1
|
Zhou L, Zeng Y, Baker LA, Hou J. A proposed route to independent measurements of tight junction conductance at discrete cell junctions. Tissue Barriers 2015; 3:e1105907. [PMID: 26716077 DOI: 10.1080/21688370.2015.1105907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/15/2023] Open
Abstract
Direct recording of tight junction permeability is of pivotal importance to many biologic fields. Previous approaches bear an intrinsic disadvantage due to the difficulty of separating tight junction conductance from nearby membrane conductance. Here, we propose the design of Double whole-cell Voltage Clamp - Ion Conductance Microscopy (DVC-ICM) based on previously demonstrated potentiometric scanning of local conductive pathways. As proposed, DVC-ICM utilizes two coordinated whole-cell patch-clamps to neutralize the apical membrane current during potentiometric scanning, which in models described here will profoundly enhance the specificity of tight junction recording. Several potential pitfalls are considered, evaluated and addressed with alternative countermeasures.
Collapse
Affiliation(s)
- Lushan Zhou
- Department of Chemistry; Indiana University ; Bloomington, IN USA
| | - Yuhan Zeng
- Department of Chemistry; Indiana University ; Bloomington, IN USA
| | - Lane A Baker
- Department of Chemistry; Indiana University ; Bloomington, IN USA
| | - Jianghui Hou
- Department of Internal Medicine - Renal Division ; St. Louis, MO USA ; Center for Investigation of Membrane Excitability Diseases; Washington University Medical School ; St. Louis, MO USA
| |
Collapse
|
2
|
Abstract
The majority of higher plants use sucrose as their main mobile carbohydrate. Proton-driven sucrose transporters play a crucial role in cell-to-cell and long-distance distribution of sucrose throughout the plant. A very negative plant membrane potential and the ability of sucrose transporters to accumulate sucrose concentrations of more than 1 M indicate that plants evolved transporters with unique structural and functional features. The knowledge about the transport mechanism and structural/functional domains of these nano-machines is, however, still fragmentary. In this review, the current knowledge about the biophysical properties of plant sucrose transporters is summarized and discussed.
Collapse
Affiliation(s)
- Dietmar Geiger
- Julius-von-Sachs Institute, Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, D-97082 Würzburg, Germany.
| |
Collapse
|
3
|
Carpaneto A, Koepsell H, Bamberg E, Hedrich R, Geiger D. Sucrose- and H-dependent charge movements associated with the gating of sucrose transporter ZmSUT1. PLoS One 2010; 5:e12605. [PMID: 20838661 PMCID: PMC2935479 DOI: 10.1371/journal.pone.0012605] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 08/03/2010] [Indexed: 11/29/2022] Open
Abstract
Background In contrast to man the majority of higher plants use sucrose as mobile carbohydrate. Accordingly proton-driven sucrose transporters are crucial for cell-to-cell and long-distance distribution within the plant body. Generally very negative plant membrane potentials and the ability to accumulate sucrose quantities of more than 1 M document that plants must have evolved transporters with unique structural and functional features. Methodology/Principal Findings To unravel the functional properties of one specific high capacity plasma membrane sucrose transporter in detail, we expressed the sucrose/H+ co-transporter from maize ZmSUT1 in Xenopus oocytes. Application of sucrose in an acidic pH environment elicited inward proton currents. Interestingly the sucrose-dependent H+ transport was associated with a decrease in membrane capacitance (Cm). In addition to sucrose Cm was modulated by the membrane potential and external protons. In order to explore the molecular mechanism underlying these Cm changes, presteady-state currents (Ipre) of ZmSUT1 transport were analyzed. Decay of Ipre could be best fitted by double exponentials. When plotted against the voltage the charge Q, associated to Ipre, was dependent on sucrose and protons. The mathematical derivative of the charge Q versus voltage was well in line with the observed Cm changes. Based on these parameters a turnover rate of 500 molecules sucrose/s was calculated. In contrast to gating currents of voltage dependent-potassium channels the analysis of ZmSUT1-derived presteady-state currents in the absence of sucrose (I = Q/τ) was sufficient to predict ZmSUT1 transport-associated currents. Conclusions Taken together our results indicate that in the absence of sucrose, ‘trapped’ protons move back and forth between an outer and an inner site within the transmembrane domains of ZmSUT1. This movement of protons in the electric field of the membrane gives rise to the presteady-state currents and in turn to Cm changes. Upon application of external sucrose, protons can pass the membrane turning presteady-state into transport currents.
Collapse
Affiliation(s)
| | - Hermann Koepsell
- Institut für Anatomie und Zellbiologie, Universität Würzburg, Würzburg, Germany
| | - Ernst Bamberg
- Max-Plank-Institute for Biophysics, Frankfurt am Main, Germany
| | - Rainer Hedrich
- Julius-von-Sachs-Institut, Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, Würzburg, Germany
| | - Dietmar Geiger
- Julius-von-Sachs-Institut, Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
4
|
Petricevich VL. Scorpion venom and the inflammatory response. Mediators Inflamm 2010; 2010:903295. [PMID: 20300540 PMCID: PMC2838227 DOI: 10.1155/2010/903295] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 01/04/2010] [Indexed: 02/06/2023] Open
Abstract
Scorpion venoms consist of a complex of several toxins that exhibit a wide range of biological properties and actions, as well as chemical compositions, toxicity, and pharmacokinetic and pharmacodynamic characteristics. These venoms are associated with high morbility and mortality, especially among children. Victims of envenoming by a scorpion suffer a variety of pathologies, involving mainly both sympathetic and parasympathetic stimulation as well as central manifestations such as irritability, hyperthermia, vomiting, profuse salivation, tremor, and convulsion. The clinical signs and symptoms observed in humans and experimental animals are related with an excessive systemic host inflammatory response to stings and stings, respectively. Although the pathophysiology of envenomation is complex and not yet fully understood, venom and immune responses are known to trigger the release of inflammatory mediators that are largely mediated by cytokines. In models of severe systemic inflammation produced by injection of high doses of venom or venoms products, the increase in production of proinflammatory cytokines significantly contributes to immunological imbalance, multiple organ dysfunction and death. The cytokines initiate a cascade of events that lead to illness behaviors such as fever, anorexia, and also physiological events in the host such as activation of vasodilatation, hypotension, and increased of vessel permeability.
Collapse
Affiliation(s)
- Vera L Petricevich
- Laboratorio de Inflamación y Toxicología, Facultad de Medicina de la Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
5
|
Structure, function, and modification of the voltage sensor in voltage-gated ion channels. Cell Biochem Biophys 2008; 52:149-74. [PMID: 18989792 DOI: 10.1007/s12013-008-9032-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2008] [Indexed: 01/12/2023]
Abstract
Voltage-gated ion channels are crucial for both neuronal and cardiac excitability. Decades of research have begun to unravel the intriguing machinery behind voltage sensitivity. Although the details regarding the arrangement and movement in the voltage-sensor domain are still debated, consensus is slowly emerging. There are three competing conceptual models: the helical-screw, the transporter, and the paddle model. In this review we explore the structure of the activated voltage-sensor domain based on the recent X-ray structure of a chimera between Kv1.2 and Kv2.1. We also present a model for the closed state. From this we conclude that upon depolarization the voltage sensor S4 moves approximately 13 A outwards and rotates approximately 180 degrees, thus consistent with the helical-screw model. S4 also moves relative to S3b which is not consistent with the paddle model. One interesting feature of the voltage sensor is that it partially faces the lipid bilayer and therefore can interact both with the membrane itself and with physiological and pharmacological molecules reaching the channel from the membrane. This type of channel modulation is discussed together with other mechanisms for how voltage-sensitivity is modified. Small effects on voltage-sensitivity can have profound effects on excitability. Therefore, medical drugs designed to alter the voltage dependence offer an interesting way to regulate excitability.
Collapse
|
6
|
Large-scale movement within the voltage-sensor paddle of a potassium channel-support for a helical-screw motion. Neuron 2008; 59:770-7. [PMID: 18786360 DOI: 10.1016/j.neuron.2008.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/20/2008] [Accepted: 07/14/2008] [Indexed: 11/21/2022]
Abstract
The size of the movement and the molecular identity of the moving parts of the voltage sensor of a voltage-gated ion channel are debated. In the helical-screw model, the positively charged fourth transmembrane segment S4 slides and rotates along negative counter charges in S2 and S3, while in the paddle model, S4 carries the extracellular part of S3 (S3b) as a cargo. Here, we show that S4 slides 16-26 A along S3b. We introduced pairs of cysteines in S4 and S3b of the Shaker K channel to make disulfide bonds. Residue 325 in S3b makes close and state-dependent contacts with a long stretch of residues in S4. A disulfide bond between 325 and 360 was formed in the closed state, while a bond between 325 and 366 was formed in the open state. These data are not compatible with the voltage-sensor paddle model, but support the helical-screw model.
Collapse
|
7
|
MALACHOWSKI GEORGEC, CLEGG ROBERTM, REDFORD GLENI. Analytic solutions to modelling exponential and harmonic functions using Chebyshev polynomials: fitting frequency-domain lifetime images with photobleaching. J Microsc 2007; 228:282-95. [DOI: 10.1111/j.1365-2818.2007.01846.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Campos FV, Chanda B, Beirão PSL, Bezanilla F. beta-Scorpion toxin modifies gating transitions in all four voltage sensors of the sodium channel. ACTA ACUST UNITED AC 2007; 130:257-68. [PMID: 17698594 PMCID: PMC2151646 DOI: 10.1085/jgp.200609719] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several naturally occurring polypeptide neurotoxins target specific sites on the voltage-gated sodium channels. Of these, the gating modifier toxins alter the behavior of the sodium channels by stabilizing transient intermediate states in the channel gating pathway. Here we have used an integrated approach that combines electrophysiological and spectroscopic measurements to determine the structural rearrangements modified by the beta-scorpion toxin Ts1. Our data indicate that toxin binding to the channel is restricted to a single binding site on domain II voltage sensor. Analysis of Cole-Moore shifts suggests that the number of closed states in the activation sequence prior to channel opening is reduced in the presence of toxin. Measurements of charge-voltage relationships show that a fraction of the gating charge is immobilized in Ts1-modified channels. Interestingly, the charge-voltage relationship also shows an additional component at hyperpolarized potentials. Site-specific fluorescence measurements indicate that in presence of the toxin the voltage sensor of domain II remains trapped in the activated state. Furthermore, the binding of the toxin potentiates the activation of the other three voltage sensors of the sodium channel to more hyperpolarized potentials. These findings reveal how the binding of beta-scorpion toxin modifies channel function and provides insight into early gating transitions of sodium channels.
Collapse
Affiliation(s)
- Fabiana V Campos
- Institute of Molecular Pediatric Sciences and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
9
|
Crotty P, Levy WB. Effects of Na+ channel inactivation kinetics on metabolic energy costs of action potentials. Neurocomputing 2007. [DOI: 10.1016/j.neucom.2006.10.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Abstract
Voltage-gated sodium channels open (activate) when the membrane is depolarized and close on repolarization (deactivate) but also on continuing depolarization by a process termed inactivation, which leaves the channel refractory, i.e., unable to open again for a period of time. In the “classical” fast inactivation, this time is of the millisecond range, but it can last much longer (up to seconds) in a different slow type of inactivation. These two types of inactivation have different mechanisms located in different parts of the channel molecule: the fast inactivation at the cytoplasmic pore opening which can be closed by a hinged lid, the slow inactivation in other parts involving conformational changes of the pore. Fast inactivation is highly vulnerable and affected by many chemical agents, toxins, and proteolytic enzymes but also by the presence of β-subunits of the channel molecule. Systematic studies of these modulating factors and of the effects of point mutations (experimental and in hereditary diseases) in the channel molecule have yielded a fairly consistent picture of the molecular background of fast inactivation, which for the slow inactivation is still lacking.
Collapse
Affiliation(s)
- Werner Ulbricht
- Psychologisches Institut, University of Kiel, Hermann-Rodewald-Strasse 5, D-24118 Kiel, Germany.
| |
Collapse
|
11
|
Kim MK, Lee SH, Park MS, Kim BC, Cho KH, Lee MC, Kim JH, Kim SM. Mutation screening in Korean hypokalemic periodic paralysis patients: a novel SCN4A Arg672Cys mutation. Neuromuscul Disord 2005; 14:727-31. [PMID: 15482957 DOI: 10.1016/j.nmd.2004.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 05/12/2004] [Accepted: 07/01/2004] [Indexed: 11/20/2022]
Abstract
Familial hypokalemic periodic paralysis is an autosomal-dominant disorder with features of both genetic and phenotypic heterogeneity. Mutation screening was performed on Korean hypokalemic periodic paralysis patients to locate the corresponding mutations and to specify the clinical features associated with the mutations. Target-exon PCR, direct sequencing, and restriction fragment length polymorphism analysis were used. A novel SCN4A Arg672Cys mutation and a known CACNL1A3 Arg528His mutation were identified. Incomplete penetrance in women with Arg672Cys mutation was evident. A comparison of the present study with previous studies raises the possibility that hypokalemic periodic paralysis is an allelic-specific or mulfactorial, rather than a gene-specific, disorder. Reported herein are two Korean hypokalemic periodic paralysis families, one carrying a novel SCN4A Arg672Cys mutation with incomplete penetrance in women, and the other carrying a CACNL1A3 Arg528His mutation, with the onset of characteristics of hypoPP developing at an earlier age, as well as a higher penetrance rate in women.
Collapse
Affiliation(s)
- Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju 501-190, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The X-ray crystallographic structure of KvAP, a voltage-gated bacterial K channel, was recently published. However, the position and the molecular movement of the voltage sensor, S4, are still controversial. For example, in the crystallographic structure, S4 is located far away (>30 Å) from the pore domain, whereas electrostatic experiments have suggested that S4 is located close (<8 Å) to the pore domain in open channels. To test the proposed location and motion of S4 relative to the pore domain, we induced disulphide bonds between pairs of introduced cysteines: one in S4 and one in the pore domain. Several residues in S4 formed a state-dependent disulphide bond with a residue in the pore domain. Our data suggest that S4 is located close to the pore domain in a neighboring subunit. Our data also place constraints on possible models for S4 movement and are not compatible with a recently proposed KvAP model.
Collapse
Affiliation(s)
- Amir Broomand
- Department of Neuroscience, The Nobel Institute for Neurophysiology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
13
|
Schmitt BM, Koepsell H. An improved method for real-time monitoring of membrane capacitance in Xenopus laevis oocytes. Biophys J 2002; 82:1345-57. [PMID: 11867451 PMCID: PMC1301937 DOI: 10.1016/s0006-3495(02)75490-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Measurements of membrane capacitance (C(m)) in Xenopus laevis oocytes offer unique experimental possibilities but are difficult to perform with current methods. To improve C(m) measurements in the two-electrode voltage clamp (TEVC) mode, we developed a paired-ramp protocol and tested its performance in a model circuit (with tunable C(m), membrane resistance R(m), and series resistance R(s)) and in Xenopus oocytes. In the cell model and with R(s) = 0 Omega, inaccuracy of C(m) estimates was <1% under widely varying conditions (R(m) ranging from 100 to 2000 kOmega, and C(m) from 50 to 1000 nF). With R(s) > 0 Omega, C(m) was underestimated by a relative error epsilon closely approximated as epsilon approximate 2 x R(s)/(R(s) + R(m)), in keeping with the theoretical prediction. Thus, epsilon may be neglected under standard conditions or, under extreme conditions, corrected for if R(s) is known. Relative imprecision of C(m) estimates was small, independent of R(s), and inversely related to C(m) (<1.5% at 50 nF, <0.4% at 200 nF). Averaging allowed reliable detection of C(m) deviations from 200 nF of 0.1 nF, i.e., 0.05%. In Xenopus oocytes, we could resolve C(m) changes that were small (e.g., DeltaC(m) approximate 2 nF upon 100 muM 8-Br-cAMP), fast (e.g., DeltaC(m)/Deltat approximate 20nF/30s upon 1 muM phorbol myristate acetate (PMA)) or extended and complex (e.g., fast increase, followed by prolonged C(m) decrease upon 1 muM PMA). Rapidly alternating between paired ramps and a second, step protocol allowed quasi-simultaneous monitoring of additional electrical parameters such as R(m), slope conductance g(m), and reversal potential E(rev). Taken together, our method is suited to monitor C(m) in Xenopus oocytes conveniently, with high temporal resolution, accuracy and precision, and in parallel with other electrical parameters. Thus, it may be useful for the study of endo- and exocytosis and of membrane protein regulation and for electrophysiological high-throughput screening.
Collapse
Affiliation(s)
- Bernhard M Schmitt
- Department of Anatomy & Cell Biology, University of Würzburg, 97070 Würzburg, Germany.
| | | |
Collapse
|
14
|
Affiliation(s)
- R Horn
- Department of Physiology, Institute of Hyperexcitability, Jefferson Medical College, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
15
|
Abstract
Voltage-gated ion channels have at least two classes of moving parts, voltage sensors that respond to changes in the transmembrane potential and gates that create or deny permeant ions access to the conduction pathway. To explore the coupling between voltage sensors and gates, we have systematically immobilized each using a bifunctional photoactivatable cross-linker, benzophenone-4-carboxamidocysteine methanethiosulfonate, that can be tethered to cysteines introduced into the channel protein by mutagenesis. To validate the method, we first tested it on the inactivation gate of the sodium channel. The benzophenone-labeled inactivation gate of the sodium channel can be trapped selectively either in an open or closed state by ultraviolet irradiation at either a hyperpolarized or depolarized voltage, respectively. To verify that ultraviolet light can immobilize S4 segments, we examined its relative effects on ionic and gating currents in Shaker potassium channels, labeled at residue 359 at the extracellular end of the S4 segment. As predicted by the tetrameric stoichiometry of these potassium channels, ultraviolet irradiation reduces ionic current by approximately the fourth power of the gating current reduction, suggesting little cooperativity between the movements of individual S4 segments. Photocross-linking occurs preferably at hyperpolarized voltages after labeling residue 359, suggesting that depolarization moves the benzophenone adduct out of a restricted environment. Immobilization of the S4 segment of the second domain of sodium channels prevents channels from opening. By contrast, photocross-linking the S4 segment of the fourth domain of the sodium channel has effects on both activation and inactivation. Our results indicate that specific voltage sensors of the sodium channel play unique roles in gating, and suggest that movement of one voltage sensor, the S4 segment of domain 4, is at least a two-step process, each step coupled to a different gate.
Collapse
Affiliation(s)
- R Horn
- Department of Physiology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
16
|
Micelli S, Gallucci E, Picciarelli V. Studies of mitochondrial porin incorporation parameters and voltage-gated mechanism with different black lipid membranes. Bioelectrochemistry 2000; 52:63-75. [PMID: 11059579 DOI: 10.1016/s0302-4598(00)00085-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Our work in general aims to clarify the mechanism of what can be considered as a process of the kinetics of porin incorporation into bilayer planar membranes and to identify the parameters involved. In this paper, we report the results of systematically investigating the kinetics of porin incorporation into bilayer membranes made up of phosphatidylinositol or oxidized cholesterol using a simple and low-cost ac method. By means of a mathematical model, we provide evidence that two concurrent processes are present during the kinetics which can be interpreted as positive/negative cooperativity, and we investigate the parameters' dependence on external applied voltages. We observed a phase transition (or similar phenomenon) which seems to take place during the insertion process. The conductance measurement obtained by using data at the steady state conditions, provided indirect indications of two possible gating mechanisms.
Collapse
Affiliation(s)
- S Micelli
- Dipartimento Farmaco-Biologico, Facoltà di Farmacia, Università degli Studi di Bari, Italy.
| | | | | |
Collapse
|
17
|
Mitrovic N, George AL, Horn R. Role of domain 4 in sodium channel slow inactivation. J Gen Physiol 2000; 115:707-18. [PMID: 10828245 PMCID: PMC2232890 DOI: 10.1085/jgp.115.6.707] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/1999] [Accepted: 04/11/2000] [Indexed: 12/01/2022] Open
Abstract
Depolarization of sodium channels initiates at least three gating pathways: activation, fast inactivation, and slow inactivation. Little is known about the voltage sensors for slow inactivation, a process believed to be separate from fast inactivation. Covalent modification of a cysteine substituted for the third arginine (R1454) in the S4 segment of the fourth domain (R3C) with negatively charged methanethiosulfonate-ethylsulfonate (MTSES) or with positively charged methanethiosulfonate-ethyltrimethylammonium (MTSET) produces a marked slowing of the rate of fast inactivation. However, only MTSES modification produces substantial effects on the kinetics of slow inactivation. Rapid trains of depolarizations (2-20 Hz) cause a reduction of the peak current of mutant channels modified by MTSES, an effect not observed for wild-type or unmodified R3C channels, or for mutant channels modified by MTSET. The data suggest that MTSES modification of R3C enhances entry into a slow-inactivated state, and also that the effects on slow inactivation are independent of alterations of either activation or fast inactivation. This effect of MTSES is observed only for cysteine mutants within the middle of this S4 segment, and the data support a helical secondary structure of S4 in this region. Mutation of R1454 to the negatively charged residues aspartate or glutamate cannot reproduce the effects of MTSES modification, indicating that charge alone cannot account for these results. A long-chained derivative of MTSES has similar effects as MTSES, and can produce these effects on a residue that does not show use-dependent current reduction after modification by MTSES, suggesting that the sulfonate moiety can reach a critical site affecting slow inactivation. The effects of MTSES on R3C are partially counteracted by a point mutation (W408A) that inhibits slow inactivation. Our data suggest that a region near the midpoint of the S4 segment of domain 4 plays an important role in slow inactivation.
Collapse
Affiliation(s)
- Nenad Mitrovic
- Department of Physiology, Jefferson Medical College, Philadelphia, Pennsylvania 19107
- Department of Applied Physiology and Neurology, University of Ulm, 89081 Ulm, Germany
| | - Alfred L. George
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6304
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6304
| | - Richard Horn
- Department of Physiology, Jefferson Medical College, Philadelphia, Pennsylvania 19107
| |
Collapse
|
18
|
Abstract
By the introduction of technological advancement in methods of structural analysis, electronics, and recombinant DNA techniques, research in physiology has become molecular. Additionally, focus of interest has been moving away from classical physiology to become increasingly centered on mechanisms of disease. A wonderful example for this development, as evident by this review, is the field of ion channel research which would not be nearly as advanced had it not been for human diseases to clarify. It is for this reason that structure-function relationships and ion channel electrophysiology cannot be separated from the genetic and clinical description of ion channelopathies. Unique among reviews of this topic is that all known human hereditary diseases of voltage-gated ion channels are described covering various fields of medicine such as neurology (nocturnal frontal lobe epilepsy, benign neonatal convulsions, episodic ataxia, hemiplegic migraine, deafness, stationary night blindness), nephrology (X-linked recessive nephrolithiasis, Bartter), myology (hypokalemic and hyperkalemic periodic paralysis, myotonia congenita, paramyotonia, malignant hyperthermia), cardiology (LQT syndrome), and interesting parallels in mechanisms of disease emphasized. Likewise, all types of voltage-gated ion channels for cations (sodium, calcium, and potassium channels) and anions (chloride channels) are described together with all knowledge about pharmacology, structure, expression, isoforms, and encoding genes.
Collapse
Affiliation(s)
- F Lehmann-Horn
- Department of Applied Physiology, University of Ulm, Ulm, Germany.
| | | |
Collapse
|
19
|
Abstract
In the voltage-gated ion channels of every animal, whether they are selective for K+, Na+ or Ca2+, the voltage sensors are the S4 transmembrane segments carrying four to eight positive charges always separated by two uncharged residues. It is proposed that they move across the membrane in a screw-helical fashion in a series of three or more steps that each transfer a single electronic charge. The unit steps are stabilized by ion pairing between the mobile positive charges and fixed negative charges, of which there are invariably two located near the inner ends of segments S2 and S3 and a third near the outer end of either S2 or S3. Opening of the channel involves three such steps in each domain.
Collapse
Affiliation(s)
- R D Keynes
- Physiological Laboratory, University of Cambridge, UK.
| | | |
Collapse
|
20
|
Affiliation(s)
- R Horn
- Department of Physiology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
21
|
Tang L, Chehab N, Wieland SJ, Kallen RG. Glutamine substitution at alanine1649 in the S4-S5 cytoplasmic loop of domain 4 removes the voltage sensitivity of fast inactivation in the human heart sodium channel. J Gen Physiol 1998; 111:639-52. [PMID: 9565402 PMCID: PMC2217139 DOI: 10.1085/jgp.111.5.639] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Normal activation-inactivation coupling in sodium channels insures that inactivation is slow at small but rapid at large depolarizations. M1651Q/M1652Q substitutions in the cytoplasmic loop connecting the fourth and fifth transmembrane segments of Domain 4 (S4-S5/D4) of the human heart sodium channel subtype 1 (hH1) affect the kinetics and voltage dependence of inactivation (Tang, L., R.G. Kallen, and R. Horn. 1996. J. Gen. Physiol. 108:89-104.). We now show that glutamine substitutions NH2-terminal to the methionines (L1646, L1647, F1648, A1649, L1650) also influence the kinetics and voltage dependence of inactivation compared with the wild-type channel. In contrast, mutations at the COOH-terminal end of the S4-S5/D4 segment (L1654, P1655, A1656) are without significant effect. Strikingly, the A1649Q mutation renders the current decay time constants virtually voltage independent and decreases the voltage dependences of steady state inactivation and the time constants for the recovery from inactivation. Single-channel measurements show that at negative voltages latency times to first opening are shorter and less voltage dependent in A1649Q than in wild-type channels; peak open probabilities are significantly smaller and the mean open times are shorter. This indicates that the rate constants for inactivation and, probably, activation are increased at negative voltages by the A1649Q mutation reminiscent of Y1494Q/ Y1495Q mutations in the cytoplasmic loop between the third and fourth domains (O'Leary, M.E., L.Q. Chen, R.G. Kallen, and R. Horn. 1995. J. Gen. Physiol. 106:641-658.). Other substitutions, A1649S and A1649V, decrease but fail to eliminate the voltage dependence of time constants for inactivation, suggesting that the decreased hydrophobicity of glutamine at either residues A1649 or Y1494Y1495 may disrupt a linkage between S4-S5/D4 and the interdomain 3-4 loop interfering with normal activation-inactivation coupling.
Collapse
Affiliation(s)
- L Tang
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA
| | | | | | | |
Collapse
|
22
|
Mitrovic N, George AL, Horn R. Independent versus coupled inactivation in sodium channels. Role of the domain 2 S4 segment. J Gen Physiol 1998; 111:451-62. [PMID: 9482711 PMCID: PMC2217117 DOI: 10.1085/jgp.111.3.451] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/1997] [Accepted: 12/11/1997] [Indexed: 12/30/2022] Open
Abstract
The voltage sensor of the sodium channel is mainly comprised of four positively charged S4 segments. Depolarization causes an outward movement of S4 segments, and this movement is coupled with opening of the channel. A mutation that substitutes a cysteine for the outermost arginine in the S4 segment of the second domain (D2:R1C) results in a channel with biophysical properties similar to those of wild-type channels. Chemical modification of this cysteine with methanethiosulfonate-ethyltrimethylammonium (MTSET) causes a hyperpolarizing shift of both the peak current-voltage relationship and the kinetics of activation, whereas the time constant of inactivation is not changed substantially. A conventional steady state inactivation protocol surprisingly produces an increase of the peak current at -20 mV when the 300-ms prepulse is depolarized from -190 to -110 mV. Further depolarization reduces the current, as expected for steady state inactivation. Recovery from inactivation in modified channels is also nonmonotonic at voltages more hyperpolarized than -100 mV. At -180 mV, for example, the amplitude of the recovering current is briefly almost twice as large as it was before the channels inactivated. These data can be explained readily if MTSET modification not only shifts the movement of D2/S4 to more hyperpolarized potentials, but also makes the movement sluggish. This behavior allows inactivation to have faster kinetics than activation, as in the HERG potassium channel. Because of the unique properties of the modified mutant, we were able to estimate the voltage dependence and kinetics of the movement of this single S4 segment. The data suggest that movement of modified D2/S4 is a first-order process and that rate constants for outward and inward movement are each exponential functions of membrane potential. Our results show that D2/S4 is intimately involved with activation but plays little role in either inactivation or recovery from inactivation.
Collapse
Affiliation(s)
- N Mitrovic
- Department of Physiology, Institute of Hyperexcitability, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
23
|
Keynes RD, Elinder F. Modelling the activation, opening, inactivation and reopening of the voltage-gated sodium channel. Proc Biol Sci 1998; 265:263-70. [PMID: 9523428 PMCID: PMC1688889 DOI: 10.1098/rspb.1998.0291] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A model of the voltage-gated sodium channel is put forward suggesting that the four S4 voltage-sensors behave as screw-helices making a series of discrete transitions that carry one elementary charge for each notch of the screw helix. After the channel has been activated by the first two steps R in equilibrium with P in equilibrium with A in all four domains, followed by a voltage-independent rearrangement, it is opened by a third cooperative step A in equilibrium with B in domains I, II and III in conjunction with hydration. Inactivation is a voltage-dependent process controlled by the third step A in equilibrium with I in sensor IVS4, and the closing of the channel is brought about its dehydration. From the inactivated steady state the channel may be reopened by a fourth step, I in equilibrium with C in sensor IVS4 and rehydration. The computed kinetics of the model are shown to conform closely with those observed experimentally.
Collapse
Affiliation(s)
- R D Keynes
- Physiological Laboratory, University of Cambridge, UK
| | | |
Collapse
|
24
|
Keynes RD, Elinder F. On the slowly rising phase of the sodium gating current in the squid giant axon. Proc Biol Sci 1998; 265:255-62. [PMID: 9523427 PMCID: PMC1688886 DOI: 10.1098/rspb.1998.0290] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High-resolution records of the sodium gating current in the squid giant axon demonstrate the existence of a slowly rising phase that is first apparent at pulse potentials slightly below zero, and becomes increasingly pronounced at more positive potentials. At +80 mV the current reaches its peak with a delay of 30 microseconds at 10 degrees C. It is suggested that this current is generated by the first two steps labelled R-->P and P-->A in the S4 units of all four domains of the series-parallel gating system, activating the channel before its opening by the third steps A-->B in domains I, II and III in conjunction with hydration. The kinetics of the slowly rising phase can only be explained by the incorporation of an appropriate degree of voltage-dependent cooperativity between the S4 voltage-sensors for their two initial transitions.
Collapse
Affiliation(s)
- R D Keynes
- Physiological Laboratory, University of Cambridge, UK
| | | |
Collapse
|
25
|
Moss ML. The functional matrix hypothesis revisited. 2. The role of an osseous connected cellular network. Am J Orthod Dentofacial Orthop 1997; 112:221-6. [PMID: 9267235 DOI: 10.1016/s0889-5406(97)70249-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intercellular gap junctions permit bone cells to intercellularly transmit, and subsequently process, periosteal functional matrix information, after its initial intracellular mechanotransduction. In addition, gap junctions, as electrical synapses, underlie the organization of bone tissue as a connected cellular network, and the fact that all bone adaptation processes are multicellular. The structural and operational characteristics of such biologic networks are outlined and their specific bone cell attributes described. Specifically, bone is "tuned" to the precise frequencies of skeletal muscle activity. The inclusion of the concepts and databases that are related to the intracellular and intercellular bone cell mechanisms and processes of mechanotransduction and the organization of bone as a biologic connected cellular network permit revision of the functional matrix hypothesis, which offers an explanatory chain, extending from the epigenetic event of muscle contraction hierarchically downward to the regulation of the bone cell genome.
Collapse
Affiliation(s)
- M L Moss
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
26
|
Elinder F, Arhem P. Tail currents in the myelinated axon of Xenopus laevis suggest a two-open-state Na channel. Biophys J 1997; 73:179-85. [PMID: 9199782 PMCID: PMC1180919 DOI: 10.1016/s0006-3495(97)78058-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Na tail currents in the myelinated axon of Xenopus laevis were measured at -70 mV after steps to -10 mV. The tail currents were biexponential, comprising a fast and a slow component. The time constant of the slow tail component, analyzed in the time window 0.35-0.50 ms, was independent of step duration, and had a value of 0.23 ms. The amplitude, extrapolated back to time 0, varied, however, with step duration. It reached a peak after 0.7 ms and inactivated relatively slowly (at 2.1 ms the absolute value was reduced by approximately 30%). The amplitude of the fast component, estimated by subtracting the amplitude of the slow component from the calculated total tail current amplitude, reached a peak (three times larger than that of the slow component) after 0.5 ms and inactivated relatively fast (at 2.1 ms it was reduced by approximately 65%). The results were explained by a novel Na channel model, comprising two open states bifurcating from a common closed state and with separate inactivating pathways. A voltage-regulated use of the two pathways explains a number of findings reported in the literature.
Collapse
Affiliation(s)
- F Elinder
- Nobel Institute for Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
27
|
McNaughton NC, Randall AD. Electrophysiological properties of the human N-type Ca2+ channel: I. Channel gating in Ca2+, Ba2+ and Sr2+ containing solutions. Neuropharmacology 1997; 36:895-915. [PMID: 9257935 DOI: 10.1016/s0028-3908(97)00085-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have characterized the properties of the human N-type Ca2+ channel produced by the stable co-expression of the alpha(1B-1), alpha(2b)delta and beta(1b) subunits. The channel displayed the expected pharmacology with respect to the toxins omega-CTx-GVIA and omega-CTx-MVIIC, which depressed currents in a voltage-independent fashion. We characterized a variety of biophysical properties of the channel under conditions in which either Ca2+, Ba2+ or Sr2+ was the sole extracellular divalent ion. In all three ions, current-voltage relationships revealed that the channel was clearly high-voltage activated. Current activation was significantly slower in Ca2+ than either Sr2+ or Ba2+. Construction of conductance-voltage relationships from tail current measurements indicated that the channel was more high-voltage activated in Ca2+ than in either Sr2+ or Ba2+. The rank order of current amplitude at +4 mV was Ba2+ > Sr2+ > or = Ca2+. Elevation of the extracellular concentration of Ba2+ increased maximal current amplitude and shifted the current-voltage relationship to the right. In all three ions channel inactivation was complex consisting of three distinct exponentials. Recovery from inactivation was slow taking several seconds to reach completion. Steady-state inactivation curves revealed that channel inactivation became detectable at holding potentials of between -101 and -91 mV depending on the permeating species. The rank order of mid-points of steady state inactivation was (most negative) Sr2+ > Ca2+ > Ba2+ (most positive). Deactivation of the N-type Ca2+ channel was voltage-dependent and very fast in all three ions. The deactivation rate in Ba2+ was significantly slower than that in both Ca2+ and Sr2+, however the voltage-dependence of deactivation rate was indistinguishable in all three ions.
Collapse
Affiliation(s)
- N C McNaughton
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, U.K.
| | | |
Collapse
|
28
|
Mathes C, Rosenthal JJ, Armstrong GM, Gilly WF. Fast inactivation of delayed rectifier K conductance in squid giant axon and its cell bodies. J Gen Physiol 1997; 109:435-48. [PMID: 9101403 PMCID: PMC2219430 DOI: 10.1085/jgp.109.4.435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/1996] [Accepted: 01/09/1997] [Indexed: 02/04/2023] Open
Abstract
Inactivation of delayed rectifier K conductance (gk) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (approximately -10 mV in 50-70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12-18 degrees C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at -10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12 degrees C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kvl channels studied in heterologous expression systems.
Collapse
Affiliation(s)
- C Mathes
- Hopkins Marine Station, Department of Biological Sciences, Stanford University, Pacific Grove, California 93950, USA
| | | | | | | |
Collapse
|
29
|
Kukita F. Solvent-dependent rate-limiting steps in the conformational change of sodium channel gating in squid giant axon. J Physiol 1997; 498 ( Pt 1):109-33. [PMID: 9023772 PMCID: PMC1159238 DOI: 10.1113/jphysiol.1997.sp021845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. The time course of sodium currents (INa) in squid giant axon was analysed using viscous non-electrolyte solutions on both sides of the axolemma. It slowed reversibly as the non-electrolyte concentration increased. The activation, deactivation (closing) and inactivation processes were slowed in a similar manner. The gating current of the sodium channel was also slowed to the same extent as the activation time constant. 2. The voltage dependence observed in a time constant vs. voltage relationship and a chord conductance vs. voltage relationship (activation curve), did not change significantly. 3. The gating kinetics have a similar temperature dependence in non-electrolyte solutions, showing that the basic gating mechanism did not change in these solutions and only a slight increase in the activation free energy was one of the main causes of slowing. 4. Eight non-electrolytes, formamide, ethylene glycol, glycerol, erythritol, glucose, sorbitol, sucrose and polyethylene glycol (mean molecular weight 600) were used. The amount of slowing was correlated with the gram concentration (g l-1) of non-electrolytes, but not with molar concentration (M) and solution osmolarity (osmol l-1). 5. The percentage changes of the time constant were expressed as a function of the relative change in solution viscosity, eta/eta0. The proportionality constants alpha in the relationship alpha (eta/eta0), and gamma in the relationship 100 (eta/eta0)gamma, obtained using different non-electrolytes, were close to 100% and 1, respectively. The simplest model to explain the results assumes that a slowing of a global conformational change is a consequence of sequential viscosity-dependent movements of local structures (viscosity model). 6. Values of alpha and gamma deviated frequently from those in an ideal case, i.e. 100% for alpha and 1 for gamma, and they scattered, having a tendency to decrease as a function of molecular weight. 7. The slowing was also expressed as an exponential function of the solution osmolarity. A predicted solute-inaccessible volume Va ranged (in nm3 per molecule) between 0.09 and 1.45. The value of Va increased as a logarithmic function of the molecular weight of the non-electrolyte. 8. This solute-inaccessible volume should be distributed in all hydrophilic parts of the sodium channel protein, but is not located in the channel conducting pore itself. The slowing of gating could be explained by a model in which a rate-limiting step is a hydration process that occurs after local small structural changes have exposed new, unhydrated faces (transient hydrated-states model). 9. Considering the opposite dependencies of parameters alpha (or gamma) and beta on the molecular weight, sodium channel gating is likely to reflect a combination of these two models, which are coupled in microscopic segment movements. We emphasize with this combination of models that fluctuating hydrophilic structures play an important role in determining time constants in the gating process.
Collapse
Affiliation(s)
- F Kukita
- Ine Marine Laboratory, National Institute for Physiological Sciences, Ine, Kyoto, Japan.
| |
Collapse
|
30
|
Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 1996; 93:13770-3. [PMID: 8943010 PMCID: PMC19421 DOI: 10.1073/pnas.93.24.13770] [Citation(s) in RCA: 2159] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We show that an electric field can drive single-stranded RNA and DNA molecules through a 2.6-nm diameter ion channel in a lipid bilayer membrane. Because the channel diameter can accommodate only a single strand of RNA or DNA, each polymer traverses the membrane as an extended chain that partially blocks the channel. The passage of each molecule is detected as a transient decrease of ionic current whose duration is proportional to polymer length. Channel blockades can therefore be used to measure polynucleotide length. With further improvements, the method could in principle provide direct, high-speed detection of the sequence of bases in single molecules of DNA or RNA.
Collapse
Affiliation(s)
- J J Kasianowicz
- Biotechnology Division, National Institute of Science and Technology, Gaithersburg, MD 20899, USA
| | | | | | | |
Collapse
|
31
|
Elinder F, Madeja M, Arhem P. Surface Charges of K channels. Effects of strontium on five cloned channels expressed in Xenopus oocytes. J Gen Physiol 1996; 108:325-32. [PMID: 8894980 PMCID: PMC2229333 DOI: 10.1085/jgp.108.4.325] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The effects of strontium (Sr2+; 7-50 mM) on five different cloned rat K channels (Kv1.1, Kv1.5, Kv1.6, Kv2.1, and Kv3.4), expressed in oocytes of Xenopus laevis, were investigated with a two-electrode voltage clamp technique. The main effect was a shift of the Gk(V) curve along the potential axis, different in size for the different channels. Kv1.1 was shifted most and Kv3.4 least, 21 and 8 mV, respectively, at 50 mM. The effect was interpreted in terms of screening of fixed surface charges. The estimated charge densities ranged from -0.37 (Kv1.1) to -0.11 (Kv3.4) e nm-2 and showed good correlation with the total net charge of the extracellularly located amino acid residues of the channel as well as with the charge of a specific region (the loop between the S5 segment and the pore forming segment). The estimated surface potentials were found to be linearly related to the activation midpoint potential, suggesting a functional role for the surface charges.
Collapse
Affiliation(s)
- F Elinder
- Nobel Institute for Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
32
|
Rosenthal JJ, Vickery RG, Gilly WF. Molecular identification of SqKv1A. A candidate for the delayed rectifier K channel in squid giant axon. J Gen Physiol 1996; 108:207-19. [PMID: 8882864 PMCID: PMC2229315 DOI: 10.1085/jgp.108.3.207] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have cloned the cDNA for a squid Kvl potassium channel (SqKv1A). SqKv1A mRNA is selectively expressed in giant fiber lobe (GFL) neurons, the somata of the giant axons. Western blots detect two forms of SqKv1A in both GFL neuron and giant axon samples. Functional properties of SqKv1A currents expressed in Xenopus oocytes are very similar to macroscopic currents in GFL neurons and giant axons. Macroscopic K currents in GFL neuron cell bodies, giant axons, and in Xenopus oocytes expressing SqKv1A, activate rapidly and inactivate incompletely over a time course of several hundred ms. Oocytes injected with SqKv1A cRNA express channels of two conductance classes, estimated to be 13 and 20 pS in an internal solution containing 470 mM K. SqKv1A is thus a good candidate for the "20 pS" K channel that accounts for the majority of rapidly activating K conductance in both GFL neuron cell bodies and the giant axon.
Collapse
Affiliation(s)
- J J Rosenthal
- Department of Biological Sciences, Stanford University, Pacific Grove, California 93950, USA
| | | | | |
Collapse
|
33
|
Ji S, George AL, Horn R, Barchi RL. Paramyotonia congenita mutations reveal different roles for segments S3 and S4 of domain D4 in hSkM1 sodium channel gating. J Gen Physiol 1996; 107:183-94. [PMID: 8833340 PMCID: PMC2219264 DOI: 10.1085/jgp.107.2.183] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in the gene encoding the voltage-gated sodium channel of skeletal muscle (SkMl) have been identified in a group of autosomal dominant diseases, characterized by abnormalities of the sarcolemmal excitability, that include paramyotonia congenita (PC) and hyperkalemic periodic paralysis (HYPP). We previously reported that PC mutations cause in common a slowing of inactivation in the human SkMl sodium channel. In this investigation, we examined the molecular mechanisms responsible for the effects of L1433R, located in D4/S3, on channel gating by creating a series of additional mutations at the 1433 site. Unlike the R1448C mutation, found in D4/S4, which produces its effects largely due to the loss of the positive charge, change of the hydropathy of the side chain rather than charge is the primary factor mediating the effects of L1433R. These two mutations also differ in their effects on recovery from inactivation, conditioned inactivation, and steady state inactivation of the hSkMl channels. We constructed a double mutation containing both L1433R and R1448C. The double mutation closely resembled R1448C with respect to alterations in the kinetics of inactivation during depolarization and voltage dependence, but was indistinguishable from L1433R in the kinetics of recovery from inactivation and steady state inactivation. No additive effects were seen, suggesting that these two segments interact during gating. In addition, we found that these mutations have different effects on the delay of recovery from inactivation and the kinetics of the tail currents, raising a question whether this delay is a reflection of the deactivation process. These results suggest that the S3 and S4 segments play distinct roles in different processes of hSkM1 channel gating: D4/S4 is critical for the deactivation and inactivation of the open channel while D4/S3 has a dominant role in the recovery of inactivated channels. However, these two segments interact during the entry to, and exit from, inactivation states.
Collapse
Affiliation(s)
- S Ji
- Departments of Neurology and Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, 19104-6074, USA
| | | | | | | |
Collapse
|
34
|
Lehmann-Horn F, Rüdel R. Molecular pathophysiology of voltage-gated ion channels. Rev Physiol Biochem Pharmacol 1996; 128:195-268. [PMID: 8791722 DOI: 10.1007/3-540-61343-9_9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
Schmitt H, Meves H. Model experiments on squid axons and NG108-15 mouse neuroblastoma x rat glioma hybrid cells. JOURNAL OF PHYSIOLOGY, PARIS 1995; 89:181-93. [PMID: 8861817 DOI: 10.1016/0928-4257(96)83635-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three types of ionic current essentially determine the firing pattern of nerve cells: the persistent Na+ current, the M current and the low-voltage-activated Ca(2)+ current. The present article summarizes recent experiments concerned with the basic properties of these currents. Keynes and Meves (Proc R Soc Lond B (1993) 253, 61-68) studied the persistent or steady-state Na+ current on dialysed squid axons and measured the probability of channel opening both for the peak and the steady-state Na+ current (PF(peak) and PF(ss)) as a function of voltage. Whereas PF(peak) starts to rise at -50 mV and reaches a maximum at +40 to +50 mV, PF(ss) only begins to rise appreciably at around 0 mV and is still increasing at +100 mV. This differs from observations on vertebrate excitable tissues where the persistent Na+ current tums on in the threshold region and saturates at around 0 mV. Schmitt and Meves (Pflugers Arch (1993) 425, 134-139) recorded M current, a non-inactivating K+ current, from NGI08-15 neuroblastoma x glioma hybrid cells, voltage-clamped in the whole-cell mode, and studied the effects of phorbol 12,13-dibutyrate (PDB), an activator of protein kinase C (PKC), and arachidonic acid (AA). PDB and AA both decreased I(M), the effective concentrations being 0.1-1 mu M and 5-25 mu M, respectively; while the PDB effect was regularly observed, the M current depression by AA was highly variable from cell to cell. The PKC 19-31 peptide, an effective inhibitor of PKC, in a concentration of 1 muM almost totally prevented the effects of PDB and AA on M current, suggesting that both are mediated by PKC. Schmitt and Meves (Pflugers Arch (1994a) 426, Suppl R 59) measured low-voltage-activated (l-v-a) and high-voltage-activated (h-v-a) Ca2+ currents on NG108-15 cells and investigated the effect of AA and PDB on both types of current. At pulse potentials > -20 mV, AA (25-100 mu M) decreased 1-v-a and h-v-a I(Ca). The decrease was accompanied by a small negative shift and a slight flattening of the activation and inactivation curves of the l-v-a I(Ca). The AA effect was not prevented by 50 mu M eicosa-5,8,11,14-tetraynoic acid (ETYA), an inhibitor of AA metabolism, or PKC 19-31 peptide and not mimicked by 0.1-1 mu M PDB. Probably, AA acts directly on the channel protein or its lipid environment. The physiological relevance of these three sets of observations is briefly discussed.
Collapse
Affiliation(s)
- H Schmitt
- Physiologisches Institut der Universitat des Saarlandes, Homburg-Saar, Germany
| | | |
Collapse
|