTITUTE P.O. BOX 4000 PRINCETON, NJ 08543-4000
| | - Donna Bassolino-Klimas
- BRISTOL-MYERS SQUIBB PHARMACEUTICAL RESEARCH INSTITUTE P.O. BOX 4000 PRINCETON, NJ 08543-4000
| |
Collapse
|
28
|
Ahmadi S, Heidelberg T. Modelling and molecular dynamics simulation studies on a hexagonal glycolipid assembly. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0958-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Ng CA, Gravel AE, Perry MD, Arnold AA, Marcotte I, Vandenberg JI. Tyrosine Residues from the S4-S5 Linker of Kv11.1 Channels Are Critical for Slow Deactivation. J Biol Chem 2016; 291:17293-302. [PMID: 27317659 DOI: 10.1074/jbc.m116.729392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 01/24/2023] Open
Abstract
Slow deactivation of Kv11.1 channels is critical for its function in the heart. The S4-S5 linker, which joins the voltage sensor and pore domains, plays a critical role in this slow deactivation gating. Here, we use NMR spectroscopy to identify the membrane-bound surface of the S4S5 linker, and we show that two highly conserved tyrosine residues within the KCNH subfamily of channels are membrane-associated. Site-directed mutagenesis and electrophysiological analysis indicates that Tyr-542 interacts with both the pore domain and voltage sensor residues to stabilize activated conformations of the channel, whereas Tyr-545 contributes to the slow kinetics of deactivation by primarily stabilizing the transition state between the activated and closed states. Thus, the two tyrosine residues in the Kv11.1 S4S5 linker play critical but distinct roles in the slow deactivation phenotype, which is a hallmark of Kv11.1 channels.
Collapse
Affiliation(s)
- Chai-Ann Ng
- From the Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst and the St. Vincent's Clinical School, University of New South Wales, Victoria Street, Darlinghurst, New South Wales 2010, Australia and
| | - Andrée E Gravel
- the Department of Chemistry, Université du Québec à Montréal, Montreal H3C 3P8, Québec, Canada
| | - Matthew D Perry
- From the Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst and the St. Vincent's Clinical School, University of New South Wales, Victoria Street, Darlinghurst, New South Wales 2010, Australia and
| | - Alexandre A Arnold
- the Department of Chemistry, Université du Québec à Montréal, Montreal H3C 3P8, Québec, Canada
| | - Isabelle Marcotte
- the Department of Chemistry, Université du Québec à Montréal, Montreal H3C 3P8, Québec, Canada
| | - Jamie I Vandenberg
- From the Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst and the St. Vincent's Clinical School, University of New South Wales, Victoria Street, Darlinghurst, New South Wales 2010, Australia and
| |
Collapse
|
30
|
Shaghaghi M, Chen MT, Hsueh YW, Zuckermann MJ, Thewalt JL. Effect of Sterol Structure on the Physical Properties of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine Membranes Determined Using (2)H Nuclear Magnetic Resonance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7654-7663. [PMID: 27341069 DOI: 10.1021/acs.langmuir.6b01401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effect of a series of phytosterols on lipid chain ordering in 1-palmitoyl((2)H31)-2-oleoyl-sn-glycero-3-phosphocholine (POPC-d31) multibilayer vesicles was examined by (2)H NMR spectroscopy at 25 °C. These results, along with existing data for other sterols, indicate that the ordering power of sterols in POPC-d31 depends on subtle aspects of sterol structure. Cholesterol, 7-dehydrocholesterol (7-DHC), campesterol, β-sitosterol, ergosterol, brassicasterol, and stigmasterol all increase the lipid chain order as sterol concentration is increased. However, saturation of the ordering occurs at different sterol concentrations for ergosterol (as previously reported), brassicasterol, β-sitosterol, and stigmasterol. Here our interest lies in finding which part of the sterol structure is responsible for the observed saturation of the palmitoyl chain order as a function of sterol concentration. In particular, we propose that the saturation of the ordering of POPC-d31/brassicasterol and POPC-d31/stigmasterol membranes at quite low sterol concentrations is due to the presence of a double bond at C22. We also discuss how the structural differences between the sterols affect their ability to intercalate between the POPC acyl chains. Furthermore, the effective solubility of sterols in POPC is discussed in relation to the dependence of maximum POPC-d31 chain order vs sterol concentration.
Collapse
Affiliation(s)
| | - Mei-Ting Chen
- Department of Physics, National Central University , Jung-Li 32001, Taiwan
| | - Ya-Wei Hsueh
- Department of Physics, National Central University , Jung-Li 32001, Taiwan
| | | | | |
Collapse
|
31
|
Paz Ramos A, Lagüe P, Lamoureux G, Lafleur M. Effect of Saturated Very Long-Chain Fatty Acids on the Organization of Lipid Membranes: A Study Combining 2H NMR Spectroscopy and Molecular Dynamics Simulations. J Phys Chem B 2016; 120:6951-60. [DOI: 10.1021/acs.jpcb.6b04958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Adrian Paz Ramos
- Department
of Chemistry, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Patrick Lagüe
- Institute
for Integrative Systems Biology, Department of Biochemistry, Microbiology
and Bio-Informatics, Pavillon Alexandre-Vachon, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- The Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Guillaume Lamoureux
- Department
of Chemistry and Biochemistry and Centre for Research in Molecular
Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
- The Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Michel Lafleur
- Department
of Chemistry, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
32
|
Molugu TR, Brown MF. Cholesterol-induced suppression of membrane elastic fluctuations at the atomistic level. Chem Phys Lipids 2016; 199:39-51. [PMID: 27154600 DOI: 10.1016/j.chemphyslip.2016.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
Applications of solid-state NMR spectroscopy for investigating the influences of lipid-cholesterol interactions on membrane fluctuations are reviewed in this paper. Emphasis is placed on understanding the energy landscapes and fluctuations at an emergent atomistic level. Solid-state (2)H NMR spectroscopy directly measures residual quadrupolar couplings (RQCs) due to individual C-(2)H labeled segments of the lipid molecules. Moreover, residual dipolar couplings (RDCs) of (13)C-(1)H bonds are obtained in separated local-field NMR spectroscopy. The distributions of RQC or RDC values give nearly complete profiles of the order parameters as a function of acyl segment position. Measured equilibrium properties of glycerophospholipids and sphingolipids including their binary and tertiary mixtures with cholesterol show unequal mixing associated with liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids and may drive the formation of lipid rafts. In addition relaxation time measurements enable one to study the molecular dynamics over a wide time-scale range. For (2)H NMR the experimental spin-lattice (R1Z) relaxation rates follow a theoretical square-law dependence on segmental order parameters (SCD) due to collective slow dynamics over mesoscopic length scales. The functional dependence for the liquid-crystalline lipid membranes is indicative of viscoelastic properties as they emerge from atomistic-level interactions. A striking decrease in square-law slope upon addition of cholesterol denotes stiffening relative to the pure lipid bilayers that is diminished in the case of lanosterol. Measured equilibrium properties and relaxation rates infer opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale that potentially affects lipid raft formation in cellular membranes.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
33
|
Han J, Pluhackova K, Bruns D, Böckmann RA. Synaptobrevin transmembrane domain determines the structure and dynamics of the SNARE motif and the linker region. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:855-65. [DOI: 10.1016/j.bbamem.2016.01.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/06/2016] [Accepted: 01/27/2016] [Indexed: 12/29/2022]
|
34
|
Pan L, Segrest JP. Computational studies of plasma lipoprotein lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2401-2420. [PMID: 26969087 DOI: 10.1016/j.bbamem.2016.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/27/2022]
Abstract
Plasma lipoproteins are macromolecular assemblies of proteins and lipids found in the blood. The lipid components of lipoproteins are amphipathic lipids such as phospholipids (PLs), and unesterified cholesterols (UCs) and hydrophobic lipids such as cholesteryl esters (CEs) and triglycerides (TGs). Since lipoproteins are soft matter supramolecular assemblies easily deformable by thermal fluctuations and they also exist in varying densities and protein/lipid components, a detailed understanding of their structure/function is experimentally difficult. Molecular dynamics (MD) simulation has emerged as a particularly promising way to explore the structure and dynamics of lipoproteins. The purpose of this review is to survey the current status of computational studies of the lipid components of the lipoproteins. Computational studies aim to explore three levels of complexity for the 3-dimensional structural dynamics of lipoproteins at various metabolic stages: (i) lipoprotein particles consist of protein with minimal lipid; (ii) lipoprotein particles consist of PL-rich discoidal bilayer-like lipid particles; (iii) mature circulating lipoprotein particles consist of CE-rich or TG-rich spheroidal lipid-droplet-like particles. Due to energy barriers involved in conversion between these species, other biomolecules also participate in lipoprotein biological assembly. For example: (i) lipid-poor apolipoprotein A-I (apoA-I) interacts with ATP-binding cassette transporter A1 (ABCA1) to produce nascent discoidal high density lipoprotein (dHDL) particles; (ii) lecithin-cholesterol acyltransferase (LCAT) mediates the conversion of UC to CE in dHDL, driving spheroidal HDL (sHDL) formation; (iii) transfer proteins, cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP), transfer both CE and TG and PL, respectively, between lipoprotein particles. Computational studies have the potential to explore different lipoprotein particles at each metabolic stage in atomistic detail. This review discusses the current status of computational methods including all-atom MD (AAMD), coarse-grain MD (CGMD), and MD-simulated annealing (MDSA) and their applications in lipoprotein structural dynamics and biological assemblies. Results from MD simulations are discussed and compared across studies in order to identify key findings, controversies, issues and future directions. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Lurong Pan
- Division of Gerontology, Geriatrics, & Palliative Care, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jere P Segrest
- Division of Gerontology, Geriatrics, & Palliative Care, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
35
|
Russ KA, Elvati P, Parsonage TL, Dews A, Jarvis JA, Ray M, Schneider B, Smith PJS, Williamson PTF, Violi A, Philbert MA. C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages. NANOSCALE 2016; 8:4134-44. [PMID: 26866469 PMCID: PMC4761875 DOI: 10.1039/c5nr07003a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. The evidence suggests marginal uptake of C60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Computational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal deformation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. The surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis.
Collapse
Affiliation(s)
- K A Russ
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - P Elvati
- Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - T L Parsonage
- Centre for Biological Science, University of Southampton, Highfield Campus, SO17 1BEJ, Northern Ireland, UK and Institute for Life Sciences, University of Southampton, Highfield Campus, SO17 1BJ, Northern Ireland, UK
| | - A Dews
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - J A Jarvis
- Centre for Biological Science, University of Southampton, Highfield Campus, SO17 1BEJ, Northern Ireland, UK and Institute for Life Sciences, University of Southampton, Highfield Campus, SO17 1BJ, Northern Ireland, UK
| | - M Ray
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - B Schneider
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - P J S Smith
- Centre for Biological Science, University of Southampton, Highfield Campus, SO17 1BEJ, Northern Ireland, UK and Institute for Life Sciences, University of Southampton, Highfield Campus, SO17 1BJ, Northern Ireland, UK
| | - P T F Williamson
- Centre for Biological Science, University of Southampton, Highfield Campus, SO17 1BEJ, Northern Ireland, UK and Institute for Life Sciences, University of Southampton, Highfield Campus, SO17 1BJ, Northern Ireland, UK
| | - A Violi
- Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA and Chemical Engineering, Biomedical Engineering, Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - M A Philbert
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Baczynski K, Markiewicz M, Pasenkiewicz-Gierula M. A computer model of a polyunsaturated monogalactolipid bilayer. Biochimie 2015; 118:129-40. [PMID: 26348551 DOI: 10.1016/j.biochi.2015.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022]
Abstract
1,2-di-O-acyl-3-O-β-D-galactopyranosyl-sn-glycerol (MGDG) is the main lipid component of thylakoid membranes of higher plants and algae. This monogalactolipid is thought of as a non-bilayer lipid but actually it can form both lamellar and nonlamellar phases. In this study, molecular dynamics (MD) simulations of the fully hydrated di-18:3 MGDG bilayer in the lamellar phase were carried out at 310 and 295 K for 200 and 450 ns, respectively, using the GROMACS 4 software package and OPLS-AA force field. At both temperatures, the lamellar phase of the systems was stable. The pure di-18:3 MGDG bilayer is the first step towards creating a computer model of the lipid matrix of the thylakoid membrane and the main aim of this study was to validate the computer model of di-18:3 MGDG in the bilayer and also to assess the properties of the bilayer. However, only a few of the predicted properties could be compared with those derived experimentally and in other MD simulations because of insufficient amount of such data. Thus, direct validation of the MGDG bilayer proved difficult. Therefore, in the validation process also an indirect approach was used, in which a computer model of the 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) bilayer simulated at the same temperatures using the same force field as the MGDG bilayer was assessed. Successful validation of the DOPC bilayer parameterized in the OPLS-AA force field and similar properties of the MGDG molecules in the pure 18:3 MGDG and in binary 18:3 MGDG-PC bilayers indicate that the computer model of the MDGD molecule is faithful and the MGDG bilayer is representative on the time scales covered in these MD simulations.
Collapse
Affiliation(s)
- Krzysztof Baczynski
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Markiewicz
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Pasenkiewicz-Gierula
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
37
|
Fillion M, Auger M. Oriented samples: a tool for determining the membrane topology and the mechanism of action of cationic antimicrobial peptides by solid-state NMR. Biophys Rev 2015; 7:311-320. [PMID: 28510228 PMCID: PMC5425733 DOI: 10.1007/s12551-015-0167-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/05/2015] [Indexed: 01/12/2023] Open
Abstract
Overuse and misuse of antibiotics have led bacteria to acquire several mechanisms of resistance. In response to this, researchers have identified natural antimicrobial peptides as promising candidates to fight against multiresistant bacteria. However, their mode of action is still unclear, and a better understanding of the mode of action of these peptides is of primary importance to develop new peptides displaying high antibacterial activity and low hemolytic activity. One of the main features that defines the mechanism of action is the membrane topology of the peptide. Among the spectroscopic techniques, solid-state NMR is the technique of choice for determining the location of the peptide within the membrane. It can be achieved by performing experiments with oriented samples. In the literature, the two most common types of oriented samples are bicelles and phospholipids mechanically oriented between glass plates. The mode of perturbation of the membrane-active peptide can be studied by phosphorus-31 and deuterium NMR. On the other hand, several experiments such as nitrogen-15 and fluorine solid-state NMR, that require labeled peptides, can give valuable information on the membrane topology of the peptide. The combination of the latter techniques allows the determination of a precise topology, thus a better knowledge of the molecular determinants involved in the membrane interactions of antimicrobial peptides.
Collapse
Affiliation(s)
- Matthieu Fillion
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Michèle Auger
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
38
|
Horner IJ, Kraut ND, Hurst JJ, Rook AM, Collado CM, Atilla-Gokcumen GE, Maziarz EP, Liu XM, Merchea MM, Bright FV. Effects of Polyhexamethylene Biguanide and Polyquaternium-1 on Phospholipid Bilayer Structure and Dynamics. J Phys Chem B 2015; 119:10531-42. [DOI: 10.1021/acs.jpcb.5b07162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ian J. Horner
- Department
of Chemistry, Natural Sciences Complex, SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Nadine D. Kraut
- PPG Industries
Inc., 440 College Park Dr., Monroeville, Pennsylvania 15146, United States
| | - Jerod J. Hurst
- Department
of Chemistry, Natural Sciences Complex, SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Alyssa M. Rook
- Department
of Chemistry, Natural Sciences Complex, SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Crystal M. Collado
- Department
of Chemistry, Natural Sciences Complex, SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - G. Ekin Atilla-Gokcumen
- Department
of Chemistry, Natural Sciences Complex, SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - E. Peter Maziarz
- Pfizer Consumer
Healthcare, 1211 Sherwood Ave., Richmond, Virginia 23220, United States
| | - X. Michael Liu
- Pfizer Consumer
Healthcare, 1211 Sherwood Ave., Richmond, Virginia 23220, United States
| | | | - Frank V. Bright
- Department
of Chemistry, Natural Sciences Complex, SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
39
|
Leftin A, Molugu TR, Job C, Beyer K, Brown MF. Area per lipid and cholesterol interactions in membranes from separated local-field (13)C NMR spectroscopy. Biophys J 2015; 107:2274-86. [PMID: 25418296 DOI: 10.1016/j.bpj.2014.07.044] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022] Open
Abstract
Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state (13)C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved (13)C-(1)H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the (13)C-(1)H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state (13)C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive.
Collapse
Affiliation(s)
- Avigdor Leftin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Constantin Job
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Klaus Beyer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
40
|
Robert É, Lefèvre T, Fillion M, Martial B, Dionne J, Auger M. Mimicking and Understanding the Agglutination Effect of the Antimicrobial Peptide Thanatin Using Model Phospholipid Vesicles. Biochemistry 2015; 54:3932-41. [PMID: 26057537 DOI: 10.1021/acs.biochem.5b00442] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thanatin is a cationic 21-residue antimicrobial and antifongical peptide found in the spined soldier bug Podisus maculiventris. It is believed that it does not permeabilize membranes but rather induces the agglutination of bacteria and inhibits cellular respiration. To clarify its mode of action, lipid vesicle organization and aggregation propensity as well as peptide secondary structure have been studied using different membrane models. Dynamic light scattering and turbidimetry results show that specific mixtures of negatively charged and zwitterionic phospholipid vesicles are able to mimic the agglutination effect of thanatin observed on Gram-negative and Gram-positive bacterial cells, while monoconstituent ("conventional") models cannot reproduce this phenomenon. The model of eukaryotic cell reveals no particular interaction with thanatin, which is consistent with the literature. Infrared spectroscopy shows that under the conditions under which vesicle agglutination occurs, thanatin exhibits a particular spectral pattern in the amide I' region and in the region associated with Arg side chains. The data suggest that thanatin mainly retains its hairpin structure, Arg residues being involved in strong interactions with anionic groups of phospholipids. In the absence of vesicle agglutination, the peptide conformation and Arg side-chain environment are similar to those observed in solution. The data show that a negatively charged membrane is required for thanatin to be active, but this condition is insufficient. The activity of thanatin seems to be modulated by the charge surface density of membranes and thanatin concentration.
Collapse
Affiliation(s)
- Émile Robert
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Thierry Lefèvre
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Matthieu Fillion
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Benjamin Martial
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Justine Dionne
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Michèle Auger
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| |
Collapse
|
41
|
Ashworth Briggs EL, Gomes RGB, Elhussein M, Collier W, Findlow IS, Khalid S, McCormick CJ, Williamson PTF. Interaction between the NS4B amphipathic helix, AH2, and charged lipid headgroups alters membrane morphology and AH2 oligomeric state--Implications for the Hepatitis C virus life cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1671-7. [PMID: 25944559 PMCID: PMC4768108 DOI: 10.1016/j.bbamem.2015.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/27/2015] [Accepted: 04/25/2015] [Indexed: 01/27/2023]
Abstract
The non-structural protein 4B (NS4B) from Hepatitis C virus (HCV) plays a pivotal role in the remodelling of the host cell's membranes, required for the formation of the viral replication complex where genome synthesis occurs. NS4B is an integral membrane protein that possesses a number of domains vital for viral replication. Structural and biophysical studies have revealed that one of these, the second amphipathic N-terminal helix (AH2), plays a key role in these remodelling events. However, there is still limited understanding of the mechanism through which AH2 promotes these changes. Here we report on solid-state NMR and molecular dynamics studies that demonstrate that AH2 promotes the clustering of negatively charged lipids within the bilayer, a process that reduces the strain within the bilayer facilitating the remodelling of the lipid bilayer. Furthermore, the presence of negatively charged lipids within the bilayer appears to promote the disassociation of AH2 oligomers, highlighting a potential role for lipid recruitment in regulating NS protein interactions. Changes in membrane morphology studied by 2H and 31P Solid-state NMR. Bilayer charge influences the oligomeric state of the amphipathic helix AH2 from NS4B. Interaction of AH2 with charged lipid membranes reduces strain within bilayer. AH2 from NS4B is involved in membrane remodelling and membranous web formation. Lipid bilayer/NS4B interactions may regulate Hepatitis C virus lifecycle.
Collapse
Affiliation(s)
- Esther L Ashworth Briggs
- Centre for Biological Sciences/Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Rafael G B Gomes
- Centre for Biological Sciences/Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK; School of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Malaz Elhussein
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - William Collier
- Centre for Biological Sciences/Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - I Stuart Findlow
- Centre for Biological Sciences/Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Chris J McCormick
- School of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Philip T F Williamson
- Centre for Biological Sciences/Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| |
Collapse
|
42
|
Rhéault JF, Gagné È, Guertin M, Lamoureux G, Auger M, Lagüe P. Molecular Model of Hemoglobin N from Mycobacterium tuberculosis Bound to Lipid Bilayers: A Combined Spectroscopic and Computational Study. Biochemistry 2015; 54:2073-84. [DOI: 10.1021/bi5010624] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jean-François Rhéault
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Québec, Canada
| | | | - Michel Guertin
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Québec, Canada
| | - Guillaume Lamoureux
- Centre for Research
in Molecular Modeling (CERMM), Concordia University, Montréal, Québec, Canada
| | | | - Patrick Lagüe
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Québec, Canada
| |
Collapse
|
43
|
Bodor A, Kövér KE, Mäler L. Membrane interactions in small fast-tumbling bicelles as studied by 31P NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:760-6. [PMID: 25497765 DOI: 10.1016/j.bbamem.2014.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/11/2014] [Accepted: 12/01/2014] [Indexed: 01/02/2023]
Abstract
Small fast-tumbling bicelles are ideal for studies of membrane interactions at molecular level; they allow analysis of lipid properties using solution-state NMR. In the present study we used 31P NMR relaxation to obtain detailed information on lipid head-group dynamics. We explored the effect of two topologically different membrane-interacting peptides on bicelles containing either dimyristoylphosphocholine (DMPC), or a mixture of DMPC and dimyristoylphosphoglycerol (DMPG), and dihexanoylphosphocholine (DHPC). KALP21 is a model transmembrane peptide, designed to span a DMPC bilayer and dynorphin B is a membrane surface active neuropeptide. KALP21 causes significant increase in bicelle size, as evidenced by both dynamic light scattering and 31P T2 relaxation measurements. The effect of dynorphin B on bicelle size is more modest, although significant effects on T2 relaxation are observed at higher temperatures. A comparison of 31P T1 values for the lipids with and without the peptides showed that dynorphin B has a greater effect on lipid head-group dynamics than KALP21, especially at elevated temperatures. From the field-dependence of T1 relaxation data, a correlation time describing the overall lipid motion was derived. Results indicate that the positively charged dynorphin B decreases the mobility of the lipid molecules--in particular for the negatively charged DMPG--while KALP21 has a more modest influence. Our results demonstrate that while a transmembrane peptide has severe effects on overall bilayer properties, the surface bound peptide has a more dramatic effect in reducing lipid head-group mobility. These observations may be of general importance for understanding peptide-membrane interactions.
Collapse
Affiliation(s)
- Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, H-1117 Budapest, Hungary.
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm Sweden.
| |
Collapse
|
44
|
Fillion M, Valois-Paillard G, Lorin A, Noël M, Voyer N, Auger M. Membrane Interactions of Synthetic Peptides with Antimicrobial Potential: Effect of Electrostatic Interactions and Amphiphilicity. Probiotics Antimicrob Proteins 2014; 7:66-74. [DOI: 10.1007/s12602-014-9177-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Barclay TG, Constantopoulos K, Matisons J. Nanotubes Self-Assembled from Amphiphilic Molecules via Helical Intermediates. Chem Rev 2014; 114:10217-91. [DOI: 10.1021/cr400085m] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Thomas G. Barclay
- Flinders Centre for Nanoscale Science & Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, South Australia 5042, Australia
| | - Kristina Constantopoulos
- Flinders Centre for Nanoscale Science & Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, South Australia 5042, Australia
| | - Janis Matisons
- Flinders Centre for Nanoscale Science & Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, South Australia 5042, Australia
| |
Collapse
|
46
|
Bédard L, Lefèvre T, Morin-Michaud É, Auger M. Besides Fibrillization: Putative Role of the Peptide Fragment 71–82 on the Structural and Assembly Behavior of α-Synuclein. Biochemistry 2014; 53:6463-72. [DOI: 10.1021/bi5008707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laurie Bédard
- Department of Chemistry,
Regroupement Québécois de Recherche sur la Fonction,
la Structure et l’Ingénierie des Protéines (PROTEO),
Centre de Recherche sur les Matériaux Avancés (CERMA),
Centre Québécois sur les Matériaux Fonctionnels
(CQMF), Université Laval, Québec, Québec G1V 0A6, Canada
| | - Thierry Lefèvre
- Department of Chemistry,
Regroupement Québécois de Recherche sur la Fonction,
la Structure et l’Ingénierie des Protéines (PROTEO),
Centre de Recherche sur les Matériaux Avancés (CERMA),
Centre Québécois sur les Matériaux Fonctionnels
(CQMF), Université Laval, Québec, Québec G1V 0A6, Canada
| | - Émilie Morin-Michaud
- Department of Chemistry,
Regroupement Québécois de Recherche sur la Fonction,
la Structure et l’Ingénierie des Protéines (PROTEO),
Centre de Recherche sur les Matériaux Avancés (CERMA),
Centre Québécois sur les Matériaux Fonctionnels
(CQMF), Université Laval, Québec, Québec G1V 0A6, Canada
| | - Michèle Auger
- Department of Chemistry,
Regroupement Québécois de Recherche sur la Fonction,
la Structure et l’Ingénierie des Protéines (PROTEO),
Centre de Recherche sur les Matériaux Avancés (CERMA),
Centre Québécois sur les Matériaux Fonctionnels
(CQMF), Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
47
|
Affiliation(s)
- Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000-Rosario, Argentina;
| |
Collapse
|
48
|
Liu W, Zhang S, Meng F, Tang L. Molecular simulation of ibuprofen passing across POPC membrane. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1142/s0219633614500333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Permeability assessment is an important procedure in the drug development process, and drug partitioning in membrane bilayer is related to permeability. To investigate the pH dependence on drug partitioning, the process of different ionization state of ibuprofen passing across POPC bilayer was studied using molecular dynamics simulation. The results show that both atomic charge scheme and ionization state of the drug affect the value and shape of energy profile when passing across the POPC bilayer. The neutral ibuprofen (ibuprofen under acidic condition) has a much lower energy barrier as compared with the anionic ibuprofen (ibuprofen under basic condition). Meantime, hydrogen bond analysis also certifies that it is easy for neutral ibuprofen to pass from bulk water to bilayer center. Our calculation suggests that the ionization state of ibuprofen may be changed between neutral and anionic state when passing across membrane: it may be ionized outside the membrane and neutralized inside the membrane.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, P. R. China
| | - Shijun Zhang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, P. R. China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, P. R. China
| | - Lida Tang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, P. R. China
| |
Collapse
|
49
|
Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by (1)H-, (2)H-, (31)P-NMR and Electron Spin Resonance. JOURNAL OF DRUG DELIVERY 2014; 2014:575719. [PMID: 24883210 PMCID: PMC4027026 DOI: 10.1155/2014/575719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 11/21/2022]
Abstract
The properties of an amorphous solid dispersion of cyclosporine A (ASD) prepared with the copolymer alpha cyclodextrin (POLYA) and cyclosporine A (CYSP) were investigated by 1H-NMR in solution and its membrane interactions were studied by 1H-NMR in small unilamellar vesicles and by 31P 2H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine) in comparison with those of POLYA and CYSP alone. 1H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level (31P). Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD.
Collapse
|
50
|
Rabinovich AL, Lyubartsev AP. Bond orientation properties in lipid molecules of membranes: molecular dynamics simulations. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/1742-6596/510/1/012022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|