1
|
Bollati M, Fasola E, Pieraccini S, Freddi F, Cocomazzi P, Oliva F, Klußmann M, Maspero A, Piarulli U, Ferrara S, Pellegrino S, Bertoni G, Gazzola S. Impairing protein-protein interactions in an essential tRNA modification complex: An innovative antimicrobial strategy against Pseudomonas aeruginosa. J Pept Sci 2024:e3658. [PMID: 39434676 DOI: 10.1002/psc.3658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Protein-protein interactions (PPIs) have been recognized as a promising target for the development of new drugs, as proved by the growing number of PPI modulators reaching clinical trials. In this context, peptides represent a valid alternative to small molecules, owing to their unique ability to mimic the target protein structure and interact with wider surface areas. Among the possible fields of interest, bacterial PPIs represent an attractive target to face the urgent necessity to fight antibiotic resistance. Growing attention has been paid to the YgjD/YeaZ/YjeE complex responsible for the essential t6A37 tRNA modification in bacteria. We previously identified an α-helix on the surface of Pseudomonas aeruginosa YeaZ, crucial for the YeaZ-YeaZ homodimer formation and the conserved YeaZ-YgjD interactions. Herein, we present our studies for impairing the PPIs involved in the formation of the YeaZ dimers through synthetic peptide derivatives of this helical moiety, both in vitro with purified components and on P. aeruginosa cells. Our results proved the possibility of targeting those PPIs which are usually essential for protein functioning and thus are refractory to mutational changes and antibiotic resistance development.
Collapse
Affiliation(s)
- Michela Bollati
- Institute of Biophysics, National Research Council, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Elettra Fasola
- Department of Science and High Technology, Università degli Studi dell'Insubria, Como, Italy
| | | | - Francesca Freddi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Paolo Cocomazzi
- Institute of Biophysics, National Research Council, Milan, Italy
| | - Francesco Oliva
- Department of Chemistry, Università degli Studi di Milano, Milan, Italy
| | - Merlin Klußmann
- Department of Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Angelo Maspero
- Department of Science and High Technology, Università degli Studi dell'Insubria, Como, Italy
| | - Umberto Piarulli
- Department of Science and High Technology, Università degli Studi dell'Insubria, Como, Italy
| | - Silvia Ferrara
- Institute of Biophysics, National Research Council, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Sara Pellegrino
- Pharmaceutical Science Department, University of Milan, Milan, Italy
| | - Giovanni Bertoni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Gazzola
- Department of Science and High Technology, Università degli Studi dell'Insubria, Como, Italy
| |
Collapse
|
2
|
Thinn AMM, Wang W, Chen Q. Competitive SPR chaser assay to study biomolecular interactions with very slow binding dissociation rate constant. Anal Biochem 2024; 696:115679. [PMID: 39341483 DOI: 10.1016/j.ab.2024.115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Binding kinetics of drug and its target protein is crucial for the efficacy and safety of the drug. Using surface plasmon resonance (SPR) technology, we performed a competitive SPR chaser assay, a method to study biomolecular interactions with very slow dissociation rate constants (kd < 1E-4 s-1). This report described the principle and the experimental setup of the chaser assay, which involves using a competitive probe (chaser) to detect changes in target occupancy by a test molecule over time. We demonstrated the applicability of the chaser assay for both small and large molecules and compared the results with conventional SPR kinetic analysis and other methods. We suggest that the chaser assay is a useful and robust technique to characterize very tight biomolecular interactions, and that it can also be used to study cooperativity in ternary complex formation.
Collapse
Affiliation(s)
- Aye Myat Myat Thinn
- Department of Small Molecule Therapeutic Discovery and Research Technologies, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Wei Wang
- Department of Small Molecule Therapeutic Discovery and Research Technologies, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Qing Chen
- Department of Small Molecule Therapeutic Discovery and Research Technologies, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| |
Collapse
|
3
|
Kim DH, Kang SM. Stapled Peptides: An Innovative and Ultimate Future Drug Offering a Highly Powerful and Potent Therapeutic Alternative. Biomimetics (Basel) 2024; 9:537. [PMID: 39329559 PMCID: PMC11430733 DOI: 10.3390/biomimetics9090537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Peptide-based therapeutics have traditionally faced challenges, including instability in the bloodstream and limited cell membrane permeability. However, recent advancements in α-helix stapled peptide modification techniques have rekindled interest in their efficacy. Notably, these developments ensure a highly effective method for improving peptide stability and enhancing cell membrane penetration. Particularly in the realm of antimicrobial peptides (AMPs), the application of stapled peptide techniques has significantly increased peptide stability and has been successfully applied to many peptides. Furthermore, constraining the secondary structure of peptides has also been proven to enhance their biological activity. In this review, the entire process through which hydrocarbon-stapled antimicrobial peptides attain improved drug-like properties is examined. First, the essential secondary structural elements required for their activity as drugs are validated, specific residues are identified using alanine scanning, and stapling techniques are strategically incorporated at precise locations. Additionally, the mechanisms by which these structure-based stapled peptides function as AMPs are explored, providing a comprehensive and engaging discussion.
Collapse
Affiliation(s)
- Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sung-Min Kang
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
4
|
Akbarzadeh S, Coşkun Ö, Günçer B. Studying protein-protein interactions: Latest and most popular approaches. J Struct Biol 2024; 216:108118. [PMID: 39214321 DOI: 10.1016/j.jsb.2024.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
PPIs, or protein-protein interactions, are essential for many biological processes. According to the findings, abnormal PPIs have been linked to several diseases, such as cancer and infectious and neurological disorders. Consequently, focusing on PPIs is a path toward disease treatment and a crucial tool for producing novel medications. Many methods exist to investigate PPIs, including low- and high-throughput studies. Since many PPIs have been discovered using in vitro and in vivo experimental approaches, the use of computational methods to predict PPIs has grown due to the expanding scale of PPI data and the intrinsic complexity of interacting mechanisms. Recognizing PPI networks offers a systematic means of predicting protein functions, and pathways that are included. These investigations can help uncover the underlying molecular mechanisms of complex phenotypes and clarify the biological processes related to health and diseases. Therefore, our goal in this study is to provide an overview of the latest and most popular approaches for investigating PPIs. We also overview some important clinical approaches based on the PPIs and how these interactions can be targeted.
Collapse
Affiliation(s)
- Sama Akbarzadeh
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye
| | - Özlem Coşkun
- Department of Biophysics, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Başak Günçer
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
5
|
Holder L, Yuce E, Oriomah G, Jenkins AP, Reynisson J, Winter A, Cosgrove SC. Accessing Active Fragments for Drug Discovery Utilising Nitroreductase Biocatalysis. Chembiochem 2024:e202400428. [PMID: 38940076 DOI: 10.1002/cbic.202400428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Biocatalysis has played a limited role in the early stages of drug discovery. This is often attributed to the limited substrate scope of enzymes not affording access to vast areas of novel chemical space. Here, we have shown a promiscuous nitroreductase enzyme (NR-55) can be used to produce a panel of functionalised anilines from a diverse panel of aryl nitro starting materials. After screening on analytical scale, we show that sixteen substrates could be scaled to 1 mmol scale, with several poly-functional anilines afforded with ease under the standard conditions. The aniline products were also screened for activity against several cell lines of interest, with modest activity observed for one compound. This study demonstrates the potential for nitroreductase biocatalysis to provide access to functional fragments under benign conditions.
Collapse
Affiliation(s)
- Lauren Holder
- School of Chemical and Physical Sciences & Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Eda Yuce
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Gabriel Oriomah
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Aimee-Page Jenkins
- School of Chemical and Physical Sciences & Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Jóhannes Reynisson
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
- School of Pharmacy, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Anja Winter
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Sebastian C Cosgrove
- School of Chemical and Physical Sciences & Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| |
Collapse
|
6
|
Cheng J, Zhou J, Kong L, Wang H, Zhang Y, Wang X, Liu G, Chu Q. Stabilized cyclic peptides as modulators of protein-protein interactions: promising strategies and biological evaluation. RSC Med Chem 2023; 14:2496-2508. [PMID: 38107173 PMCID: PMC10718590 DOI: 10.1039/d3md00487b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 12/19/2023] Open
Abstract
Protein-protein interactions (PPIs) control many essential biological pathways which are often misregulated in disease. As such, selective PPI modulators are desirable to unravel complex functions of PPIs and thus expand the repertoire of therapeutic targets. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets for conventional drug modalities, rendering most PPIs "undruggable". Therefore, there is a growing need to discover innovative molecules that are able to modulate crucial PPIs. Peptides are ideal candidates to deliver such therapeutics attributed to their ability to closely mimic structural features of protein interfaces. However, their inherently poor proteolysis resistance and cell permeability inevitably hamper their biomedical applications. The introduction of a constraint (i.e., peptide cyclization) to stabilize peptides' secondary structure is a promising strategy to address this problem as witnessed by the rapid development of cyclic peptide drugs in the past two decades. Here, we comprehensively review the recent progress on stabilized cyclic peptides in targeting challenging PPIs. Technological advancements and emerging chemical approaches for stabilizing active peptide conformations are categorized in terms of α-helix stapling, β-hairpin mimetics and macrocyclization. To discover potent and selective ligands, cyclic peptide library technologies were updated based on genetic, biochemical or synthetic methodologies. Moreover, several advances to improve the permeability and oral bioavailability of biologically active cyclic peptides enable the de novo development of cyclic peptide ligands with pharmacological properties. In summary, the development of cyclic peptide-based PPI modulators carries tremendous promise for the next generation of therapeutic agents to target historically "intractable" PPI systems.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Junlong Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Lingyan Kong
- College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
7
|
Choi S, Son SH, Kim MY, Na I, Uversky VN, Kim CG. Improved prediction of protein-protein interactions by a modified strategy using three conventional docking software in combination. Int J Biol Macromol 2023; 252:126526. [PMID: 37633550 DOI: 10.1016/j.ijbiomac.2023.126526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Proteins play a crucial role in many biological processes, where their interaction with other proteins are integral. Abnormal protein-protein interactions (PPIs) have been linked to various diseases including cancer, and thus targeting PPIs holds promise for drug development. However, experimental confirmation of the peculiarities of PPIs is challenging due to their dynamic and transient nature. As a complement to experimental technologies, multiple computational molecular docking (MD) methods have been developed to predict the structures of protein-protein complexes and their dynamics, still requiring further improvements in several issues. Here, we report an improved MD method, namely three-software docking (3SD), by employing three popular protein-peptide docking software (CABS-dock, HPEPDOCK, and HADDOCK) in combination to ensure constant quality for most targets. We validated our 3SD performance in known protein-peptide interactions (PpIs). We also enhanced MD performance in proteins having intrinsically disordered regions (IDRs) by applying the modified 3SD strategy, the three-software docking after removing random coiled IDR (3SD-RR), to the comparable crystal PpI structures. At the end, we applied 3SD-RR to the AlphaFold2-predicted receptors, yielding an efficient prediction of PpI pose with high relevance to the experimental data regardless of the presence of IDRs or the availability of receptor structures. Our study provides an improved solution to the challenges in studying PPIs through computational docking and has the potential to contribute to PPIs-targeted drug discovery. SIGNIFICANCE STATEMENT: Protein-protein interactions (PPIs) are integral to life, and abnormal PPIs are associated with diseases such as cancer. Studying protein-peptide interactions (PpIs) is challenging due to their dynamic and transient nature. Here we developed improved docking methods (3SD and 3SD-RR) to predict the PpI poses, ensuring constant quality in most targets and also addressing issues like intrinsically disordered regions (IDRs) and artificial intelligence-predicted structures. Our study provides an improved solution to the challenges in studying PpIs through computational docking and has the potential to contribute to PPIs-targeted drug discovery.
Collapse
Affiliation(s)
- Sungwoo Choi
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Insung Na
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida; Tampa, FL 33612, USA.
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; CGK Biopharma Co. Ltd., 222 Wangshipri-ro, Sungdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
8
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
9
|
Tantawy SI, Timofeeva N, Sarkar A, Gandhi V. Targeting MCL-1 protein to treat cancer: opportunities and challenges. Front Oncol 2023; 13:1226289. [PMID: 37601693 PMCID: PMC10436212 DOI: 10.3389/fonc.2023.1226289] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Evading apoptosis has been linked to tumor development and chemoresistance. One mechanism for this evasion is the overexpression of prosurvival B-cell lymphoma-2 (BCL-2) family proteins, which gives cancer cells a survival advantage. Mcl-1, a member of the BCL-2 family, is among the most frequently amplified genes in cancer. Targeting myeloid cell leukemia-1 (MCL-1) protein is a successful strategy to induce apoptosis and overcome tumor resistance to chemotherapy and targeted therapy. Various strategies to inhibit the antiapoptotic activity of MCL-1 protein, including transcription, translation, and the degradation of MCL-1 protein, have been tested. Neutralizing MCL-1's function by targeting its interactions with other proteins via BCL-2 interacting mediator (BIM)S2A has been shown to be an equally effective approach. Encouraged by the design of venetoclax and its efficacy in chronic lymphocytic leukemia, scientists have developed other BCL-2 homology (BH3) mimetics-particularly MCL-1 inhibitors (MCL-1i)-that are currently in clinical trials for various cancers. While extensive reviews of MCL-1i are available, critical analyses focusing on the challenges of MCL-1i and their optimization are lacking. In this review, we discuss the current knowledge regarding clinically relevant MCL-1i and focus on predictive biomarkers of response, mechanisms of resistance, major issues associated with use of MCL-1i, and the future use of and maximization of the benefits from these agents.
Collapse
Affiliation(s)
- Shady I. Tantawy
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Timofeeva
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aloke Sarkar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
10
|
Adams Z, Silvestri AP, Chiorean S, Flood DT, Balo BP, Shi Y, Holcomb M, Walsh SI, Maillie CA, Pierens GK, Forli S, Rosengren KJ, Dawson PE. Stretching Peptides to Generate Small Molecule β-Strand Mimics. ACS CENTRAL SCIENCE 2023; 9:648-656. [PMID: 37122474 PMCID: PMC10141592 DOI: 10.1021/acscentsci.2c01462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 05/03/2023]
Abstract
Advances in the modulation of protein-protein interactions (PPIs) enable both characterization of PPI networks that govern diseases and design of therapeutics and probes. The shallow protein surfaces that dominate PPIs are challenging to target using standard methods, and approaches for accessing extended backbone structures are limited. Here, we incorporate a rigid, linear, diyne brace between side chains at the i to i+2 positions to generate a family of low-molecular-weight, extended-backbone peptide macrocycles. NMR and density functional theory studies show that these stretched peptides adopt stable, rigid conformations in solution and can be tuned to explore extended peptide conformational space. The diyne brace is formed in excellent conversions (>95%) and amenable to high-throughput synthesis. The minimalist structure-inducing tripeptide core (<300 Da) is amenable to further synthetic elaboration. Diyne-braced inhibitors of bacterial type 1 signal peptidase demonstrate the utility of the technique.
Collapse
Affiliation(s)
- Zoë
C. Adams
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Anthony P. Silvestri
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Unnatural
Products, Inc., 2161
Delaware Ave, Suite A., Santa Cruz, California 95060, United States
| | - Sorina Chiorean
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dillon T. Flood
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Brian P. Balo
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yifan Shi
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Matthew Holcomb
- Department
of Integrated Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shawn I. Walsh
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Colleen A. Maillie
- Department
of Integrated Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gregory K. Pierens
- Centre
for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stefano Forli
- Department
of Integrated Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - K. Johan Rosengren
- Institute
for Molecular Bioscience and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Philip E. Dawson
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Rehman AU, Khurshid B, Ali Y, Rasheed S, Wadood A, Ng HL, Chen HF, Wei Z, Luo R, Zhang J. Computational approaches for the design of modulators targeting protein-protein interactions. Expert Opin Drug Discov 2023; 18:315-333. [PMID: 36715303 PMCID: PMC10149343 DOI: 10.1080/17460441.2023.2171396] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Protein-protein interactions (PPIs) are intriguing targets for designing novel small-molecule inhibitors. The role of PPIs in various infectious and neurodegenerative disorders makes them potential therapeutic targets . Despite being portrayed as undruggable targets, due to their flat surfaces, disorderedness, and lack of grooves. Recent progresses in computational biology have led researchers to reconsider PPIs in drug discovery. AREAS COVERED In this review, we introduce in-silico methods used to identify PPI interfaces and present an in-depth overview of various computational methodologies that are successfully applied to annotate the PPIs. We also discuss several successful case studies that use computational tools to understand PPIs modulation and their key roles in various physiological processes. EXPERT OPINION Computational methods face challenges due to the inherent flexibility of proteins, which makes them expensive, and result in the use of rigid models. This problem becomes more significant in PPIs due to their flexible and flat interfaces. Computational methods like molecular dynamics (MD) simulation and machine learning can integrate the chemical structure data into biochemical and can be used for target identification and modulation. These computational methodologies have been crucial in understanding the structure of PPIs, designing PPI modulators, discovering new drug targets, and predicting treatment outcomes.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, Graduate Program in Chemical and Materials Physics, University of California Irvine, Irvine, California, USA
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, Zhejiang, China
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Salman Rasheed
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan
| | - Ho-Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, Zhejiang, China
| | - Zhiqiang Wei
- Medicinal Chemistry and Bioinformatics Center, Ocean University of China, Qingdao, Shandong, China
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, Graduate Program in Chemical and Materials Physics, University of California Irvine, Irvine, California, USA
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, Zhejiang, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Lanjanian H, Hosseini S, Narimani Z, Meknatkhah S, Riazi GH. A knowledge-based protein-protein interaction inhibition (KPI) pipeline: an insight from drug repositioning for COVID-19 inhibition. J Biomol Struct Dyn 2023; 41:11700-11713. [PMID: 36622367 DOI: 10.1080/07391102.2022.2163425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023]
Abstract
The inhibition of protein-protein interactions (PPIs) by small molecules is an exciting drug discovery strategy. Here, we aimed to develop a pipeline to identify candidate small molecules to inhibit PPIs. Therefore, KPI, a Knowledge-based Protein-Protein Interaction Inhibition pipeline, was introduced to improve the discovery of PPI inhibitors. Then, phytochemicals from a collection of known Middle Eastern antiviral herbs were screened to identify potential inhibitors of key PPIs involved in COVID-19. Here, the following investigations were sequenced: 1) Finding the binding partner and the interface of the proteins in PPIs, 2) Performing the blind ligand-protein inhibition (LPI) simulations, 3) Performing the local LPI simulations, 4) Simulating the interactions of the proteins and their binding partner in the presence and absence of the ligands, and 5) Performing the molecular dynamics simulations. The pharmacophore groups involved in the LPI were also characterized. Aloin, Genistein, Neoglucobrassicin, and Rutin are our new pipeline candidates for inhibiting PPIs involved in COVID-19. We also propose KPI for drug repositioning studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hossein Lanjanian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Hosseini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Narimani
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Sogol Meknatkhah
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | |
Collapse
|
13
|
Jeong KB, Kim JS, Dhanasekar NN, Lee MK, Chi SW. Application of nanopore sensors for biomolecular interactions and drug discovery. Chem Asian J 2022; 17:e202200679. [PMID: 35929410 DOI: 10.1002/asia.202200679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 11/07/2022]
Abstract
Biomolecular interactions, including protein-protein, protein-nucleic acid, and protein/nucleic acid-ligand interactions, play crucial roles in various cellular signaling and biological processes, and offer attractive therapeutic targets in numerous human diseases. Currently, drug discovery is limited by the low efficiency and high cost of conventional ensemble-averaging-based techniques for biomolecular interaction analysis and high-throughput drug screening. Nanopores are an emerging technology for single-molecule sensing of biomolecules. Owing to the robust advantages of single-molecule sensing, nanopore sensors have contributed tremendously to nucleic acid sequencing and disease diagnostics. In this minireview, we summarize the recent developments and outlooks in single-molecule sensing of various biomolecular interactions for drug discovery applications using biological and solid-state nanopore sensors.
Collapse
Affiliation(s)
- Ki-Baek Jeong
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Naresh Niranjan Dhanasekar
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
| | - Mi-Kyung Lee
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Oláh J, Szénási T, Lehotzky A, Norris V, Ovádi J. Challenges in Discovering Drugs That Target the Protein-Protein Interactions of Disordered Proteins. Int J Mol Sci 2022; 23:ijms23031550. [PMID: 35163473 PMCID: PMC8835748 DOI: 10.3390/ijms23031550] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
Protein–protein interactions (PPIs) outnumber proteins and are crucial to many fundamental processes; in consequence, PPIs are associated with several pathological conditions including neurodegeneration and modulating them by drugs constitutes a potentially major class of therapy. Classically, however, the discovery of small molecules for use as drugs entails targeting individual proteins rather than targeting PPIs. This is largely because discovering small molecules to modulate PPIs has been seen as extremely challenging. Here, we review the difficulties and limitations of strategies to discover drugs that target PPIs directly or indirectly, taking as examples the disordered proteins involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, 1117 Budapest, Hungary; (J.O.); (T.S.); (A.L.)
| | - Tibor Szénási
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, 1117 Budapest, Hungary; (J.O.); (T.S.); (A.L.)
| | - Attila Lehotzky
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, 1117 Budapest, Hungary; (J.O.); (T.S.); (A.L.)
| | - Victor Norris
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821 Mont Saint Aignan, France;
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, 1117 Budapest, Hungary; (J.O.); (T.S.); (A.L.)
- Correspondence:
| |
Collapse
|
15
|
Hershman RL, Li Y, Ma F, Xu Q, Van Deventer J. Intracellular Delivery of Antibodies for Selective Cell Signaling Interference. ChemMedChem 2021; 17:e202100678. [PMID: 34890114 DOI: 10.1002/cmdc.202100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Many intracellular signaling events remain poorly characterized due to a general lack of tools to interfere with "undruggable" targets. Antibodies have the potential to elucidate intracellular mechanisms via targeted disruption of cell signaling cascades because of their ability to bind to a target with high specificity and affinity. However, due to their size and chemical composition, antibodies cannot innately cross the cell membrane, and thus access to the cytosol with these macromolecules has been limited. Here, we describe strategies for accessing the intracellular space with recombinant antibodies mediated by cationic lipid nanoparticles to selectively disrupt intracellular signaling events. Together, our results demonstrate the use of recombinantly produced antibodies, delivered at concentrations of 10 nM, to selectively interfere with signaling driven by a single posttranslational modification. Efficient intracellular delivery of engineered antibodies opens up possibilities for modulation of previously "undruggable" targets, including for potential therapeutic applications.
Collapse
Affiliation(s)
| | - Yamin Li
- Tufts University, Biomedical Engineering, UNITED STATES
| | - Feihe Ma
- Tufts University, Biomedical Engineering, UNITED STATES
| | - Qioabing Xu
- Tufts University, Biomedical Engineering, UNITED STATES
| | - James Van Deventer
- Tufts University, Chemical and Biological Engineering, 4 Colby St. Room 148, 02155, Medford, UNITED STATES
| |
Collapse
|
16
|
Sun H, Wang J, Liu S, Zhou X, Dai L, Chen C, Xu Q, Wen X, Cheng K, Sun H, Yuan H. Discovery of Novel Small Molecule Inhibitors Disrupting the PCSK9-LDLR Interaction. J Chem Inf Model 2021; 61:5269-5279. [PMID: 34553597 DOI: 10.1021/acs.jcim.1c00521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proprotein convertase subtilisin kexin 9 (PCSK9) has been identified as a reliable therapeutic target for hypercholesterolemia and coronary artery heart diseases since the monoclonal antibodies of PCSK9 have launched. Disrupting the protein-protein interaction (PPI) between PCSK9 and the low-density lipoprotein receptor (LDLR) has been considered as a promising approach for developing PCSK9 inhibitors. However, PPIs have been traditionally considered difficult to target by small molecules since the PPI surface is usually large, flat, featureless, and without a "pocket" or "groove" for ligand binding. The PCSK9-LDLR PPI interface is such a typical case. In this study, a potential binding pocket was generated on the PCSK9-LDLR PPI surface of PCSK9 through induced-fit docking. On the basis of this induced binding pocket, virtual screening, molecular dynamics (MD) simulation, and biological evaluations have been applied for the identification of novel small molecule inhibitors of PCSK9-LDLR PPI. Among the selected compounds, compound 13 exhibited certain PCSK9-LDLR PPI inhibitory activity (IC50: 7.57 ± 1.40 μM). The direct binding affinity between 13 and PCSK9 was determined with a KD value of 2.50 ± 0.73 μM. The LDLR uptake function could be also restored to a certain extent by 13 in HepG2 cells. This well-characterized hit compound will facilitate the further development of novel small molecule inhibitors of PCSK9-LDLR PPI.
Collapse
Affiliation(s)
- Hengzhi Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinzheng Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shengjie Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinyu Zhou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Liang Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Caiping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qinglong Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Keguang Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
17
|
Evolution of biophysical tools for quantitative protein interactions and drug discovery. Emerg Top Life Sci 2021; 5:1-12. [PMID: 33739398 DOI: 10.1042/etls20200258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
With millions of signalling events occurring simultaneously, cells process a continuous flux of information. The genesis, processing, and regulation of information are dictated by a huge network of protein interactions. This is proven by the fact that alterations in the levels of proteins, single amino acid changes, post-translational modifications, protein products arising out of gene fusions alter the interaction landscape leading to diseases such as congenital disorders, deleterious syndromes like cancer, and crippling diseases like the neurodegenerative disorders which are often fatal. Needless to say, there is an immense effort to understand the biophysical basis of such direct interactions between any two proteins, the structure, domains, and sequence motifs involved in tethering them, their spatio-temporal regulation in cells, the structure of the network, and their eventual manipulation for intervention in diseases. In this chapter, we will deliberate on a few techniques that allow us to dissect the thermodynamic and kinetic aspects of protein interaction, how innovation has rendered some of the traditional techniques applicable for rapid analysis of multiple samples using small amounts of material. These advances coupled with automation are catching up with the genome-wide or proteome-wide studies aimed at identifying new therapeutic targets. The chapter will also summarize how some of these techniques are suited either in the standalone mode or in combination with other biophysical techniques for the drug discovery process.
Collapse
|
18
|
Álvarez-Coiradas E, Munteanu CR, Díaz-Sáez L, Pazos A, Huber KVM, Loza MI, Domínguez E. Discovery of novel immunopharmacological ligands targeting the IL-17 inflammatory pathway. Int Immunopharmacol 2020; 89:107026. [PMID: 33045560 DOI: 10.1016/j.intimp.2020.107026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 01/25/2023]
Abstract
Interleukin 17 (IL-17) is a proinflammatory cytokine that acts as an immune checkpoint for several autoimmune diseases. Therapeutic neutralizing antibodies that target this cytokine have demonstrated clinical efficacy in psoriasis. However, biologics have limitations such as their high cost and their lack of oral bioavailability. Thus, it is necessary to expand the therapeutic options for this IL-17A/IL-17RA pathway, applying novel drug discovery methods to find effective small molecules. In this work, we combined biophysical and cell-based assays with structure-based docking to find novel ligands that target this pathway. First, a virtual screening of our chemical library of 60000 compounds was used to identify 67 potential ligands of IL-17A and IL-17RA. We developed a biophysical label-free binding assay to determine interactions with the extracellular domain of IL-17RA. Two molecules (CBG040591 and CBG060392) with quinazolinone and pyrrolidinedione chemical scaffolds, respectively, were confirmed as ligands of IL-17RA with micromolar affinity. The anti-inflammatory activity of these ligands as cytokine-release inhibitors was evaluated in human keratinocytes. Both ligands inhibited the release of chemokines mediated by IL-17A, with an IC50 of 20.9 ± 12.6 μM and 23.6 ± 11.8 μM for CCL20 and an IC50 of 26.7 ± 13.1 μM and 45.3 ± 13.0 μM for CXCL8. Hence, they blocked IL-17A proinflammatory activity, which is consistent with the inhibition of the signalling of the IL-17A receptor by ligand CBG060392. Therefore, we identified two novel immunopharmacological ligands targeting the IL-17A/IL-17RA pathway with antiinflammatory efficacy that can be promising tools for a drug discovery program for psoriasis.
Collapse
Affiliation(s)
- Elia Álvarez-Coiradas
- Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Avenida de Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, CITIC, Universidade da Coruña, A Coruña, 15007, Spain; Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), A Coruña 15006, Spain
| | - Laura Díaz-Sáez
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, Nuffield Department of Medicine, Old Road Campus, Oxford OX3 7DQ & OX3 7FZ, UK
| | - Alejandro Pazos
- RNASA-IMEDIR, Computer Science Faculty, CITIC, Universidade da Coruña, A Coruña, 15007, Spain; Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), A Coruña 15006, Spain
| | - Kilian V M Huber
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, Nuffield Department of Medicine, Old Road Campus, Oxford OX3 7DQ & OX3 7FZ, UK
| | - María Isabel Loza
- Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Avenida de Barcelona s/n, 15782 Santiago de Compostela, Spain.
| | - Eduardo Domínguez
- Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Avenida de Barcelona s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, Shi J. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther 2020; 5:213. [PMID: 32968059 PMCID: PMC7511340 DOI: 10.1038/s41392-020-00315-3] [Citation(s) in RCA: 388] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/05/2023] Open
Abstract
Protein-protein interactions (PPIs) have pivotal roles in life processes. The studies showed that aberrant PPIs are associated with various diseases, including cancer, infectious diseases, and neurodegenerative diseases. Therefore, targeting PPIs is a direction in treating diseases and an essential strategy for the development of new drugs. In the past few decades, the modulation of PPIs has been recognized as one of the most challenging drug discovery tasks. In recent years, some PPIs modulators have entered clinical studies, some of which been approved for marketing, indicating that the modulators targeting PPIs have broad prospects. Here, we summarize the recent advances in PPIs modulators, including small molecules, peptides, and antibodies, hoping to provide some guidance to the design of novel drugs targeting PPIs in the future.
Collapse
Affiliation(s)
- Haiying Lu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China
| | - Qiaodan Zhou
- Department of Ultrasonic, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, 610072, Chengdu, China
| | - Jun He
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Sichuan, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Cheng Peng
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China.
| |
Collapse
|
20
|
|
21
|
Binding of excipients is a poor predictor for aggregation kinetics of biopharmaceutical proteins. Eur J Pharm Biopharm 2020; 151:127-136. [PMID: 32283214 DOI: 10.1016/j.ejpb.2020.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
One of the major challenges in formulation development of biopharmaceuticals is improving long-term storage stability, which is often achieved by addition of excipients to the final formulation. Finding the optimal excipient for a given protein is usually done using a trial-and-error approach, due to the lack of general understanding of how excipients work for a particular protein. Previously, preferential interactions (binding or exclusion) of excipients with proteins were postulated as a mechanism explaining diversity in the stabilisation effects. Weak preferential binding is however difficult to quantify experimentally, and the question remains whether the formulation process should seek excipients which preferentially bind with proteins, or not. Here, we apply solution NMR spectroscopy to comprehensively evaluate protein-excipient interactions between therapeutically relevant proteins and commonly used excipients. Additionally, we evaluate the effect of excipients on thermal and colloidal protein stability, on aggregation kinetics and protein storage stability at elevated temperatures. We show that there is a weak negative correlation between the strength of protein-excipient interactions and effect on enhancing protein thermal stability. We found that the overall protein-excipient binding per se can be a poor criterion for choosing excipients enhancing formulation stability. Experiments on a diverse set of excipients and test proteins reveal that while excipients affect all of the different aspects of protein stability, the effects are very much protein specific, and care must be taken to avoid apparent generalisations if a smaller dataset is being used.
Collapse
|
22
|
Cheng SS, Yang GJ, Wang W, Leung CH, Ma DL. The design and development of covalent protein-protein interaction inhibitors for cancer treatment. J Hematol Oncol 2020; 13:26. [PMID: 32228680 PMCID: PMC7106679 DOI: 10.1186/s13045-020-00850-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions (PPIs) are central to a variety of biological processes, and their dysfunction is implicated in the pathogenesis of a range of human diseases, including cancer. Hence, the inhibition of PPIs has attracted significant attention in drug discovery. Covalent inhibitors have been reported to achieve high efficiency through forming covalent bonds with cysteine or other nucleophilic residues in the target protein. Evidence suggests that there is a reduced risk for the development of drug resistance against covalent drugs, which is a major challenge in areas such as oncology and infectious diseases. Recent improvements in structural biology and chemical reactivity have enabled the design and development of potent and selective covalent PPI inhibitors. In this review, we will highlight the design and development of therapeutic agents targeting PPIs for cancer therapy.
Collapse
Affiliation(s)
- Sha-Sha Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China
| | - Guan-Jun Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong, China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chung-Hang Leung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong, China.
| |
Collapse
|
23
|
Zhong M, Lynch A, Muellers SN, Jehle S, Luo L, Hall DR, Iwase R, Carolan JP, Egbert M, Wakefield A, Streu K, Harvey CM, Ortet PC, Kozakov D, Vajda S, Allen KN, Whitty A. Interaction Energetics and Druggability of the Protein-Protein Interaction between Kelch-like ECH-Associated Protein 1 (KEAP1) and Nuclear Factor Erythroid 2 Like 2 (Nrf2). Biochemistry 2020; 59:563-581. [PMID: 31851823 PMCID: PMC8177486 DOI: 10.1021/acs.biochem.9b00943] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Development of small molecule inhibitors of protein-protein interactions (PPIs) is hampered by our poor understanding of the druggability of PPI target sites. Here, we describe the combined application of alanine-scanning mutagenesis, fragment screening, and FTMap computational hot spot mapping to evaluate the energetics and druggability of the highly charged PPI interface between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2 like 2 (Nrf2), an important drug target. FTMap identifies four binding energy hot spots at the active site. Only two of these are exploited by Nrf2, which alanine scanning of both proteins shows to bind primarily through E79 and E82 interacting with KEAP1 residues S363, R380, R415, R483, and S508. We identify fragment hits and obtain X-ray complex structures for three fragments via crystal soaking using a new crystal form of KEAP1. Combining these results provides a comprehensive and quantitative picture of the origins of binding energy at the interface. Our findings additionally reveal non-native interactions that might be exploited in the design of uncharged synthetic ligands to occupy the same site on KEAP1 that has evolved to bind the highly charged DEETGE binding loop of Nrf2. These include π-stacking with KEAP1 Y525 and interactions at an FTMap-identified hot spot deep in the binding site. Finally, we discuss how the complementary information provided by alanine-scanning mutagenesis, fragment screening, and computational hot spot mapping can be integrated to more comprehensively evaluate PPI druggability.
Collapse
Affiliation(s)
| | | | | | | | | | - David R Hall
- Acpharis, Inc. , 160 North Mill Street , Holliston , Massachusetts 01746 , United States
| | | | | | | | | | | | | | | | - Dima Kozakov
- Department of Applied Mathematics , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Sandor Vajda
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Karen N Allen
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Adrian Whitty
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
24
|
Disorders of FZ-CRD; insights towards FZ-CRD folding and therapeutic landscape. Mol Med 2019; 26:4. [PMID: 31892318 PMCID: PMC6938638 DOI: 10.1186/s10020-019-0129-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/13/2019] [Indexed: 02/08/2023] Open
Abstract
The ER is hub for protein folding. Proteins that harbor a Frizzled cysteine-rich domain (FZ-CRD) possess 10 conserved cysteine motifs held by a unique disulfide bridge pattern which attains a correct fold in the ER. Little is known about implications of disease-causing missense mutations within FZ-CRD families. Mutations in FZ-CRD of Frizzled class receptor 4 (FZD4) and Muscle, skeletal, receptor tyrosine kinase (MuSK) and Receptor tyrosine kinase-like orphan receptor 2 (ROR2) cause Familial Exudative Vitreoretinopathy (FEVR), Congenital Myasthenic Syndrome (CMS), and Robinow Syndrome (RS) respectively. We highlight reported pathogenic inherited missense mutations in FZ-CRD of FZD4, MuSK and ROR2 which misfold, and traffic abnormally in the ER, with ER-associated degradation (ERAD) as a common pathogenic mechanism for disease. Our review shows that all studied FZ-CRD mutants of RS, FEVR and CMS result in misfolded proteins and/or partially misfolded proteins with an ERAD fate, thus we coin them as “disorders of FZ-CRD”. Abnormal trafficking was demonstrated in 17 of 29 mutants studied; 16 mutants were within and/or surrounding the FZ-CRD with two mutants distant from FZ-CRD. These ER-retained mutants were improperly N-glycosylated confirming ER-localization. FZD4 and MuSK mutants were tagged with polyubiquitin chains confirming targeting for proteasomal degradation. Investigating the cellular and molecular mechanisms of these mutations is important since misfolded protein and ER-targeted therapies are in development. The P344R-MuSK kinase mutant showed around 50% of its in-vitro autophosphorylation activity and P344R-MuSK increased two-fold on proteasome inhibition. M105T-FZD4, C204Y-FZD4, and P344R-MuSK mutants are thermosensitive and therefore, might benefit from extending the investigation to a larger number of chemical chaperones and/or proteasome inhibitors. Nonetheless, FZ-CRD ER-lipidation it less characterized in the literature and recent structural data sheds light on the importance of lipidation in protein glycosylation, proper folding, and ER trafficking. Current treatment strategies in-place for the conformational disease landscape is highlighted. From this review, we envision that disorders of FZ-CRD might be receptive to therapies that target FZ-CRD misfolding, regulation of fatty acids, and/or ER therapies; thus paving the way for a newly explored paradigm to treat different diseases with common defects.
Collapse
|
25
|
Macalino SJY, Basith S, Clavio NAB, Chang H, Kang S, Choi S. Evolution of In Silico Strategies for Protein-Protein Interaction Drug Discovery. Molecules 2018; 23:E1963. [PMID: 30082644 PMCID: PMC6222862 DOI: 10.3390/molecules23081963] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/14/2022] Open
Abstract
The advent of advanced molecular modeling software, big data analytics, and high-speed processing units has led to the exponential evolution of modern drug discovery and better insights into complex biological processes and disease networks. This has progressively steered current research interests to understanding protein-protein interaction (PPI) systems that are related to a number of relevant diseases, such as cancer, neurological illnesses, metabolic disorders, etc. However, targeting PPIs are challenging due to their "undruggable" binding interfaces. In this review, we focus on the current obstacles that impede PPI drug discovery, and how recent discoveries and advances in in silico approaches can alleviate these barriers to expedite the search for potential leads, as shown in several exemplary studies. We will also discuss about currently available information on PPI compounds and systems, along with their usefulness in molecular modeling. Finally, we conclude by presenting the limits of in silico application in drug discovery and offer a perspective in the field of computer-aided PPI drug discovery.
Collapse
Affiliation(s)
- Stephani Joy Y Macalino
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Shaherin Basith
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Nina Abigail B Clavio
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Hyerim Chang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Sun Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
26
|
Nagatoishi S, Caaveiro JMM, Tsumoto K. Biophysical Analysis of the Protein-Small Molecule Interactions to Develop Small Molecule Drug Discovery. YAKUGAKU ZASSHI 2018; 138:1033-1041. [DOI: 10.1248/yakushi.17-00211-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Kouhei Tsumoto
- School of Engineering, The University of Tokyo
- The Institute of Medical Science, The University of Tokyo
- Drug Discovery Initiative, The University of Tokyo
| |
Collapse
|
27
|
Moiani D, Ronato DA, Brosey CA, Arvai AS, Syed A, Masson JY, Petricci E, Tainer JA. Targeting Allostery with Avatars to Design Inhibitors Assessed by Cell Activity: Dissecting MRE11 Endo- and Exonuclease Activities. Methods Enzymol 2018. [PMID: 29523233 DOI: 10.1016/bs.mie.2017.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For inhibitor design, as in most research, the best system is question dependent. We suggest structurally defined allostery to design specific inhibitors that target regions beyond active sites. We choose systems allowing efficient quality structures with conformational changes as optimal for structure-based design to optimize inhibitors. We maintain that evolutionarily related targets logically provide molecular avatars, where this Sanskrit term for descent includes ideas of functional relationships and of being a physical embodiment of the target's essential features without requiring high sequence identity. Appropriate biochemical and cell assays provide quantitative measurements, and for biomedical impacts, any inhibitor's activity should be validated in human cells. Specificity is effectively shown empirically by testing if mutations blocking target activity remove cellular inhibitor impact. We propose this approach to be superior to experiments testing for lack of cross-reactivity among possible related enzymes, which is a challenging negative experiment. As an exemplary avatar system for protein and DNA allosteric conformational controls, we focus here on developing separation-of-function inhibitors for meiotic recombination 11 nuclease activities. This was achieved not by targeting the active site but rather by geometrically impacting loop motifs analogously to ribosome antibiotics. These loops are neighboring the dimer interface and active site act in sculpting dsDNA and ssDNA into catalytically competent complexes. One of our design constraints is to preserve DNA substrate binding to geometrically block competing enzymes and pathways from the damaged site. We validate our allosteric approach to controlling outcomes in human cells by reversing the radiation sensitivity and genomic instability in BRCA mutant cells.
Collapse
Affiliation(s)
- Davide Moiani
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Daryl A Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, Québec City, QC, Canada; Laval University Cancer Research Center, Québec City, QC, Canada
| | - Chris A Brosey
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Andrew S Arvai
- The Scripps Research Institute, La Jolla, CA, United States
| | - Aleem Syed
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Québec City, QC, Canada; Laval University Cancer Research Center, Québec City, QC, Canada
| | | | - John A Tainer
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States; Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
28
|
Baggio C, Cerofolini L, Fragai M, Luchinat C, Pellecchia M. HTS by NMR for the Identification of Potent and Selective Inhibitors of Metalloenzymes. ACS Med Chem Lett 2018; 9:137-142. [PMID: 29456802 DOI: 10.1021/acsmedchemlett.7b00483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/17/2018] [Indexed: 11/28/2022] Open
Abstract
We have recently proposed a novel drug discovery approach based on biophysical screening of focused positional scanning libraries in which each element of the library contained a common binding moiety for the given target or class of targets. In this Letter, we report on the implementation of this approach to target metal containing proteins. In our implementation, we first derived a focused positional scanning combinatorial library of peptide mimetics (of approximately 100,000 compounds) in which each element of the library contained the metal-chelating moiety hydroxamic acid at the C-terminal. Screening of this library by nuclear magnetic resonance spectroscopy in solution allowed the identification of a novel and selective compound series targeting MMP-12. The data supported that our general approach, perhaps applied using other metal chelating agents or other initial binding fragments, may result very effective in deriving novel and selective agents against metalloenzyme.
Collapse
Affiliation(s)
- Carlo Baggio
- Division of Biomedical
Sciences, School of Medicine, University of California—Riverside, Riverside, California 92521, United States
| | - Linda Cerofolini
- Magnetic
Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi
6, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic
Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi
6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic
Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi
6, 50019 Sesto Fiorentino, Italy
| | - Maurizio Pellecchia
- Division of Biomedical
Sciences, School of Medicine, University of California—Riverside, Riverside, California 92521, United States
| |
Collapse
|
29
|
Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Phys Chem Chem Phys 2018; 18:22129-39. [PMID: 27444142 DOI: 10.1039/c6cp03670h] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Understanding protein-protein interactions (PPIs) is quite important to elucidate crucial biological processes and even design compounds that interfere with PPIs with pharmaceutical significance. Protein-protein docking can afford the atomic structural details of protein-protein complexes, but the accurate prediction of the three-dimensional structures for protein-protein systems is still notoriously difficult due in part to the lack of an ideal scoring function for protein-protein docking. Compared with most scoring functions used in protein-protein docking, the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) methodologies are more theoretically rigorous, but their overall performance for the predictions of binding affinities and binding poses for protein-protein systems has not been systematically evaluated. In this study, we first evaluated the performance of MM/PBSA and MM/GBSA to predict the binding affinities for 46 protein-protein complexes. On the whole, different force fields, solvation models, and interior dielectric constants have obvious impacts on the prediction accuracy of MM/GBSA and MM/PBSA. The MM/GBSA calculations based on the ff02 force field, the GB model developed by Onufriev et al. and a low interior dielectric constant (εin = 1) yield the best correlation between the predicted binding affinities and the experimental data (rp = -0.647), which is better than MM/PBSA (rp = -0.523) and a number of empirical scoring functions used in protein-protein docking (rp = -0.141 to -0.529). Then, we examined the capability of MM/GBSA to identify the possible near-native binding structures from the decoys generated by ZDOCK for 43 protein-protein systems. The results illustrate that the MM/GBSA rescoring has better capability to distinguish the correct binding structures from the decoys than the ZDOCK scoring. Besides, the optimal interior dielectric constant of MM/GBSA for re-ranking docking poses may be determined by analyzing the characteristics of protein-protein binding interfaces. Considering the relatively high prediction accuracy and low computational cost, MM/GBSA may be a good choice for predicting the binding affinities and identifying correct binding structures for protein-protein systems.
Collapse
Affiliation(s)
- Fu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Huiyong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China. and State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
30
|
Gavory G, O'Dowd CR, Helm MD, Flasz J, Arkoudis E, Dossang A, Hughes C, Cassidy E, McClelland K, Odrzywol E, Page N, Barker O, Miel H, Harrison T. Discovery and characterization of highly potent and selective allosteric USP7 inhibitors. Nat Chem Biol 2017; 14:118-125. [PMID: 29200206 DOI: 10.1038/nchembio.2528] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/18/2017] [Indexed: 12/26/2022]
Abstract
Given the importance of ubiquitin-specific protease 7 (USP7) in oncogenic pathways, identification of USP7 inhibitors has attracted considerable interest. Despite substantial efforts, however, the development of validated deubiquitinase (DUB) inhibitors that exhibit drug-like properties and a well-defined mechanism of action has proven particularly challenging. In this article, we describe the identification, optimization and detailed characterization of highly potent (IC50 < 10 nM), selective USP7 inhibitors together with their less active, enantiomeric counterparts. We also disclose, for the first time, co-crystal structures of a human DUB enzyme complexed with small-molecule inhibitors, which reveal a previously undisclosed allosteric binding site. Finally, we report the identification of cancer cell lines hypersensitive to USP7 inhibition (EC50 < 30 nM) and demonstrate equal or superior activity in these cell models compared to clinically relevant MDM2 antagonists. Overall, these findings demonstrate the tractability and druggability of DUBs, and provide important tools for additional target validation studies.
Collapse
Affiliation(s)
- Gerald Gavory
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Colin R O'Dowd
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Matthew D Helm
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Jakub Flasz
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland, UK
| | - Elias Arkoudis
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland, UK
| | - Anthony Dossang
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Caroline Hughes
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Eamon Cassidy
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Keeva McClelland
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Ewa Odrzywol
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Natalie Page
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Oliver Barker
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Hugues Miel
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK
| | - Timothy Harrison
- Almac Discovery Ltd, Centre for Precision Therapeutics, Belfast, Northern Ireland, UK.,Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland, UK
| |
Collapse
|
31
|
Mishra A, Pant P, Mrinal N, Jayaram B. A computational protocol for the discovery of lead molecules targeting DNA unique to pathogens. Methods 2017; 131:4-9. [PMID: 28733089 DOI: 10.1016/j.ymeth.2017.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
With the rapid emergence of drug resistant pathogens, it has become imperative to develop alternative medications as well as find new drug targets to overcome this crisis. Hence, this has become prime focus of several academic laboratories and pharmaceutical companies. Here, we report a computational protocol for identifying unique DNA sequence(s) in the pathogen which is absent in human and related non-pathogenic strains of the microbe. In order to use the unique sequence as drug target, the protocol, in the second step, uses virtual screening against a million compound library to identify candidate small molecules which can bind to these unique DNA targets in the pathogen only. Theoretically the molecules identified after screening should not bind to human DNA. This methodology is demonstrated on Mycobacterium tuberculosis H37Rv, wherein a new octamer sequence present only in H37Rv has been identified and a few candidate small molecules as potential drug have been proposed. Being fast and cost effective, this protocol could be of importance in generating new potential drug candidates against infectious organisms for further experimental studies. This methodology is freely available at http://www.scfbio-iitd.res.in/PSDDF/.
Collapse
Affiliation(s)
- Akhilesh Mishra
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India; Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Pradeep Pant
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India; Department of Chemistry, Indian Institute of Technology Delhi, India
| | - Nirotpal Mrinal
- Laboratory of Molecular Biology, South Asian University, New Delhi, India
| | - B Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India; Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India; Department of Chemistry, Indian Institute of Technology Delhi, India.
| |
Collapse
|
32
|
Mutations at protein-protein interfaces: Small changes over big surfaces have large impacts on human health. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:3-13. [DOI: 10.1016/j.pbiomolbio.2016.10.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/15/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022]
|
33
|
Kulp JL, Cloudsdale IS, Kulp JL, Guarnieri F. Hot-spot identification on a broad class of proteins and RNA suggest unifying principles of molecular recognition. PLoS One 2017; 12:e0183327. [PMID: 28837642 PMCID: PMC5570288 DOI: 10.1371/journal.pone.0183327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023] Open
Abstract
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition.
Collapse
Affiliation(s)
- John L. Kulp
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Ian S. Cloudsdale
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
| | - John L. Kulp
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
| | - Frank Guarnieri
- PAKA Pulmonary Pharmaceuticals, Acton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Ferraro G, De Benedictis I, Malfitano A, Morelli G, Novellino E, Marasco D. Interactions of cisplatin analogues with lysozyme: a comparative analysis. Biometals 2017; 30:733-746. [DOI: 10.1007/s10534-017-0041-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
|
35
|
Genomes, structural biology and drug discovery: combating the impacts of mutations in genetic disease and antibiotic resistance. Biochem Soc Trans 2017; 45:303-311. [PMID: 28408471 PMCID: PMC5390495 DOI: 10.1042/bst20160422] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 12/24/2022]
Abstract
For over four decades structural biology has been used to understand the mechanisms of disease, and structure-guided approaches have demonstrated clearly that they can contribute to many aspects of early drug discovery, both computationally and experimentally. Structure can also inform our understanding of impacts of mutations in human genetic diseases and drug resistance in cancers and infectious diseases. We discuss the ways that structural insights might be useful in both repurposing off-licence drugs and guide the design of new molecules that might be less susceptible to drug resistance in the future.
Collapse
|
36
|
Renaud JP, Chung CW, Danielson UH, Egner U, Hennig M, Hubbard RE, Nar H. Biophysics in drug discovery: impact, challenges and opportunities. Nat Rev Drug Discov 2016; 15:679-98. [PMID: 27516170 DOI: 10.1038/nrd.2016.123] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past 25 years, biophysical technologies such as X-ray crystallography, nuclear magnetic resonance spectroscopy, surface plasmon resonance spectroscopy and isothermal titration calorimetry have become key components of drug discovery platforms in many pharmaceutical companies and academic laboratories. There have been great improvements in the speed, sensitivity and range of possible measurements, providing high-resolution mechanistic, kinetic, thermodynamic and structural information on compound-target interactions. This Review provides a framework to understand this evolution by describing the key biophysical methods, the information they can provide and the ways in which they can be applied at different stages of the drug discovery process. We also discuss the challenges for current technologies and future opportunities to use biophysical methods to solve drug discovery problems.
Collapse
Affiliation(s)
- Jean-Paul Renaud
- NovAliX, Boulevard Sébastien Brant, 67405 Illkirch Cedex, France.,Institut de Génétique et Biologie Moléculaire et Cellulaire, CNRS UMR7104/INSERM U964/Université de Strasbourg, 1 rue Laurent Fries - BP10142, 67404 Illkirch Cedex, France.,RiboStruct, 15 rue Neuve, 67540 Ostwald, France
| | - Chun-Wa Chung
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - U Helena Danielson
- Department of Chemistry - BMC and Science for Life Laboratory, Drug Discovery &Development Platform, Uppsala University, SE-751 05 Uppsala, Sweden.,Beactica AB, Uppsala Business Park, 754 50 Uppsala, Sweden
| | - Ursula Egner
- Bayer Pharma AG, Müllerstrasse 178, 13353 Berlin, Germany
| | - Michael Hennig
- Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland.,leadXpro AG, PARK INNOVAARE, CH-5234 Villigen, Switzerland
| | - Roderick E Hubbard
- University of York, Heslington, York, YO10 5DD, UK.,Vernalis (R&D), Granta Park, Cambridge, CB21 6GB, UK
| | - Herbert Nar
- Boehringer Ingelheim GmbH &Co. KG, Birkendorfer Strasse 65, 88400 Biberach, Germany
| |
Collapse
|
37
|
Modell AE, Blosser SL, Arora PS. Systematic Targeting of Protein-Protein Interactions. Trends Pharmacol Sci 2016; 37:702-713. [PMID: 27267699 DOI: 10.1016/j.tips.2016.05.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/14/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]
Abstract
Over the past decade, protein-protein interactions (PPIs) have gone from being neglected as 'undruggable' to being considered attractive targets for the development of therapeutics. Recent advances in computational analysis, fragment-based screening, and molecular design have revealed promising strategies to address the basic molecular recognition challenge: how to target large protein surfaces with specificity. Several systematic and complementary workflows have been developed to yield successful inhibitors of PPIs. Here we review the major contemporary approaches utilized for the discovery of inhibitors and focus on a structure-based workflow, from the selection of a biological target to design.
Collapse
Affiliation(s)
- Ashley E Modell
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Sarah L Blosser
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
38
|
Scott DE, Bayly AR, Abell C, Skidmore J. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat Rev Drug Discov 2016; 15:533-50. [DOI: 10.1038/nrd.2016.29] [Citation(s) in RCA: 625] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Dynamic structures in DNA damage responses & cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 117:129-133. [PMID: 25934179 DOI: 10.1016/j.pbiomolbio.2015.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Impact of germline and somatic missense variations on drug binding sites. THE PHARMACOGENOMICS JOURNAL 2016; 17:128-136. [PMID: 26810135 PMCID: PMC5380835 DOI: 10.1038/tpj.2015.97] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/02/2015] [Accepted: 11/13/2015] [Indexed: 11/10/2022]
Abstract
Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein–drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein–drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein–drug binding sites. Using this method we identified 12 993 amino acid–drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid–drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid–drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid–drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein–drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein–drug binding predicted drug target proteins and prevalence of both somatic and germline nsSNVs that disrupt these binding sites can provide valuable knowledge for personalized medicine treatment. A web portal is available where nsSNVs from individual patient can be checked by scanning against DrugVar to determine whether any of the SNVs affect the binding of any drug in the database.
Collapse
|
41
|
Winter A, Sigurdardottir AG, DiCara D, Valenti G, Blundell TL, Gherardi E. Developing Antagonists for the Met-HGF/SF Protein–Protein Interaction Using a Fragment-Based Approach. Mol Cancer Ther 2015; 15:3-14. [DOI: 10.1158/1535-7163.mct-15-0446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/29/2015] [Indexed: 11/16/2022]
|
42
|
Dyrka W, Kurczyńska M, Konopka BM, Kotulska M. Fast assessment of structural models of ion channels based on their predicted current-voltage characteristics. Proteins 2015; 84:217-31. [PMID: 26650347 DOI: 10.1002/prot.24967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/19/2015] [Accepted: 11/29/2015] [Indexed: 11/11/2022]
Abstract
Computational prediction of protein structures is a difficult task, which involves fast and accurate evaluation of candidate model structures. We propose to enhance single-model quality assessment with a functionality evaluation phase for proteins whose quantitative functional characteristics are known. In particular, this idea can be applied to evaluation of structural models of ion channels, whose main function - conducting ions - can be quantitatively measured with the patch-clamp technique providing the current-voltage characteristics. The study was performed on a set of KcsA channel models obtained from complete and incomplete contact maps. A fast continuous electrodiffusion model was used for calculating the current-voltage characteristics of structural models. We found that the computed charge selectivity and total current were sensitive to structural and electrostatic quality of models. In practical terms, we show that evaluating predicted conductance values is an appropriate method to eliminate models with an occluded pore or with multiple erroneously created pores. Moreover, filtering models on the basis of their predicted charge selectivity results in a substantial enrichment of the candidate set in highly accurate models. Tests on three other ion channels indicate that, in addition to being a proof of the concept, our function-oriented single-model quality assessment method can be directly applied to evaluation of structural models of some classes of protein channels. Finally, our work raises an important question whether a computational validation of functionality should be included in the evaluation process of structural models, whenever possible.
Collapse
Affiliation(s)
- Witold Dyrka
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Monika Kurczyńska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Bogumił M Konopka
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Małgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw, 50-370, Poland
| |
Collapse
|
43
|
Ahmad MF, Huff SE, Pink J, Alam I, Zhang A, Perry K, Harris ME, Misko T, Porwal SK, Oleinick NL, Miyagi M, Viswanathan R, Dealwis CG. Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators. J Med Chem 2015; 58:9498-509. [PMID: 26488902 DOI: 10.1021/acs.jmedchem.5b00929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductase (RR) catalyzes the rate-limiting step of dNTP synthesis and is an established cancer target. Drugs targeting RR are mainly nucleoside in nature. In this study, we sought to identify non-nucleoside small-molecule inhibitors of RR. Using virtual screening, binding affinity, inhibition, and cell toxicity, we have discovered a class of small molecules that alter the equilibrium of inactive hexamers of RR, leading to its inhibition. Several unique chemical categories, including a phthalimide derivative, show micromolar IC50s and KDs while demonstrating cytotoxicity. A crystal structure of an active phthalimide binding at the targeted interface supports the noncompetitive mode of inhibition determined by kinetic studies. Furthermore, the phthalimide shifts the equilibrium from dimer to hexamer. Together, these data identify several novel non-nucleoside inhibitors of human RR which act by stabilizing the inactive form of the enzyme.
Collapse
Affiliation(s)
- Md Faiz Ahmad
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Sarah E Huff
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - John Pink
- Case Comprehensive Cancer Center, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Intekhab Alam
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Andrew Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Kay Perry
- Northeastern-CAT at the Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Michael E Harris
- Department of Biochemistry, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Tessianna Misko
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Suheel K Porwal
- Department of Chemistry, Dehradun Institute of Technology, University of Deharadun , Dehradun 248197, India
| | - Nancy L Oleinick
- Case Comprehensive Cancer Center, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Department of Radiation Oncology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Masaru Miyagi
- Center for Proteomics and Bioinformatics, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Rajesh Viswanathan
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Chris Godfrey Dealwis
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Center for Proteomics and the Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
44
|
Hall DR, Kozakov D, Whitty A, Vajda S. Lessons from Hot Spot Analysis for Fragment-Based Drug Discovery. Trends Pharmacol Sci 2015; 36:724-736. [PMID: 26538314 DOI: 10.1016/j.tips.2015.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 01/01/2023]
Abstract
Analysis of binding energy hot spots at protein surfaces can provide crucial insights into the prospects for successful application of fragment-based drug discovery (FBDD), and whether a fragment hit can be advanced into a high-affinity, drug-like ligand. The key factor is the strength of the top ranking hot spot, and how well a given fragment complements it. We show that published data are sufficient to provide a sophisticated and quantitative understanding of how hot spots derive from a protein 3D structure, and how their strength, number, and spatial arrangement govern the potential for a surface site to bind to fragment-sized and larger ligands. This improved understanding provides important guidance for the effective application of FBDD in drug discovery.
Collapse
Affiliation(s)
- David R Hall
- Acpharis Inc., 160 North Mill Street, Holliston, MA 01746, USA
| | - Dima Kozakov
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| | - Adrian Whitty
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA; Department of Chemistry, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
45
|
Fernández A, Scott LR. Drug leads for interactive protein targets with unknown structure. Drug Discov Today 2015; 21:531-5. [PMID: 26484433 DOI: 10.1016/j.drudis.2015.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/29/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
Abstract
The disruption of protein-protein interfaces (PPIs) remains a challenge in drug discovery. The problem becomes daunting when the structure of the target protein is unknown and is even further complicated when the interface is susceptible to disruptive phosphorylation. Based solely on protein sequence and information about phosphorylation-susceptible sites within the PPI, a new technology has been developed to identify drug leads to inhibit protein associations. Here we reveal this technology and contrast it with current structure-based technologies for the generation of drug leads. The novel technology is illustrated by a patented invention to treat heart failure. The success of this technology shows that it is possible to generate drug leads in the absence of target structure.
Collapse
Affiliation(s)
- Ariel Fernández
- Argentine Institute of Mathematics (IAM), National Research Council (CONICET), Buenos Aires 1083, Argentina; AF Innovation, Avenida del Libertador 1092, Buenos Aires 1112, Argentina.
| | - L Ridgway Scott
- Department of Computer Science, The University of Chicago, Chicago, IL 60637, USA; Department of Mathematics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
46
|
Hagemans D, van Belzen IAEM, Morán Luengo T, Rüdiger SGD. A script to highlight hydrophobicity and charge on protein surfaces. Front Mol Biosci 2015; 2:56. [PMID: 26528483 PMCID: PMC4602141 DOI: 10.3389/fmolb.2015.00056] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
The composition of protein surfaces determines both affinity and specificity of protein-protein interactions. Matching of hydrophobic contacts and charged groups on both sites of the interface are crucial to ensure specificity. Here, we propose a highlighting scheme, YRB, which highlights both hydrophobicity and charge in protein structures. YRB highlighting visualizes hydrophobicity by highlighting all carbon atoms that are not bound to nitrogen and oxygen atoms. The charged oxygens of glutamate and aspartate are highlighted red and the charged nitrogens of arginine and lysine are highlighted blue. For a set of representative examples, we demonstrate that YRB highlighting intuitively visualizes segments on protein surfaces that contribute to specificity in protein-protein interfaces, including Hsp90/co-chaperone complexes, the SNARE complex and a transmembrane domain. We provide YRB highlighting in form of a script that runs using the software PyMOL.
Collapse
Affiliation(s)
- Dominique Hagemans
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University Utrecht, Netherlands
| | - Ianthe A E M van Belzen
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University Utrecht, Netherlands
| | - Tania Morán Luengo
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University Utrecht, Netherlands
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University Utrecht, Netherlands
| |
Collapse
|
47
|
Sheng C, Dong G, Miao Z, Zhang W, Wang W. State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Chem Soc Rev 2015; 44:8238-59. [PMID: 26248294 DOI: 10.1039/c5cs00252d] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeting protein-protein interactions (PPIs) has emerged as a viable approach in modern drug discovery. However, the identification of small molecules enabling us to effectively interrupt their interactions presents significant challenges. In the recent past, significant advances have been made in the development of new biological and chemical strategies to facilitate the discovery process of small-molecule PPI inhibitors. This review aims to highlight the state-of-the-art technologies and the achievements made recently in this field. The "hot spots" of PPIs have been proved to be critical for small molecules to bind. Three strategies including screening, designing, and synthetic approaches have been explored for discovering PPI inhibitors by targeting the "hot spots". Although the classic high throughput screening approach can be used, fragment screening, fragment-based drug design and newly improved virtual screening are demonstrated to be more effective in the discovery of PPI inhibitors. In addition to screening approaches, design strategies including anchor-based and small molecule mimetics of secondary structures involved in PPIs have become powerful tools as well. Finally, constructing new chemically spaced libraries with high diversity and complexity is becoming an important area of interest for PPI inhibitors. The successful cases from the recent five year studies are used to illustrate how these approaches are implemented to uncover and optimize small molecule PPI inhibitors and notably some of them have become promising therapeutics.
Collapse
Affiliation(s)
- Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P. R. China.
| | | | | | | | | |
Collapse
|
48
|
Sigurdardottir AG, Winter A, Sobkowicz A, Fragai M, Chirgadze D, Ascher DB, Blundell TL, Gherardi E. Exploring the chemical space of the lysine-binding pocket of the first kringle domain of hepatocyte growth factor/scatter factor (HGF/SF) yields a new class of inhibitors of HGF/SF-MET binding. Chem Sci 2015; 6:6147-6157. [PMID: 30090230 PMCID: PMC6054100 DOI: 10.1039/c5sc02155c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/29/2015] [Indexed: 01/01/2023] Open
Abstract
The growth/motility factor hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, the tyrosine kinase MET, constitute a signalling system essential for embryogenesis and for tissue/organ regeneration in post-natal life. HGF/SF-MET signalling, however, also plays a key role in the onset of metastasis of a large number of human tumours. Both HGF/SF and MET are high molecular weight proteins that bury an extensive interface upon complex formation and thus constitute a challenging target for the development of low molecular weight inhibitors. Here we have used surface plasmon resonance (SPR), nuclear magnetic resonance (NMR) and X-ray crystallography to screen a diverse fragment library of 1338 members as well as a range of piperazine-like compounds. Several small molecules were found to bind in the lysine-binding pocket of the kringle 1 domain of HGF/SF and its truncated splice variant NK1. We have defined the binding mode of these compounds, explored their biological activity and we show that selected fragments inhibit MET downstream signalling. Thus we demonstrate that targeting the lysine-binding pocket of NK1 is an effective strategy to generate MET receptor antagonists and we offer proof of concept that the HGF/SF-MET interface may be successfully targeted with small molecules. These studies have broad implications for the development of HGF/SF-MET therapeutics and cancer treatment.
Collapse
Affiliation(s)
- A G Sigurdardottir
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge , CB2 1GA , UK . ;
| | - A Winter
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge , CB2 1GA , UK . ;
| | - A Sobkowicz
- Medical Research Council (MRC) Center , Hills Road , Cambridge , CB2 0QH , UK
| | - M Fragai
- Magnetic Resonance Center (CERM) and Department of Chemistry , University of Florence , Via L. Sacconi 6, 50019 Sesto Fiorentino , Florence , Italy
| | - D Chirgadze
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge , CB2 1GA , UK . ;
| | - D B Ascher
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge , CB2 1GA , UK . ;
| | - T L Blundell
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge , CB2 1GA , UK . ;
| | - E Gherardi
- Medical Research Council (MRC) Center , Hills Road , Cambridge , CB2 0QH , UK.,Unit of Immunology and General Pathology , Department of Molecular Medicine , University of Pavia , 9 via A Ferrata , 27100 Pavia , Italy
| |
Collapse
|
49
|
Laraia L, McKenzie G, Spring DR, Venkitaraman AR, Huggins DJ. Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions. CHEMISTRY & BIOLOGY 2015; 22:689-703. [PMID: 26091166 PMCID: PMC4518475 DOI: 10.1016/j.chembiol.2015.04.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 01/19/2023]
Abstract
Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs.
Collapse
Affiliation(s)
- Luca Laraia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Grahame McKenzie
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - David J Huggins
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
50
|
Chigira T, Nagatoishi S, Tsumoto K. Differential binding of prohibitin-2 to estrogen receptor α and to drug-resistant ERα mutants. Biochem Biophys Res Commun 2015; 463:726-31. [PMID: 26049107 DOI: 10.1016/j.bbrc.2015.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/01/2015] [Indexed: 02/05/2023]
Abstract
Endocrine resistance is one of the most challenging problems in estrogen receptor alpha (ERα)-positive breast cancer. The transcriptional activity of ERα is controlled by several coregulators, including prohibitin-2 (PHB2). Because of its ability to repress the transcriptional activity of activated ERα, PHB2 is a promising antiproliferative agent. In this study, were analyzed the interaction of PHB2 with ERα and three mutants (Y537S, D538G, and E380Q) that are frequently associated with a lack of sensitivity to hormonal treatments, to help advance novel drug discovery. PHB2 bound to ERα wild-type (WT), Y537S, and D538G, but did not bind to E380Q. The binding thermodynamics of Y537S and D538G to PHB2 were favorably altered entropically compared with those of WT to PHB2. Our results show that PHB2 binds to the ligand binding domain of ERα with a conformational change in the helix 12 of ERα.
Collapse
Affiliation(s)
- Takeru Chigira
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Satoru Nagatoishi
- Department of Bioengineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Bioengineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| |
Collapse
|