1
|
Miyanoiri Y, Takeda M, Okuma K, Terauchi T, Kainosho M. Enhancing solution structural analysis of large molecular proteins through optimal stereo array isotope labeling of aromatic amino acids. Biophys Chem 2024; 315:107328. [PMID: 39341158 DOI: 10.1016/j.bpc.2024.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/16/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
The observation of side-chain peaks of aromatic amino acids is the prerequisite for a high-resolution three-dimensional structure determination of proteins by NMR. However, it becomes difficult with increasing molecular size due to an increased transverse relaxation and the control of the relaxation pathway is needed to achieve the observation. We demonstrated that even for the large molecular size of 82 kDa Malate synthase G (MSG), the aromatic 13C-1H (CH) peaks of Tryptophan (Trp) and Phenylalanine (Phe) residues can be observed with high quality using a systematic stable isotope labeling scheme, Stereo-Array Isotope Labeling (SAIL) method. However, the sequence specific assignments of these peaks relied on the use of amino acid substitutions, employing an inefficient method that required many isotopes labeled samples. In this study, we developed novel SAIL amino acids that allow for the observation of the aromatic ring δ,ζ and the aliphatic β position peak of Phe residues. The application of TROSY-based experiment to the isolated CH moieties resulted in the successful observation of discernible and resolved CH peaks in Phe residues in MSG. In MSG, the sequence-specific assignments of the backbone and Cβ positions have already been confirmed. Therefore, using this labeling method, the δ and β position peaks of Phe residues can be clearly assigned in a sequence-specific and stereospecific manner through experiments based on intra-residue NOE. Furthermore, the NOESY experiment also allows for the acquisition of information pertaining to the conformation of Phe residues, such as the χ1 dihedral angle, providing valuable insights for the determination of accurate protein structures and in dynamic analysis. This new SAIL amino acids open an avenue to achieve a variety of NMR analysis of large molecular proteins, including a high-resolution structure determination and dynamics and interaction analysis.
Collapse
Affiliation(s)
- Yohei Miyanoiri
- Research Center for Next-Generation Protein Sciences, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Mitsuhiro Takeda
- Department of Molecular Biophysics, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kosuke Okuma
- SAIL Technologies. Inc., 2008-2 Wada, Tama-city, Tokyo 206-0001, Japan
| | - Tsutomu Terauchi
- SAIL Technologies. Inc., 2008-2 Wada, Tama-city, Tokyo 206-0001, Japan
| | - Masatsune Kainosho
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
2
|
Mallis RJ, Lee JJ, den Berg AV, Brazin KN, Viennet T, Zmuda J, Cross M, Radeva D, Rodriguez‐Mias R, Villén J, Gelev V, Reinherz EL, Arthanari H. Efficient and economic protein labeling for NMR in mammalian expression systems: Application to a preT-cell and T-cell receptor protein. Protein Sci 2024; 33:e4950. [PMID: 38511503 PMCID: PMC10955624 DOI: 10.1002/pro.4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Protein nuclear magnetic resonance (NMR) spectroscopy relies on the ability to isotopically label polypeptides, which is achieved through heterologous expression in various host organisms. Most commonly, Escherichia coli is employed by leveraging isotopically substituted ammonium and glucose to uniformly label proteins with 15N and 13C, respectively. Moreover, E. coli can grow and express proteins in uniformly deuterium-substituted water (D2O), a strategy useful for experiments targeting high molecular weight proteins. Unfortunately, many proteins, particularly those requiring specific posttranslational modifications like disulfide bonding or glycosylation for proper folding and/or function, cannot be readily expressed in their functional forms using E. coli-based expression systems. One such class of proteins includes T-cell receptors and their related preT-cell receptors. In this study, we present an expression system for isotopic labeling of proteins using a nonadherent human embryonic kidney cell line, Expi293F, and a specially designed media. We demonstrate the application of this platform to the β subunit common to both receptors. In addition, we show that this expression system and media can be used to specifically label amino acids Phe, Ile, Val, and Leu in this system, utilizing an amino acid-specific labeling protocol that allows targeted incorporation at high efficiency without significant isotopic scrambling. We demonstrate that this system can also be used to express proteins with fluorinated amino acids. We were routinely able to obtain an NMR sample with a concentration of 200 μM from 30 mL of culture media, utilizing less than 20 mg of the labeled amino acids.
Collapse
Affiliation(s)
- Robert J. Mallis
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of DermatologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Jonathan J. Lee
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | | | - Kristine N. Brazin
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Thibault Viennet
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Denitsa Radeva
- Faculty of Chemistry and PharmacySofia UniversitySofiaBulgaria
| | | | - Judit Villén
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Vladimir Gelev
- Faculty of Chemistry and PharmacySofia UniversitySofiaBulgaria
| | - Ellis L. Reinherz
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Haribabu Arthanari
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
3
|
Klukowski P, Riek R, Güntert P. Time-optimized protein NMR assignment with an integrative deep learning approach using AlphaFold and chemical shift prediction. SCIENCE ADVANCES 2023; 9:eadi9323. [PMID: 37992167 PMCID: PMC10664993 DOI: 10.1126/sciadv.adi9323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
Chemical shift assignment is vital for nuclear magnetic resonance (NMR)-based studies of protein structures, dynamics, and interactions, providing crucial atomic-level insight. However, obtaining chemical shift assignments is labor intensive and requires extensive measurement time. To address this limitation, we previously proposed ARTINA, a deep learning method for automatic assignment of two-dimensional (2D)-4D NMR spectra. Here, we present an integrative approach that combines ARTINA with AlphaFold and UCBShift, enabling chemical shift assignment with reduced experimental data, increased accuracy, and enhanced robustness for larger systems, as presented in a comprehensive study with more than 5000 automated assignment calculations on 89 proteins. We demonstrate that five 3D spectra yield more accurate assignments (92.59%) than pure ARTINA runs using all experimentally available NMR data (on average 10 3D spectra per protein, 91.37%), considerably reducing the required measurement time. We also showcase automated assignments of only 15N-labeled samples, and report improved assignment accuracy in larger synthetic systems of up to 500 residues.
Collapse
Affiliation(s)
- Piotr Klukowski
- Institute of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Roland Riek
- Institute of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Peter Güntert
- Institute of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, 192-0397 Tokyo, Japan
| |
Collapse
|
4
|
Van Raad D, Huber T, Otting G. Improved spectral resolution of [ 13C, 1H]-HSQC spectra of aromatic amino acid residues in proteins produced by cell-free synthesis from inexpensive 13C-labelled precursors. JOURNAL OF BIOMOLECULAR NMR 2023; 77:183-190. [PMID: 37338652 PMCID: PMC10406723 DOI: 10.1007/s10858-023-00420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Cell-free protein synthesis using eCells allows production of amino acids from inexpensive 13C-labelled precursors. We show that the metabolic pathway converting pyruvate, glucose and erythrose into aromatic amino acids is maintained in eCells. Judicious choice of 13C-labelled starting material leads to proteins, where the sidechains of aromatic amino acids display [13C,1H]-HSQC cross-peaks free of one-bond 13C-13C couplings. Selective 13C-labelling of tyrosine and phenylalanine residues is achieved simply by using different compositions of the reaction buffers.
Collapse
Affiliation(s)
- Damian Van Raad
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
5
|
Van Raad D, Otting G, Huber T. Cell-free synthesis of proteins with selectively 13C-labelled methyl groups from inexpensive precursors. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:187-197. [PMID: 37904855 PMCID: PMC10583297 DOI: 10.5194/mr-4-187-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 11/01/2023]
Abstract
The novel eCell system maintains the activity of the entire repertoire of metabolic Escherichia coli enzymes in cell-free protein synthesis. We show that this can be harnessed to produce proteins with selectively 13 C-labelled amino acids from inexpensive 13 C-labelled precursors. The system is demonstrated with selective 13 C labelling of methyl groups in the proteins ubiquitin and peptidyl-prolyl cis-trans isomerase B. Starting from 3-13 C-pyruvate, 13 C-HSQC cross-peaks are obtained devoid of one-bond 13 C-13 C scalar couplings. Starting from 2-13 C-methyl-acetolactate, single methyl groups of valine and leucine are labelled. Labelling efficiencies are 70 % or higher, and the method allows us to produce perdeuterated proteins with protonated methyl groups in a residue-selective manner. The system uses the isotope-labelled precursors sparingly and is readily scalable.
Collapse
Affiliation(s)
- Damian Van Raad
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein
Science, Research School of Chemistry, Australian National University,
Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Akke M, Weininger U. NMR Studies of Aromatic Ring Flips to Probe Conformational Fluctuations in Proteins. J Phys Chem B 2023; 127:591-599. [PMID: 36640108 PMCID: PMC9884080 DOI: 10.1021/acs.jpcb.2c07258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/25/2022] [Indexed: 01/15/2023]
Abstract
Aromatic residues form a significant part of the protein core, where they make tight interactions with multiple surrounding side chains. Despite the dense packing of internal side chains, the aromatic rings of phenylalanine and tyrosine residues undergo 180° rotations, or flips, which are mediated by transient and large-scale "breathing" motions that generate sufficient void volume around the aromatic ring. Forty years after the seminal work by Wagner and Wüthrich, NMR studies of aromatic ring flips are now undergoing a renaissance as a powerful means of probing fundamental dynamic properties of proteins. Recent developments of improved NMR methods and isotope labeling schemes have enabled a number of advances in addressing the mechanisms and energetics of aromatic ring flips. The nature of the transition states associated with ring flips can be described by thermodynamic activation parameters, including the activation enthalpy, activation entropy, activation volume, and also the isothermal volume compressibility of activation. Consequently, it is of great interest to study how ring flip rate constants and activation parameters might vary with protein structure and external conditions like temperature and pressure. The field is beginning to gather such data for aromatic residues in a variety of environments, ranging from surface exposed to buried. In the future, the combination of solution and solid-state NMR spectroscopy together with molecular dynamics simulations and other computational approaches is likely to provide detailed information about the coupled dynamics of aromatic rings and neighboring residues. In this Perspective, we highlight recent developments and provide an outlook toward the future.
Collapse
Affiliation(s)
- Mikael Akke
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ulrich Weininger
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06129 Halle (Saale), Germany
| |
Collapse
|
7
|
Maleckis A, Abdelkader EH, Herath ID, Otting G. Synthesis of fluorinated leucines, valines and alanines for use in protein NMR. Org Biomol Chem 2022; 20:2424-2432. [PMID: 35262139 DOI: 10.1039/d2ob00145d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Efficient syntheses of fluorinated leucines, valines and alanines are described. The synthetic routes provide expedient access to various 13C/15N/D isotopologues requiring solely readily available and inexpensive isotope containing reagents such as NaBD4, carbon-13C dioxide and sodium azide-1-15N. The lightly fluorinated leucines and valines were found to be good substrates for cell-free protein expression and even 3-fluoroalanine, which is highly toxic to bacteria in vivo, could be incorporated into proteins this way. 19F-NMR spectra of the protein GB1 produced with these amino acids showed large chemical shift dispersions. Particularly high incorporation yields and clean 19F-NMR spectra were obtained for GB1 produced with valine residues, which had been synthesized with a single fluorine substituting a hydrogen stereospecifically in one of the methyl groups.
Collapse
Affiliation(s)
- Ansis Maleckis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Iresha D Herath
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
8
|
Gaalswyk K, Liu Z, Vogel HJ, MacCallum JL. An Integrative Approach to Determine 3D Protein Structures Using Sparse Paramagnetic NMR Data and Physical Modeling. Front Mol Biosci 2021; 8:676268. [PMID: 34476238 PMCID: PMC8407082 DOI: 10.3389/fmolb.2021.676268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Paramagnetic nuclear magnetic resonance (NMR) methods have emerged as powerful tools for structure determination of large, sparsely protonated proteins. However traditional applications face several challenges, including a need for large datasets to offset the sparsity of restraints, the difficulty in accounting for the conformational heterogeneity of the spin-label, and noisy experimental data. Here we propose an integrative approach to structure determination combining sparse paramagnetic NMR with physical modelling to infer approximate protein structural ensembles. We use calmodulin in complex with the smooth muscle myosin light chain kinase peptide as a model system. Despite acquiring data from samples labeled only at the backbone amide positions, we are able to produce an ensemble with an average RMSD of ∼2.8 Å from a reference X-ray crystal structure. Our approach requires only backbone chemical shifts and measurements of the paramagnetic relaxation enhancement and residual dipolar couplings that can be obtained from sparsely labeled samples.
Collapse
Affiliation(s)
- Kari Gaalswyk
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - Zhihong Liu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Hans J. Vogel
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
9
|
Maleckis A, Herath ID, Otting G. Synthesis of 13C/ 19F/ 2H labeled indoles for use as tryptophan precursors for protein NMR spectroscopy. Org Biomol Chem 2021; 19:5133-5147. [PMID: 34032255 DOI: 10.1039/d1ob00611h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthesis of indoles labeled with 13C-1H and 13C-19F spin pairs is described. All syntheses utilize inexpensive carbon-13C dioxide as the 13C isotope source. Ruthenium-mediated ring-closing metathesis is the key step in construction of the 13C containing indole carbocycle. Fluorine is introduced via electrophilic fluorination at the 7-position and via palladium-mediated cross-coupling at the 4-position. Indole and fluoroindoles are viable tryptophan precursors for in vivo protein expression. We show that they are viable also in in vitro protein synthesis using standard E. coli S30 extracts. Incorporation of the synthesized 13C-1H and 13C-19F spin pair labeled tryptophans into proteins enables high-resolution and high-sensitivity nuclear magnetic resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Ansis Maleckis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - Iresha D Herath
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
10
|
Beck Erlach M, Koehler J, Munte CE, Kremer W, Crusca E, Kainosho M, Kalbitzer HR. Pressure dependence of side chain 1H and 15N-chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH 2. JOURNAL OF BIOMOLECULAR NMR 2020; 74:381-399. [PMID: 32572797 PMCID: PMC7508751 DOI: 10.1007/s10858-020-00326-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
For interpreting the pressure induced shifts of resonance lines of folded as well as unfolded proteins the availability of data from well-defined model systems is indispensable. Here, we report the pressure dependence of 1H and 15N chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx is one of the 20 canonical amino acids) measured at 800 MHz proton frequency. As observed earlier for other nuclei the chemical shifts of the side chain nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The pressure response is described by a second degree polynomial with the pressure coefficients B1 and B2 that are dependent on the atom type and type of amino acid studied. A number of resonances could be assigned stereospecifically including the 1H and 15N resonances of the guanidine group of arginine. In addition, stereoselectively isotope labeled SAIL amino acids were used to support the stereochemical assignments. The random-coil pressure coefficients are also dependent on the neighbor in the sequence as an analysis of the data shows. For Hα and HN correction factors for different amino acids were derived. In addition, a simple correction of compression effects in thermodynamic analysis of structural transitions in proteins was derived on the basis of random-coil pressure coefficients.
Collapse
Affiliation(s)
- Markus Beck Erlach
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Joerg Koehler
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Claudia E Munte
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Edson Crusca
- Physics Institute of São Carlos, University of São Paulo, São Carlos, 13566-590, Brazil
| | - Masatsune Kainosho
- Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Hans Robert Kalbitzer
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
11
|
Thompson CM, McDonald AD, Yang H, Cavagnero S, Buller AR. Modular control of l-tryptophan isotopic substitution via an efficient biosynthetic cascade. Org Biomol Chem 2020; 18:4189-4192. [PMID: 32452506 DOI: 10.1039/d0ob00868k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isotopologs are powerful tools for investigating biological systems. We report a biosynthetic-cascade synthesis of Trp isotopologs starting from indole, glycine, and formaldehyde using the enzymes l-threonine aldolase and an engineered β-subunit of tryptophan synthase. This modular route to Trp isotopologs is simple and inexpensive, enabling facile access to these compounds.
Collapse
Affiliation(s)
- Clayton M Thompson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI. 53706, USA.
| | - Allwin D McDonald
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI. 53706, USA.
| | - Hanming Yang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI. 53706, USA.
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI. 53706, USA.
| | - Andrew R Buller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI. 53706, USA.
| |
Collapse
|
12
|
Pritišanac I, Alderson TR, Güntert P. Automated assignment of methyl NMR spectra from large proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:54-73. [PMID: 32883449 DOI: 10.1016/j.pnmrs.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 05/05/2023]
Abstract
As structural biology trends towards larger and more complex biomolecular targets, a detailed understanding of their interactions and underlying structures and dynamics is required. The development of methyl-TROSY has enabled NMR spectroscopy to provide atomic-resolution insight into the mechanisms of large molecular assemblies in solution. However, the applicability of methyl-TROSY has been hindered by the laborious and time-consuming resonance assignment process, typically performed with domain fragmentation, site-directed mutagenesis, and analysis of NOE data in the context of a crystal structure. In response, several structure-based automatic methyl assignment strategies have been developed over the past decade. Here, we present a comprehensive analysis of all available methods and compare their input data requirements, algorithmic strategies, and reported performance. In general, the methods fall into two categories: those that primarily rely on inter-methyl NOEs, and those that utilize methyl PRE- and PCS-based restraints. We discuss their advantages and limitations, and highlight the potential benefits from standardizing and combining different methods.
Collapse
Affiliation(s)
- Iva Pritišanac
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - T Reid Alderson
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Güntert
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany; Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland; Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
13
|
Recent developments in isotope-aided NMR methods for supramolecular protein complexes –SAIL aromatic TROSY. Biochim Biophys Acta Gen Subj 2020; 1864:129439. [DOI: 10.1016/j.bbagen.2019.129439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/03/2019] [Accepted: 09/13/2019] [Indexed: 11/18/2022]
|
14
|
Takeuchi K, Baskaran K, Arthanari H. Structure determination using solution NMR: Is it worth the effort? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:195-201. [PMID: 31345771 DOI: 10.1016/j.jmr.2019.07.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
It has been almost 40 years since solution NMR joined X-ray crystallography as a technique for determining high-resolution structures of proteins. Since then NMR derived structure has contributed in fundamental ways to our understanding of the function of biomolecules. With the already existing mature field of X-ray crystallography and the emergence of cryo-EM as techniques to tackle high-resolution structures of large protein complexes, the role of NMR in structure determination has been questioned. However, NMR has the unique ability to recapitulate the dynamic motion of proteins in their structures, while size limitations of the biomolecular systems that can be routinely studied still present challenges. The field has continually developed methodology and instrumentation since its introduction, pushing its frontiers and redefining its limits. Here we present a brief overview of NMR-based structure determination over the past 40 years. We outline the current state of the field and look ahead to the challenges that still need to be addressed to realize the future potential of NMR as a structural technique.
Collapse
Affiliation(s)
- Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery (Molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Kumaran Baskaran
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI 53706, United States
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, United States.
| |
Collapse
|
15
|
Gauto DF, Macek P, Barducci A, Fraga H, Hessel A, Terauchi T, Gajan D, Miyanoiri Y, Boisbouvier J, Lichtenecker R, Kainosho M, Schanda P. Aromatic Ring Dynamics, Thermal Activation, and Transient Conformations of a 468 kDa Enzyme by Specific 1H- 13C Labeling and Fast Magic-Angle Spinning NMR. J Am Chem Soc 2019; 141:11183-11195. [PMID: 31199882 DOI: 10.1021/jacs.9b04219] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aromatic residues are located at structurally important sites of many proteins. Probing their interactions and dynamics can provide important functional insight but is challenging in large proteins. Here, we introduce approaches to characterize the dynamics of phenylalanine residues using 1H-detected fast magic-angle spinning (MAS) NMR combined with a tailored isotope-labeling scheme. Our approach yields isolated two-spin systems that are ideally suited for artifact-free dynamics measurements, and allows probing motions effectively without molecular weight limitations. The application to the TET2 enzyme assembly of ∼0.5 MDa size, the currently largest protein assigned by MAS NMR, provides insights into motions occurring on a wide range of time scales (picoseconds to milliseconds). We quantitatively probe ring-flip motions and show the temperature dependence by MAS NMR measurements down to 100 K. Interestingly, favorable line widths are observed down to 100 K, with potential implications for DNP NMR. Furthermore, we report the first 13C R1ρ MAS NMR relaxation-dispersion measurements and detect structural excursions occurring on a microsecond time scale in the entry pore to the catalytic chamber and at a trimer interface that was proposed as the exit pore. We show that the labeling scheme with deuteration at ca. 50 kHz MAS provides superior resolution compared to 100 kHz MAS experiments with protonated, uniformly 13C-labeled samples.
Collapse
Affiliation(s)
- Diego F Gauto
- Univ. Grenoble Alpes, CEA, CNRS , Institut de Biologie Structurale (IBS) , 71, avenue des martyrs , F-38044 Grenoble , France
| | - Pavel Macek
- Univ. Grenoble Alpes, CEA, CNRS , Institut de Biologie Structurale (IBS) , 71, avenue des martyrs , F-38044 Grenoble , France
| | - Alessandro Barducci
- Centre de Biochimie Structurale (CBS) , INSERM, CNRS, Université de Montpellier , Montpellier , France
| | - Hugo Fraga
- Univ. Grenoble Alpes, CEA, CNRS , Institut de Biologie Structurale (IBS) , 71, avenue des martyrs , F-38044 Grenoble , France.,Departamento de Biomedicina , Faculdade de Medicina da Universidade do Porto , Porto , Portugal.,i3S, Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal
| | - Audrey Hessel
- Univ. Grenoble Alpes, CEA, CNRS , Institut de Biologie Structurale (IBS) , 71, avenue des martyrs , F-38044 Grenoble , France
| | - Tsutomu Terauchi
- Graduate School of Science , Tokyo Metropolitan University , 1-1 Minami-ohsawa , Hachioji , Tokyo 192-0397 , Japan.,SI Innovation Center , Taiyo Nippon Sanso Corp. , 2008-2 Wada , Tama-city , Tokyo 206-0001 , Japan
| | - David Gajan
- Université de Lyon , Centre de RMN à Hauts Champs de Lyon CRMN, FRE 2034, Université de Lyon, CNRS, ENS Lyon, UCB Lyon 1 , 69100 Villeurbanne , France
| | - Yohei Miyanoiri
- Institute of Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan.,Structural Biology Research Center, Graduate School of Sciences , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - Jerome Boisbouvier
- Univ. Grenoble Alpes, CEA, CNRS , Institut de Biologie Structurale (IBS) , 71, avenue des martyrs , F-38044 Grenoble , France
| | - Roman Lichtenecker
- Institute of Organic Chemistry , University of Vienna , Währinger Str. 38 , 1090 Vienna , Austria
| | - Masatsune Kainosho
- Graduate School of Science , Tokyo Metropolitan University , 1-1 Minami-ohsawa , Hachioji , Tokyo 192-0397 , Japan.,Structural Biology Research Center, Graduate School of Sciences , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - Paul Schanda
- Univ. Grenoble Alpes, CEA, CNRS , Institut de Biologie Structurale (IBS) , 71, avenue des martyrs , F-38044 Grenoble , France
| |
Collapse
|
16
|
Yanaka S, Yagi H, Yogo R, Yagi-Utsumi M, Kato K. Stable isotope labeling approaches for NMR characterization of glycoproteins using eukaryotic expression systems. JOURNAL OF BIOMOLECULAR NMR 2018; 71:193-202. [PMID: 29492730 DOI: 10.1007/s10858-018-0169-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/17/2018] [Indexed: 05/25/2023]
Abstract
Glycoproteins are characterized by the heterogeneous and dynamic nature of their glycan moieties, which hamper crystallographic analysis. NMR spectroscopy provides potential advantages in dealing with such complicated systems, given that the target molecules can be isotopically labeled. Methods of metabolic isotope labeling in recombinant glycoproteins have been developed recently using a variety of eukaryotic production vehicles, including mammalian, yeast, insect, and plant cells, each of which has a distinct N-glycan diversification pathway. Yeast genetic engineering has enabled the overexpression of homogeneous high-mannose-type oligosaccharides with 13C labeling for NMR characterization of their conformational dynamics. The utility of stable isotope-assisted NMR spectroscopy has also been demonstrated using the Fc fragment of immunoglobulin G (IgG) as a model glycoprotein, providing useful information regarding intramolecular carbohydrate-protein interactions. Transverse relaxation optimization of intact IgG with a molecular mass of 150 kDa has been achieved by tailored deuteration of selected amino acid residues using a mammalian expression system. This offers a useful probe for the characterization of molecular interaction networks in multimolecular crowded systems typified by serum. Perspectives regarding the development of techniques for tailoring glycoform designs and isotope labeling of recombinant glycoproteins are also discussed.
Collapse
Affiliation(s)
- Saeko Yanaka
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Rina Yogo
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Maho Yagi-Utsumi
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Koichi Kato
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
17
|
Schörghuber J, Geist L, Platzer G, Feichtinger M, Bisaccia M, Scheibelberger L, Weber F, Konrat R, Lichtenecker RJ. Late metabolic precursors for selective aromatic residue labeling. JOURNAL OF BIOMOLECULAR NMR 2018; 71:129-140. [PMID: 29808436 PMCID: PMC6096522 DOI: 10.1007/s10858-018-0188-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/19/2018] [Indexed: 06/08/2023]
Abstract
In recent years, we developed a toolbox of heavy isotope containing compounds, which serve as metabolic amino acid precursors in the E. coli-based overexpression of aromatic residue labeled proteins. Our labeling techniques show excellent results both in terms of selectivity and isotope incorporation levels. They are additionally distinguished by low sample production costs and meet the economic demands to further implement protein NMR spectroscopy as a routinely used method in drug development processes. Different isotopologues allow for the assembly of optimized protein samples, which fulfill the requirements of various NMR experiments to elucidate protein structures, analyze conformational dynamics, or probe interaction surfaces. In the present article, we want to summarize the precursors we developed so far and give examples of their special value in the probing of protein-ligand interaction.
Collapse
Affiliation(s)
- Julia Schörghuber
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Leonhard Geist
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Gerald Platzer
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Michael Feichtinger
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Marilena Bisaccia
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Lukas Scheibelberger
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Frederik Weber
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Robert Konrat
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Roman J Lichtenecker
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria.
| |
Collapse
|
18
|
Kainosho M, Miyanoiri Y, Terauchi T, Takeda M. Perspective: next generation isotope-aided methods for protein NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2018; 71:119-127. [PMID: 29934841 PMCID: PMC6096516 DOI: 10.1007/s10858-018-0198-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 05/03/2023]
Abstract
In this perspective, we describe our efforts to innovate the current isotope-aided NMR methodology to investigate biologically important large proteins and protein complexes, for which only limited structural information could be obtained by conventional NMR approaches. At the present time, it is widely believed that only backbone amide and methyl signals are amenable for investigating such difficult targets. Therefore, our primary mission is to disseminate our novel knowledge within the biological NMR community; specifically, that any type of NMR signals other than methyl and amide groups can be obtained, even for quite large proteins, by optimizing the transverse relaxation properties by isotope labeling methods. The idea of "TROSY by isotope labeling" has been cultivated through our endeavors aiming to improve the original stereo-array isotope labeling (SAIL) method (Kainosho et al., Nature 440:52-57, 2006). The SAIL TROSY methods subsequently culminated in the successful observations of individual NMR signals for the side-chain aliphatic and aromatic 13CH groups in large proteins, as exemplified by the 82 kDa single domain protein, malate synthase G. Meanwhile, the expected role of NMR spectroscopy in the emerging integrative structural biology has been rapidly shifting, from structure determination to the acquisition of biologically relevant structural dynamics, which are poorly accessible by X-ray crystallography or cryo-electron microscopy. Therefore, the newly accessible NMR probes, in addition to the methyl and amide signals, will open up a new horizon for investigating difficult protein targets, such as membrane proteins and supramolecular complexes, by NMR spectroscopy. We briefly introduce our latest results, showing that the protons attached to 12C-atoms give profoundly narrow 1H-NMR signals even for large proteins, by isolating them from the other protons using the selective deuteration. The direct 1H observation methods exhibit the highest sensitivities, as compared to heteronuclear multidimensional spectroscopy, in which the 1H-signals are acquired via the spin-coupled 13C- and/or 15N-nuclei. Although the selective deuteration method was launched a half century ago, as the first milestone in the following prosperous history of isotope-aided NMR methods, our results strongly imply that the low-dimensional 1H-direct observation NMR methods should be revitalized in the coming era, featuring ultrahigh-field spectrometers beyond 1 GHz.
Collapse
Affiliation(s)
- Masatsune Kainosho
- Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397 Japan
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Yohei Miyanoiri
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
- Research Center for State-of-the-Art Functional Protein Analysis, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Tsutomu Terauchi
- SI Innovation Center, Taiyo Nippon Sanso Corp., 2008-2 Wada, Tama-city, Tokyo 206-0001 Japan
| | - Mitsuhiro Takeda
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973 Japan
| |
Collapse
|
19
|
Pritišanac I, Würz JM, Güntert P. Fully automated assignment of methyl resonances of a 36 kDa protein dimer from sparse NOESY data. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/1036/1/012008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Isotope-Aided Methods for Biological NMR Spectroscopy: Past, Present, and Future. EXPERIMENTAL APPROACHES OF NMR SPECTROSCOPY 2018. [PMCID: PMC7122432 DOI: 10.1007/978-981-10-5966-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This chapter starts by providing a historical background of our research endeavors over the past half-century to develop various isotope-aided methods in biological NMR spectroscopy, since innovations bloom only on the rich ground cultivated by previous investigators. We then focused on the stereo-array isotope-labeling (SAIL) method, one of our recent accomplishments, which culminates the isotope-aided NMR technologies for structural studies of proteins from various aspects: accurate structural determinations of large proteins, elaboration for automated structural determination, highly efficient and versatile residue-selective methyl labeling with newly developed auxotrophic E. coli strains, large-amplitude slow-breathing motion (LASBM) as revealed by the aromatic ring flipping of the residues in ligand-binding interfaces, and applications of the deuterium-induced 13C-NMR isotope shift to investigate the hydrogen exchange phenomena of side-chain polar groups. Meanwhile, the expected role of NMR spectroscopy has been rapidly shifting from structure determinations to dynamics studies of biologically interesting targets, such as membrane proteins and larger protein complexes. The dynamic aspects of protein–protein and protein–ligand interactions are closely related to their biological functions and can be efficiently studied by using proteins residue selectively labeled with amino acids bearing optimized labeling patterns, prepared by cellular expression. We are absolutely confident that biological NMR spectroscopy will continually develop with further innovations of isotope-labeling technologies in the coming era, featuring ultrahigh field spectrometers beyond 1 GHz.
Collapse
|
21
|
Ishii Y, Wickramasinghe A, Matsuda I, Endo Y, Ishii Y, Nishiyama Y, Nemoto T, Kamihara T. Progress in proton-detected solid-state NMR (SSNMR): Super-fast 2D SSNMR collection for nano-mole-scale proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 286:99-109. [PMID: 29223566 PMCID: PMC6387629 DOI: 10.1016/j.jmr.2017.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 05/22/2023]
Abstract
Proton-detected solid-state NMR (SSNMR) spectroscopy has attracted much attention due to its excellent sensitivity and effectiveness in the analysis of trace amounts of amyloid proteins and other important biological systems. In this perspective article, we present the recent sensitivity limit of 1H-detected SSNMR using "ultra-fast" magic-angle spinning (MAS) at a spinning rate (νR) of 80-100 kHz. It was demonstrated that the high sensitivity of 1H-detected SSNMR at νR of 100 kHz and fast recycling using the paramagnetic-assisted condensed data collection (PACC) approach permitted "super-fast" collection of 1H-detected 2D protein SSNMR. A 1H-detected 2D 1H-15N correlation SSNMR spectrum for ∼27 nmol of a uniformly 13C- and 15N-labeled GB1 protein sample in microcrystalline form was acquired in only 9 s with 50% non-uniform sampling and short recycle delays of 100 ms. Additional data suggests that it is now feasible to detect as little as 1 nmol of the protein in 5.9 h by 1H-detected 2D 1H-15N SSNMR at a nominal signal-to-noise ratio of five. The demonstrated sensitivity is comparable to that of modern solution protein NMR. Moreover, this article summarizes the influence of ultra-fast MAS and 1H-detection on the spectral resolution and sensitivity of protein SSNMR. Recent progress in signal assignment and structural elucidation by 1H-detected protein SSNMR is outlined with both theoretical and experimental aspects.
Collapse
Affiliation(s)
- Yoshitaka Ishii
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States; The RIKEN Center for Life Science Technologies (CLST), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Ayesha Wickramasinghe
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States; The RIKEN Center for Life Science Technologies (CLST), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Isamu Matsuda
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Yuki Endo
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Yuji Ishii
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Yusuke Nishiyama
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan; RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - Takahiro Nemoto
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Takayuki Kamihara
- The RIKEN Center for Life Science Technologies (CLST), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
22
|
Stable-Isotope-Aided NMR Spectroscopy. MODERN MAGNETIC RESONANCE 2018. [PMCID: PMC7123952 DOI: 10.1007/978-3-319-28388-3_48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Beck Erlach M, Koehler J, Crusca E, Munte CE, Kainosho M, Kremer W, Kalbitzer HR. Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH 2. JOURNAL OF BIOMOLECULAR NMR 2017; 69:53-67. [PMID: 28913741 DOI: 10.1007/s10858-017-0134-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For HN, N and Cα the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.
Collapse
Affiliation(s)
- Markus Beck Erlach
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Joerg Koehler
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Edson Crusca
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, 14800-060, Brazil
| | - Claudia E Munte
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
- Physics Institute of São Carlos, University of São Paulo, São Carlos, 13566-590, Brazil
| | - Masatsune Kainosho
- Graduate School of Science and Technology, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany
| | - Hans Robert Kalbitzer
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
24
|
NMR-based automated protein structure determination. Arch Biochem Biophys 2017; 628:24-32. [PMID: 28263718 DOI: 10.1016/j.abb.2017.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/18/2017] [Accepted: 02/28/2017] [Indexed: 11/21/2022]
Abstract
NMR spectra analysis for protein structure determination can now in many cases be performed by automated computational methods. This overview of the computational methods for NMR protein structure analysis presents recent automated methods for signal identification in multidimensional NMR spectra, sequence-specific resonance assignment, collection of conformational restraints, and structure calculation, as implemented in the CYANA software package. These algorithms are sufficiently reliable and integrated into one software package to enable the fully automated structure determination of proteins starting from NMR spectra without manual interventions or corrections at intermediate steps, with an accuracy of 1-2 Å backbone RMSD in comparison with manually solved reference structures.
Collapse
|
25
|
Anglister J, Srivastava G, Naider F. Detection of intermolecular NOE interactions in large protein complexes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 97:40-56. [PMID: 27888839 DOI: 10.1016/j.pnmrs.2016.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/04/2016] [Accepted: 08/07/2016] [Indexed: 05/12/2023]
Abstract
Intermolecular NOE interactions are invaluable for structure determination of biomolecular complexes by NMR and they represent the "gold-standard" amongst NMR measurements for characterizing interfaces. These NOEs constitute only a small fraction of the observed NOEs in a complex and are usually weaker than many of the intramolecular NOEs. A number of methods have been developed to remove the intramolecular NOEs that interfere with the identification of intermolecular NOEs. NMR experiments used to observe intermolecular NOE interactions in large protein complexes must cope with the short T2 relaxation time of the protons and heteronuclei in these complexes because they result in severe losses in sensitivity. The isotope-edited/isotope-filtered experiment is a powerful method for extraction of intermolecular NOEs in biomolecular complexes. Its application to large protein complexes is limited because of severe losses in signal-to-noise ratio caused by delays in the pulse sequence necessary for the multiple magnetization transfer steps between protons and heteronuclei. Isotope-edited/isotope-edited experiments, in which one protein is usually labeled with 13C and the other is labeled with 15N, reduce possible artifacts in the filtering experiments and improve somewhat the sensitivity of these experiments. Sensitivity can also be improved by deuteration of the components of the complex in order to replace either or both of the filtering or editing steps. Asymmetric deuteration, where aromatic residues in one protein and non-aromatic amino acids in the other are reverse protonated, can eliminate the editing and the filtering steps altogether, thus maintaining high sensitivity even for large proteins complexes. Difference spectroscopy and the use of 2D NOESY experiments without using editing or filtering steps can significantly increase the signal-to-noise ratio in experiments aimed at observing intermolecular NOEs. The measurement of NOESY spectra of three different preparations of a heterodimeric complex under investigation in which one or neither of the components is uniformly deuterated, and calculation of a double difference spectrum provides information on all intermolecular NOEs of non-exchangeable protons. Recent studies indicate that many protein-protein interactions are actually between a protein and a linear peptide recognition motif of the second protein, and determinants represented by linear peptides contribute significantly to the binding energy. NMR is a very versatile method to study peptide-protein interactions over a wide range of binding affinities and binding kinetics. Protein-peptide interactions in complexes exhibiting tight binding can be studied using single and/or multiple deuteration of the peptide residues and measuring a difference NOESY spectrum. This difference spectrum will show exclusively intra- and intermolecular interactions of the peptide protons that were deuterated. Transferred nuclear Overhauser spectroscopy (TRNOE) extends NMR to determine interactions within and between a weakly-bound rapidly-exchanging peptide and its protein target. TRNOE, together with asymmetric deuteration, is applicable to complexes up to ∼100KDa and is highly sensitive, taking advantage of the long average T2 of the peptide protons. Among the methods described in this review, TRNOE has the best potential to determine intermolecular NOEs for the upper molecular weight limit of proteins that can be studied in detail by NMR.
Collapse
Affiliation(s)
- Jacob Anglister
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Gautam Srivastava
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Fred Naider
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, New York 10314, USA; Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel(1)
| |
Collapse
|
26
|
Takeda M, Miyanoiri Y, Terauchi T, Kainosho M. (13)C-NMR studies on disulfide bond isomerization in bovine pancreatic trypsin inhibitor (BPTI). JOURNAL OF BIOMOLECULAR NMR 2016; 66:37-53. [PMID: 27566173 DOI: 10.1007/s10858-016-0055-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Conformational isomerization of disulfide bonds is associated with the dynamics and thus the functional aspects of proteins. However, our understanding of the isomerization is limited by experimental difficulties in probing it. We explored the disulfide conformational isomerization of the Cys14-Cys38 disulfide bond in bovine pancreatic trypsin inhibitor (BPTI), by performing an NMR line-shape analysis of its Cys carbon peaks. In this approach, 1D (13)C spectra were recorded at small temperature intervals for BPTI samples selectively labeled with site-specifically (13)C-enriched Cys, and the recorded peaks were displayed in the order of the temperature after the spectral scales were normalized to a carbon peak. Over the profile of the line-shape, exchange broadening that altered with temperature was manifested for the carbon peaks of Cys14 and Cys38. The Cys14-Cys38 disulfide bond reportedly exists in equilibrium between a high-populated (M) and two low-populated states (m c14 and m c38). Consistent with the three-site exchange model, biphasic exchange broadening arising from the two processes was observed for the peak of the Cys14 α-carbon. As the exchange broadening is maximized when the exchange rate equals the chemical shift difference in Hz between equilibrating sites, semi-quantitative information that was useful for establishing conditions for (13)C relaxation dispersion experiments was obtained through the carbon line-shape profile. With respect to the m c38 isomerization, the (1)H-(13)C signals at the β-position of the minor state were resolved from the major peaks and detected by exchange experiments at a low temperature.
Collapse
Affiliation(s)
- Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yohei Miyanoiri
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Tsutomu Terauchi
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
- SAIL Technologies Inc., 2008-2 Wada, Tama, Tokyo, 206-0001, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
27
|
O'Dell WB, Bodenheimer AM, Meilleur F. Neutron protein crystallography: A complementary tool for locating hydrogens in proteins. Arch Biochem Biophys 2016; 602:48-60. [DOI: 10.1016/j.abb.2015.11.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
|
28
|
Miyanoiri Y, Ishida Y, Takeda M, Terauchi T, Inouye M, Kainosho M. Highly efficient residue-selective labeling with isotope-labeled Ile, Leu, and Val using a new auxotrophic E. coli strain. JOURNAL OF BIOMOLECULAR NMR 2016; 65:109-19. [PMID: 27272978 DOI: 10.1007/s10858-016-0042-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/28/2016] [Indexed: 05/20/2023]
Abstract
We recently developed a practical protocol for preparing proteins bearing stereo-selectively (13)C-methyl labeled leucines and valines, instead of the commonly used (13)C-methyl labeled precursors for these amino acids, by E. coli cellular expression. Using this protocol, proteins with any combinations of isotope-labeled or unlabeled Leu and Val residues were prepared, including some that could not be prepared by the precursor methods. However, there is still room for improvement in the labeling efficiencies for Val residues, using the methods with labeled precursors or Val itself. This is due to the fact that the biosynthesis of Val could not be sufficiently suppressed, even by the addition of large amounts of Val or its precursors. In this study, we completely solved this problem by using a mutant strain derived from E. coli BL21(DE3), in which the metabolic pathways depending on two enzymes, dihydroxy acid dehydratase and β-isopropylmalate dehydrogenase, are completely aborted by deleting the ilvD and leuB genes, which respectively encode these enzymes. The ΔilvD E. coli mutant terminates the conversion from α,β-dihydroxyisovalerate to α-ketoisovalerate, and the conversion from α,β-dihydroxy-α-methylvalerate to α-keto-β-methylvalerate, which produce the preceding precursors for Val and Ile, respectively. By the further deletion of the leuB gene, the conversion from Val to Leu was also fully terminated. Taking advantage of the double-deletion mutant, ΔilvDΔleuB E. coli BL21(DE3), an efficient and residue-selective labeling method with various isotope-labeled Ile, Leu, and Val residues was established.
Collapse
Affiliation(s)
- Yohei Miyanoiri
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yojiro Ishida
- Center for Advanced Biotechnology and Medicine, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Tsutomu Terauchi
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, 192-0397, Japan
- SAIL Technologies, Inc., 2008-2 Wada, Tama, Tokyo, 206-0001, Japan
| | - Masayori Inouye
- Center for Advanced Biotechnology and Medicine, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, 192-0397, Japan.
| |
Collapse
|
29
|
Wang S, Parthasarathy S, Nishiyama Y, Endo Y, Nemoto T, Yamauchi K, Asakura T, Takeda M, Terauchi T, Kainosho M, Ishii Y. Nano-mole scale side-chain signal assignment by 1H-detected protein solid-state NMR by ultra-fast magic-angle spinning and stereo-array isotope labeling. PLoS One 2015; 10:e0122714. [PMID: 25856081 PMCID: PMC4391754 DOI: 10.1371/journal.pone.0122714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/14/2015] [Indexed: 11/19/2022] Open
Abstract
We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52-57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.
Collapse
Affiliation(s)
- Songlin Wang
- Department of Chemistry and University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sudhakar Parthasarathy
- Department of Chemistry and University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yusuke Nishiyama
- JEOL RESONANCE Inc., Akishima, Tokyo, Japan
- RIKEN CLST-JEOL collaboration center, RIKEN, Yokohama, Kanagawa, Japan
| | - Yuki Endo
- JEOL RESONANCE Inc., Akishima, Tokyo, Japan
| | | | - Kazuo Yamauchi
- School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
- Nuclear Magnetic Resonance Core Lab., King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Furocho, Chikusa-ku, Nagoya University, Nagoya, Japan 464–8601
| | - Tsutomu Terauchi
- SAIL Technologies Co., Inc., Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Furocho, Chikusa-ku, Nagoya University, Nagoya, Japan 464–8601
- Center for Priority Areas, Tokyo Metropolitan University, Tokyo, Japan
| | - Yoshitaka Ishii
- Department of Chemistry and University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Structural Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
30
|
Schmidt E, Ikeya T, Takeda M, Löhr F, Buchner L, Ito Y, Kainosho M, Güntert P. Automated resonance assignment of the 21kDa stereo-array isotope labeled thioldisulfide oxidoreductase DsbA. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 249:88-93. [PMID: 25462951 DOI: 10.1016/j.jmr.2014.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
The automated chemical shift assignment algorithm FLYA has been extended for use with stereo-array isotope labeled (SAIL) proteins to determine the sequence-specific resonance assignments of large proteins. Here we present the assignment of the backbone and sidechain chemical shifts of the 21kDa thioldisulfide oxidoreductase DsbA from Escherichia coli that were determined with the SAIL-FLYA algorithm in conjunction with automated peak picking. No manual corrections of peak lists or assignments were applied. The assignments agreed with manually determined reference assignments in 95.4% of the cases if 16 input spectra were used, 94.1% if only 3D 13C/15N-resolved NOESY, CBCA(CO)NH, and 2D [13C/15N,1H]-HSQC were used, and 86.8% if exclusively 3D 13C/15N-resolved NOESY spectra were used. Considering only the assignments that are classified as reliable by the SAIL-FLYA algorithm, the degrees of agreement increased to 97.5%, 96.5%, and 94.2%, respectively. With our approach it is thus possible to automatically obtain almost complete and correct assignments of proteins larger than 20kDa.
Collapse
Affiliation(s)
- Elena Schmidt
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute for Advanced Studies, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Teppei Ikeya
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Frank Löhr
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute for Advanced Studies, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Lena Buchner
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute for Advanced Studies, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Yutaka Ito
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masatsune Kainosho
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | - Peter Güntert
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute for Advanced Studies, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
31
|
Wang S, Ladizhansky V. Recent advances in magic angle spinning solid state NMR of membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 82:1-26. [PMID: 25444696 DOI: 10.1016/j.pnmrs.2014.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 05/14/2023]
Abstract
Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished. Oriented sample NMR, which can be applied to membrane proteins that are uniformly aligned in the magnetic field, has been successful in determining the backbone structures of a handful of membrane proteins. Owing to methodological and technological developments, Magic Angle Spinning (MAS) solid-state NMR (ssNMR) spectroscopy has emerged as another major technique for the complete characterization of the structure and dynamics of membrane proteins. First developed on peptides and small microcrystalline proteins, MAS ssNMR has recently been successfully applied to large membrane proteins. In this review we describe recent progress in MAS ssNMR methodologies, which are now available for studies of membrane protein structure determination, and outline a few examples, which highlight the broad capability of ssNMR spectroscopy.
Collapse
Affiliation(s)
- Shenlin Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
32
|
Cao C, Chen JL, Yang Y, Huang F, Otting G, Su XC. Selective (15)N-labeling of the side-chain amide groups of asparagine and glutamine for applications in paramagnetic NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2014; 59:251-61. [PMID: 25002097 DOI: 10.1007/s10858-014-9844-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/01/2014] [Indexed: 05/24/2023]
Abstract
The side-chain amide groups of asparagine and glutamine play important roles in stabilizing the structural fold of proteins, participating in hydrogen-bonding networks and protein interactions. Selective (15)N-labeling of side-chain amides, however, can be a challenge due to enzyme-catalyzed exchange of amide groups during protein synthesis. In the present study, we developed an efficient way of selectively labeling the side chains of asparagine, or asparagine and glutamine residues with (15)NH2. Using the biosynthesis pathway of tryptophan, a protocol was also established for simultaneous selective (15)N-labeling of the side-chain NH groups of asparagine, glutamine, and tryptophan. In combination with site-specific tagging of the target protein with a lanthanide ion, we show that selective detection of (15)N-labeled side-chains of asparagine and glutamine allows determination of magnetic susceptibility anisotropy tensors based exclusively on pseudocontact shifts of amide side-chain protons.
Collapse
Affiliation(s)
- Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | | | | | | | | | | |
Collapse
|
33
|
Sugiki T, Fujiwara T, Kojima C. Latest approaches for efficient protein production in drug discovery. Expert Opin Drug Discov 2014; 9:1189-204. [PMID: 25046062 DOI: 10.1517/17460441.2014.941801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pharmaceutical research looks to discover and develop new compounds which influence the function of disease-associated proteins or respective protein-protein interactions. Various scientific methods are available to discover those compounds, such as high-throughput screening of a library comprising chemical or natural compounds and computational rational drug design. The goal of these methods is to identify the seed compounds of future pharmaceuticals through the use of these technologies and laborious experiments. For every drug discovery effort made, the possession of accurate functional and structural information of the disease-associated proteins helps to assist drug development. Therefore, the investigation of the tertiary structure of disease-associated proteins and respective protein-protein interactions at the atomic level are of crucial importance for successful drug discovery. AREAS COVERED In this review article, the authors broadly outline current techniques utilized for recombinant protein production. In particular, the authors focus on bacterial expression systems using Escherichia coli as the living bioreactor. EXPERT OPINION The recently developed pCold-glutathione S-transferase (GST) system is one of the best systems for soluble protein expression in E. coli. Where the pCold-GST system does not succeed, it is preferable to change the host from E. coli to higher organisms such as yeast expression systems like Pichia pastoris and Kluyveromyces lactis. The selection of an appropriate expression system for each desired protein and the optimization of experimental conditions significantly contribute toward the successful outcome of any drug discovery study.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Osaka University, Institute for Protein Research , 3-2, Yamadaoka, Suita, Osaka 565-0871 , Japan
| | | | | |
Collapse
|
34
|
Göbl C, Madl T, Simon B, Sattler M. NMR approaches for structural analysis of multidomain proteins and complexes in solution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 80:26-63. [PMID: 24924266 DOI: 10.1016/j.pnmrs.2014.05.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/14/2014] [Indexed: 05/22/2023]
Abstract
NMR spectroscopy is a key method for studying the structure and dynamics of (large) multidomain proteins and complexes in solution. It plays a unique role in integrated structural biology approaches as especially information about conformational dynamics can be readily obtained at residue resolution. Here, we review NMR techniques for such studies focusing on state-of-the-art tools and practical aspects. An efficient approach for determining the quaternary structure of multidomain complexes starts from the structures of individual domains or subunits. The arrangement of the domains/subunits within the complex is then defined based on NMR measurements that provide information about the domain interfaces combined with (long-range) distance and orientational restraints. Aspects discussed include sample preparation, specific isotope labeling and spin labeling; determination of binding interfaces and domain/subunit arrangements from chemical shift perturbations (CSP), nuclear Overhauser effects (NOEs), isotope editing/filtering, cross-saturation, and differential line broadening; and based on paramagnetic relaxation enhancements (PRE) using covalent and soluble spin labels. Finally, the utility of complementary methods such as small-angle X-ray or neutron scattering (SAXS, SANS), electron paramagnetic resonance (EPR) or fluorescence spectroscopy techniques is discussed. The applications of NMR techniques are illustrated with studies of challenging (high molecular weight) protein complexes.
Collapse
Affiliation(s)
- Christoph Göbl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Tobias Madl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Molecular Biology, University of Graz, Graz, Austria.
| | - Bernd Simon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
35
|
Takeda M, Miyanoiri Y, Terauchi T, Yang CJ, Kainosho M. Use of H/D isotope effects to gather information about hydrogen bonding and hydrogen exchange rates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 241:148-154. [PMID: 24656087 DOI: 10.1016/j.jmr.2013.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 06/03/2023]
Abstract
Polar side-chains in proteins play important roles in forming and maintaining three-dimensional structures, and thus participate in various biological functions. Until recently, most protein NMR studies have focused on the non-exchangeable protons of amino acid residues. The exchangeable protons attached to polar groups, such as hydroxyl (OH), sulfhydryl (SH), and amino (NH2) groups, have mostly been ignored, because in many cases these hydrogen atoms exchange too quickly with water protons, making NMR observations impractical. However, in certain environments, such as deep within the hydrophobic interior of a protein, or in a strong hydrogen bond to other polar groups or interacting ligands, the protons attached to polar groups may exhibit slow hydrogen exchange rates and thus become NMR accessible. To explore the structural and biological implications of the interactions involving polar side-chains, we have developed versatile NMR methods to detect such cases by observing the line shapes of (13)C NMR signals near the polar groups, which are affected by deuterium-proton isotope shifts in a mixture of H2O and D2O. These methods allow the detection of polar side-chains with slow hydrogen-deuterium exchange rates, and therefore provide opportunities to retrieve information about the polar side-chains, which might otherwise be overlooked by conventional NMR experiments. Future prospects of applications using deuterium-proton isotope shifts to retrieve missing structural and dynamic information of proteins are discussed.
Collapse
Affiliation(s)
- Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yohei Miyanoiri
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tsutomu Terauchi
- Center for Priority Areas, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji 192-0397, Japan; SAIL Technologies Co., Inc., 1-40 Suehiro-cho 1-chome, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Chun-Jiun Yang
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan; Center for Priority Areas, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji 192-0397, Japan.
| |
Collapse
|
36
|
Miyanoiri Y, Takeda M, Okuma K, Ono AM, Terauchi T, Kainosho M. Differential isotope-labeling for Leu and Val residues in a protein by E. coli cellular expression using stereo-specifically methyl labeled amino acids. JOURNAL OF BIOMOLECULAR NMR 2013; 57:237-249. [PMID: 24057411 DOI: 10.1007/s10858-013-9784-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
The (1)H-(13)C HMQC signals of the (13)CH3 moieties of Ile, Leu, and Val residues, in an otherwise deuterated background, exhibit narrow line-widths, and thus are useful for investigating the structures and dynamics of larger proteins. This approach, named methyl TROSY, is economical as compared to laborious methods using chemically synthesized site- and stereo-specifically isotope-labeled amino acids, such as stereo-array isotope labeling amino acids, since moderately priced, commercially available isotope-labeled α-keto acid precursors can be used to prepare the necessary protein samples. The Ile δ1-methyls can be selectively labeled, using isotope-labeled α-ketobutyrates as precursors. However, it is still difficult to prepare a residue-selectively Leu and Val labeled protein, since these residues share a common biosynthetic intermediate, α-ketoisovalerate. Another hindering drawback in using the α-ketoisovalerate precursor is the lack of stereo-selectivity for Leu and Val methyls. Here we present a differential labeling method for Leu and Val residues, using four kinds of stereo-specifically (13)CH3-labeled [U-(2)H;(15)N]-leucine and -valine, which can be efficiently incorporated into a protein using Escherichia coli cellular expression. The method allows the differential labeling of Leu and Val residues with any combination of stereo-specifically isotope-labeled prochiral methyls. Since relatively small amounts of labeled leucine and valine are required to prepare the NMR samples; i.e., 2 and 10 mg/100 mL of culture for leucine and valine, respectively, with sufficient isotope incorporation efficiency, this approach will be a good alternative to the precursor methods. The feasibility of the method is demonstrated for 82 kDa malate synthase G.
Collapse
Affiliation(s)
- Yohei Miyanoiri
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Orts J, Vögeli B, Riek R, Güntert P. Stereospecific assignments in proteins using exact NOEs. JOURNAL OF BIOMOLECULAR NMR 2013; 57:211-8. [PMID: 24136114 DOI: 10.1007/s10858-013-9780-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/04/2013] [Indexed: 05/27/2023]
Abstract
Recently developed methods to measure distances in proteins with high accuracy by "exact" nuclear Overhauser effects (eNOEs) make it possible to determine stereospecific assignments, which are particularly important to fully exploit the accuracy of the eNOE distance measurements. Stereospecific assignments are determined by comparing the eNOE-derived distances to protein structure bundles calculated without stereospecific assignments, or an independently determined crystal structure. The absolute and relative CYANA target function difference upon swapping the stereospecific assignment of a diastereotopic group yields the respective stereospecific assignment. We applied the method to the eNOE data set that has recently been obtained for the third immunoglobulin-binding domain of protein G (GB3). The 884 eNOEs provide relevant data for 47 of the total of 75 diastereotopic groups. Stereospecific assignments could be established for 45 diastereotopic groups (96 %) using the X-ray structure, or for 27 diastereotopic groups (57 %) using structures calculated with the eNOE data set without stereospecific assignments, all of which are in agreement with those determined previously. The latter case is relevant for structure determinations based on eNOEs. The accuracy of the eNOE distance measurements is crucial for making stereospecific assignments because applying the same method to the traditional NOE data set for GB3 with imprecise upper distance bounds yields only 13 correct stereospecific assignments using the X-ray structure or 2 correct stereospecific assignments using NMR structures calculated without stereospecific assignments.
Collapse
Affiliation(s)
- Julien Orts
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, 8093, Zurich, Switzerland
| | | | | | | |
Collapse
|
38
|
Tikole S, Jaravine V, Orekhov VY, Güntert P. Effects of NMR spectral resolution on protein structure calculation. PLoS One 2013; 8:e68567. [PMID: 23874675 PMCID: PMC3713035 DOI: 10.1371/journal.pone.0068567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/30/2013] [Indexed: 11/18/2022] Open
Abstract
Adequate digital resolution and signal sensitivity are two critical factors for protein structure determinations by solution NMR spectroscopy. The prime objective for obtaining high digital resolution is to resolve peak overlap, especially in NOESY spectra with thousands of signals where the signal analysis needs to be performed on a large scale. Achieving maximum digital resolution is usually limited by the practically available measurement time. We developed a method utilizing non-uniform sampling for balancing digital resolution and signal sensitivity, and performed a large-scale analysis of the effect of the digital resolution on the accuracy of the resulting protein structures. Structure calculations were performed as a function of digital resolution for about 400 proteins with molecular sizes ranging between 5 and 33 kDa. The structural accuracy was assessed by atomic coordinate RMSD values from the reference structures of the proteins. In addition, we monitored also the number of assigned NOESY cross peaks, the average signal sensitivity, and the chemical shift spectral overlap. We show that high resolution is equally important for proteins of every molecular size. The chemical shift spectral overlap depends strongly on the corresponding spectral digital resolution. Thus, knowing the extent of overlap can be a predictor of the resulting structural accuracy. Our results show that for every molecular size a minimal digital resolution, corresponding to the natural linewidth, needs to be achieved for obtaining the highest accuracy possible for the given protein size using state-of-the-art automated NOESY assignment and structure calculation methods.
Collapse
Affiliation(s)
- Suhas Tikole
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute of Advanced Studies, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Victor Jaravine
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute of Advanced Studies, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | | | - Peter Güntert
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute of Advanced Studies, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- * E-mail:
| |
Collapse
|
39
|
Kasinath V, Valentine KG, Wand AJ. A 13C labeling strategy reveals a range of aromatic side chain motion in calmodulin. J Am Chem Soc 2013; 135:9560-3. [PMID: 23767407 DOI: 10.1021/ja4001129] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NMR relaxation experiments often require site-specific isotopic enrichment schemes in order to allow for quantitative interpretation. Here we describe a new labeling scheme for site-specific (13)C-(1)H enrichment of a single ortho position of aromatic amino acid side chains in an otherwise perdeuterated background by employing a combination of [4-(13)C]erythrose and deuterated pyruvate during growth on deuterium oxide. This labeling scheme largely eliminates undesired contributions to (13)C relaxation and greatly simplifies the fitting of relaxation data using the Lipari-Szabo model-free formalism. This approach is illustrated with calcium-saturated vertebrate calmodulin and oxidized flavodoxin from Cyanobacterium anabaena . Analysis of (13)C relaxation in the aromatic groups of calcium-saturated calmodulin indicates a wide range of motion in the subnanosecond time regime.
Collapse
Affiliation(s)
- Vignesh Kasinath
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
40
|
Hefke F, Schmucki R, Güntert P. Prediction of peak overlap in NMR spectra. JOURNAL OF BIOMOLECULAR NMR 2013; 56:113-123. [PMID: 23585271 DOI: 10.1007/s10858-013-9727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
Peak overlap is one of the major factors complicating the analysis of biomolecular NMR spectra. We present a general method for predicting the extent of peak overlap in multidimensional NMR spectra and its validation using both, experimental data sets and Monte Carlo simulation. The method is based on knowledge of the magnetization transfer pathways of the NMR experiments and chemical shift statistics from the Biological Magnetic Resonance Data Bank. Assuming a normal distribution with characteristic mean value and standard deviation for the chemical shift of each observable atom, an analytic expression was derived for the expected overlap probability of the cross peaks. The analytical approach was verified to agree with the average peak overlap in a large number of individual peak lists simulated using the same chemical shift statistics. The method was applied to eight proteins, including an intrinsically disordered one, for which the prediction results could be compared with the actual overlap based on the experimentally measured chemical shifts. The extent of overlap predicted using only statistical chemical shift information was in good agreement with the overlap that was observed when the measured shifts were used in the virtual spectrum, except for the intrinsically disordered protein. Since the spectral complexity of a protein NMR spectrum is a crucial factor for protein structure determination, analytical overlap prediction can be used to identify potentially difficult proteins before conducting NMR experiments. Overlap predictions can be tailored to particular classes of proteins by preparing statistics from corresponding protein databases. The method is also suitable for optimizing recording parameters and labeling schemes for NMR experiments and improving the reliability of automated spectra analysis and protein structure determination.
Collapse
Affiliation(s)
- Frederik Hefke
- Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry, Frankfurt am Main, Germany
| | | | | |
Collapse
|
41
|
Buchner L, Schmidt E, Güntert P. Peakmatch: a simple and robust method for peak list matching. JOURNAL OF BIOMOLECULAR NMR 2013; 55:267-77. [PMID: 23329391 DOI: 10.1007/s10858-013-9708-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/09/2013] [Indexed: 05/26/2023]
Abstract
Peak lists are commonly used in NMR as input data for various software tools such as automatic assignment and structure calculation programs. Inconsistencies of chemical shift referencing among different peak lists or between peak and chemical shift lists can cause severe problems during peak assignment. Here we present a simple and robust tool to achieve self-consistency of the chemical shift referencing among a set of peak lists. The Peakmatch algorithm matches a set of peak lists to a specified reference peak list, neither of which have to be assigned. The chemical shift referencing offset between two peak lists is determined by optimizing an assignment-free match score function using either a complete grid search or downhill simplex optimization. It is shown that peak lists from many different types of spectra can be matched reliably as long as they contain at least two corresponding dimensions. Using a simulated peak list, the Peakmatch algorithm can also be used to obtain the optimal agreement between a chemical shift list and experimental peak lists. Combining these features makes Peakmatch a useful tool that can be applied routinely before automatic assignment or structure calculation in order to obtain an optimized input data set.
Collapse
Affiliation(s)
- Lena Buchner
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute for Advanced Studies, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | | | | |
Collapse
|
42
|
Loscha KV, Herlt AJ, Qi R, Huber T, Ozawa K, Otting G. Multiple-site labeling of proteins with unnatural amino acids. Angew Chem Int Ed Engl 2012; 51:2243-6. [PMID: 22298420 DOI: 10.1002/anie.201108275] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Indexed: 01/11/2023]
Affiliation(s)
- Karin V Loscha
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Takeda M, Terauchi T, Kainosho M. Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins. JOURNAL OF BIOMOLECULAR NMR 2012; 52:127-139. [PMID: 22131165 DOI: 10.1007/s10858-011-9587-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/08/2011] [Indexed: 05/31/2023]
Abstract
NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional [U-(13)C, (15)N]-proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across disulfide bonds. We describe a robust approach for alleviating such difficulties, by using proteins selectively labeled with an equimolar mixture of (2R, 3S)-[β-(13)C; α,β-(2)H(2)] Cys and (2R, 3R)-[β-(13)C; α,β-(2)H(2)] Cys, but otherwise fully deuterated. Since either one of the prochiral methylene protons, namely β2 (proS) or β3 (proR), is always replaced with a deuteron and no other protons remain in proteins prepared by this labeling scheme, all four of the expected NOEs for the β-protons across disulfide bonds could be measured without any spin diffusion interference, even with long mixing times. Therefore, the NOEs for the β2 and β3 pairs across each of the disulfide bonds could be observed at high sensitivity, even though they are 25% of the theoretical maximum for each pair. With the NOE information, the disulfide bond connectivities can be unambiguously established for proteins with multiple disulfide bonds. In addition, the conformations around disulfide bonds, namely χ(2) and χ(3), can be determined based on the precise proton distances of the four β-proton pairs, by quantitative measurements of the NOEs across the disulfide bonds. The feasibility of this method is demonstrated for bovine pancreatic trypsin inhibitor, which has three disulfide bonds.
Collapse
Affiliation(s)
- Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | | | | |
Collapse
|
44
|
Loscha KV, Herlt AJ, Qi R, Huber T, Ozawa K, Otting G. Mehrfache Markierung von Proteinen mit nichtnatürlichen Aminosäuren. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Verardi R, Traaseth NJ, Masterson LR, Vostrikov VV, Veglia G. Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 992:35-62. [PMID: 23076578 PMCID: PMC3555569 DOI: 10.1007/978-94-007-4954-2_3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Raffaello Verardi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | | | | | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
46
|
Tonelli M, Singarapu KK, Makino SI, Sahu SC, Matsubara Y, Endo Y, Kainosho M, Markley JL. Hydrogen exchange during cell-free incorporation of deuterated amino acids and an approach to its inhibition. JOURNAL OF BIOMOLECULAR NMR 2011; 51:467-76. [PMID: 21984356 PMCID: PMC3254145 DOI: 10.1007/s10858-011-9575-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/21/2011] [Indexed: 05/05/2023]
Abstract
Perdeuteration, selective deuteration, and stereo array isotope labeling (SAIL) are valuable strategies for NMR studies of larger proteins and membrane proteins. To minimize scrambling of the label, it is best to use cell-free methods to prepare selectively labeled proteins. However, when proteins are prepared from deuterated amino acids by cell-free translation in H(2)O, exchange reactions can lead to contamination of (2)H sites by (1)H from the solvent. Examination of a sample of SAIL-chlorella ubiquitin prepared by Escherichia coli cell-free synthesis revealed that exchange had occurred at several residues (mainly at Gly, Ala, Asp, Asn, Glu, and Gln). We present results from a study aimed at identifying the exchanging sites and level of exchange and at testing a strategy for minimizing (1)H contamination during wheat germ cell-free translation of proteins produced from deuterated amino acids by adding known inhibitors of transaminases (1 mM aminooxyacetic acid) and glutamate synthetase (0.1 mM L: -methionine sulfoximine). By using a wheat germ cell-free expression system, we produced [U-(2)H, (15)N]-chlorella ubiquitin without and with added inhibitors, and [U-(15)N]-chlorella ubiquitin as a reference to determine the extent of deuterium incorporation. We also prepared a sample of [U-(13)C, (15)N]-chlorella ubiquitin, for use in assigning the sites of exchange. The added inhibitors did not reduce the protein yield and were successful in blocking hydrogen exchange at C(α) sites, with the exception of Gly, and at C(β) sites of Ala. We discovered, in addition, that partial exchange occurred with or without the inhibitors at certain side-chain methyl and methylene groups: Asn-H(β), Asp-H(β), Gln-H(γ), Glu-H(γ), and Lys-H(ε). The side-chain labeling pattern, in particular the mixed chiral labeling resulting from partial exchange at certain sites, should be of interest in studies of large proteins, protein complexes, and membrane proteins.
Collapse
Affiliation(s)
- Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry, University of Wisconsin-Madison, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Miyanoiri Y, Takeda M, Jee J, Ono AM, Okuma K, Terauchi T, Kainosho M. Alternative SAIL-Trp for robust aromatic signal assignment and determination of the χ(2) conformation by intra-residue NOEs. JOURNAL OF BIOMOLECULAR NMR 2011; 51:425-35. [PMID: 21947837 DOI: 10.1007/s10858-011-9568-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/05/2011] [Indexed: 05/20/2023]
Abstract
Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U-(13)C,(15)N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the (13)C-(13)C and (13)C-(1)H spin coupling networks (Kainosho et al. in Nature 440:52-57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [ζ2,ζ3-(2)H(2); δ1,ε3,η2-(13)C(3); ε1-(15)N]-indole ring ([(12)C (γ,) ( 12) C(ε2)] SAIL-Trp), which provides a more robust way to correlate the (1)H(β), (1)H(α), and (1)H(N) to the (1)H(δ1) and (1)H(ε3) through the intra-residue NOEs. The assignment of the (1)H(δ1)/(13)C(δ1) and (1)H(ε3)/(13)C(ε3) signals can thus be transferred to the (1)H(ε1)/(15)N(ε1) and (1)H(η2)/(13)C(η2) signals, as with the previous type of SAIL-Trp, which has an extra (13)C at the C(γ) of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral β-methylene protons, which was (1)H(β2) in this experiment, one can determine the side-chain conformation of the Trp residue including the χ(2) angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [(12)C(γ),(12)C(ε2)] SAIL-Trp for the 12 kDa DNA binding domain of mouse c-Myb protein (Myb-R2R3), which contains six Trp residues.
Collapse
Affiliation(s)
- Yohei Miyanoiri
- Graduate School of Science, Structural Biology Research Center, Nagoya University, Furo-cho, Chikusa-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Orekhov VY, Jaravine VA. Analysis of non-uniformly sampled spectra with multi-dimensional decomposition. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 59:271-92. [PMID: 21920222 DOI: 10.1016/j.pnmrs.2011.02.002] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 02/21/2011] [Indexed: 05/04/2023]
Affiliation(s)
- Vladislav Yu Orekhov
- Swedish NMR Centre, University of Gothenburg, Box 465, 40530 Gothenburg, Sweden.
| | | |
Collapse
|
49
|
Nietlispach D, Gautier A. Solution NMR studies of polytopic α-helical membrane proteins. Curr Opin Struct Biol 2011; 21:497-508. [PMID: 21775128 DOI: 10.1016/j.sbi.2011.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/15/2011] [Accepted: 06/21/2011] [Indexed: 01/08/2023]
Abstract
NMR spectroscopy has established itself as one of the main techniques for the structural study of integral membrane proteins. Remarkably, over the last few years, substantial progress has been achieved in the structure determination of increasingly complex polytopical α-helical membrane proteins, with their size approaching ∼100kDa. Such advances are the result of significant improvements in NMR methodology, sample preparation and powerful selective isotope labelling schemes. We review the requirements facilitating such work based on the more recent solution NMR studies of α-helical proteins. While the majority of such studies still use detergent-solubilized proteins, alternative more native-like lipid-based media are emerging. Recent interaction, dynamics and conformational studies are discussed that cast a promising light on the future role of NMR in this important and exciting area.
Collapse
Affiliation(s)
- Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | |
Collapse
|
50
|
Su XC, Loh CT, Qi R, Otting G. Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O. JOURNAL OF BIOMOLECULAR NMR 2011; 50:35-42. [PMID: 21318579 DOI: 10.1007/s10858-011-9477-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/26/2011] [Indexed: 05/30/2023]
Abstract
Selectively isotope labelled protein samples can be prepared in vivo or in vitro from selectively labelled amino acids but, in many cases, metabolic conversions between different amino acids result in isotope scrambling. The best results are obtained by cell-free protein synthesis, where metabolic enzymes are generally less active, but isotope scrambling can never be suppressed completely. We show that reduction of E. coli S30 extracts with NaBH(4) presents a simple and inexpensive way to achieve cleaner selective isotope labelling in cell-free protein synthesis reactions. The purpose of the NaBH(4) is to inactivate all pyridoxal-phosphate (PLP) dependent enzymes by irreversible reduction of the Schiff bases formed between PLP and lysine side chains of the enzymes or amino groups of free amino acids. The reduced S30 extracts retain their activity of protein synthesis, can be stored as well as conventional S30 extracts and effectively suppress conversions between different amino acids. In addition, inactivation of PLP-dependent enzymes greatly stabilizes hydrogens bound to α-carbons against exchange with water, minimizing the loss of α-deuterons during cell-free production of proteins from perdeuterated amino acids in H(2)O solution. This allows the production of highly perdeuterated proteins that contain protons at all exchangeable positions, without having to back-exchange labile deuterons for protons as required for proteins that have been synthesized in D(2)O.
Collapse
Affiliation(s)
- Xun-Cheng Su
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | | | | | | |
Collapse
|