1
|
Wang T, Chen X, Yang G, Shi X. Selection of Leptin Surrogates by a General Phenotypic Screening Method for Receptor Agonists. Biomolecules 2024; 14:457. [PMID: 38672473 PMCID: PMC11047824 DOI: 10.3390/biom14040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
There is a high demand for agonist biomolecules such as cytokine surrogates in both biological and medicinal research fields. These are typically sourced through natural ligand engineering or affinity-based screening, followed by individual functional validation. However, efficient screening methods for identifying rare hits within immense libraries are very limited. In this research article, we introduce a phenotypic screening method utilizing biological receptor activation-dependent cell survival (BRADS). This method offers a high-throughput, low-background, and cost-effective approach that can be implemented in virtually any biochemical laboratory setting. As a proof-of-concept, we successfully identified a surrogate for human leptin following a two-week cell culture process, without the need for specialized high-throughput equipment or reagents. This surrogate effectively emulates the activity of native human leptin in cell validation assays. Our findings not only underscore the effectiveness of BRADS but also suggest its potential applicability to a broad range of biological receptors, including Notch and GPCRs.
Collapse
Affiliation(s)
- Tao Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (T.W.); (X.C.); (G.Y.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xixi Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (T.W.); (X.C.); (G.Y.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (T.W.); (X.C.); (G.Y.)
| | - Xiaojie Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (T.W.); (X.C.); (G.Y.)
| |
Collapse
|
2
|
Chen C, Wang Z, Kang M, Lee KB, Ge X. High-fidelity large-diversity monoclonal mammalian cell libraries by cell cycle arrested recombinase-mediated cassette exchange. Nucleic Acids Res 2023; 51:e113. [PMID: 37941133 PMCID: PMC10711435 DOI: 10.1093/nar/gkad1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Mammalian cells carrying defined genetic variations have shown great potentials in both fundamental research and therapeutic development. However, their full use was limited by lack of a robust method to construct large monoclonal high-quality combinatorial libraries. This study developed cell cycle arrested recombinase-mediated cassette exchange (aRMCE), able to provide monoclonality, precise genomic integration and uniform transgene expression. Via optimized nocodazole-mediated mitotic arrest, 20% target gene replacement efficiency was achieved without antibiotic selection, and the improved aRMCE efficiency was applicable to a variety of tested cell clones, transgene targets and transfection methods. As a demonstration of this versatile method, we performed directed evolution of fragment crystallizable (Fc), for which error-prone libraries of over 107 variants were constructed and displayed as IgG on surface of CHO cells. Diversities of constructed libraries were validated by deep sequencing, and panels of novel Fc mutants were identified showing improved binding towards specific Fc gamma receptors and enhanced effector functions. Due to its large cargo capacity and compatibility with different mutagenesis approaches, we expect this mammalian cell platform technology has broad applications for directed evolution, multiplex genetic assays, cell line development and stem cell engineering.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
| | - Zening Wang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Minhyo Kang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
| | - Ki Baek Lee
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
3
|
Yen M, Ren J, Liu Q, Glassman CR, Sheahan TP, Picton LK, Moreira FR, Rustagi A, Jude KM, Zhao X, Blish CA, Baric RS, Su LL, Garcia KC. Facile discovery of surrogate cytokine agonists. Cell 2022; 185:1414-1430.e19. [PMID: 35325595 PMCID: PMC9021867 DOI: 10.1016/j.cell.2022.02.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 12/26/2022]
Abstract
Cytokines are powerful immune modulators that initiate signaling through receptor dimerization, but natural cytokines have structural limitations as therapeutics. We present a strategy to discover cytokine surrogate agonists by using modular ligands that exploit induced proximity and receptor dimer geometry as pharmacological metrics amenable to high-throughput screening. Using VHH and scFv to human interleukin-2/15, type-I interferon, and interleukin-10 receptors, we generated combinatorial matrices of single-chain bispecific ligands that exhibited diverse spectrums of functional activities, including potent inhibition of SARS-CoV-2 by surrogate interferons. Crystal structures of IL-2R:VHH complexes revealed that variation in receptor dimer geometries resulted in functionally diverse signaling outputs. This modular platform enabled engineering of surrogate ligands that compelled assembly of an IL-2R/IL-10R heterodimer, which does not naturally exist, that signaled through pSTAT5 on T and natural killer (NK) cells. This "cytokine med-chem" approach, rooted in principles of induced proximity, is generalizable for discovery of diversified agonists for many ligand-receptor systems.
Collapse
Affiliation(s)
- Michelle Yen
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junming Ren
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qingxiang Liu
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb R Glassman
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Timothy P Sheahan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lora K Picton
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fernando R Moreira
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiang Zhao
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leon L Su
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Aguadé-Gorgorió G, Kauffman S, Solé R. Transition Therapy: Tackling the Ecology of Tumor Phenotypic Plasticity. Bull Math Biol 2021; 84:24. [PMID: 34958403 PMCID: PMC8712307 DOI: 10.1007/s11538-021-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Phenotypic switching in cancer cells has been found to be present across tumor types. Recent studies on Glioblastoma report a remarkably common architecture of four well-defined phenotypes coexisting within high levels of intra-tumor genetic heterogeneity. Similar dynamics have been shown to occur in breast cancer and melanoma and are likely to be found across cancer types. Given the adaptive potential of phenotypic switching (PHS) strategies, understanding how it drives tumor evolution and therapy resistance is a major priority. Here we present a mathematical framework uncovering the ecological dynamics behind PHS. The model is able to reproduce experimental results, and mathematical conditions for cancer progression reveal PHS-specific features of tumors with direct consequences on therapy resistance. In particular, our model reveals a threshold for the resistant-to-sensitive phenotype transition rate, below which any cytotoxic or switch-inhibition therapy is likely to fail. The model is able to capture therapeutic success thresholds for cancers where nonlinear growth dynamics or larger PHS architectures are in place, such as glioblastoma or melanoma. By doing so, the model presents a novel set of conditions for the success of combination therapies able to target replication and phenotypic transitions at once. Following our results, we discuss transition therapy as a novel scheme to target not only combined cytotoxicity but also the rates of phenotypic switching.
Collapse
Affiliation(s)
- Guim Aguadé-Gorgorió
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003, Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, 08003, Barcelona, Spain
| | | | - Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003, Barcelona, Spain.
- Institut de Biologia Evolutiva, CSIC-UPF, 08003, Barcelona, Spain.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
5
|
Favalli N, Bassi G, Pellegrino C, Millul J, De Luca R, Cazzamalli S, Yang S, Trenner A, Mozaffari NL, Myburgh R, Moroglu M, Conway SJ, Sartori AA, Manz MG, Lerner RA, Vogt PK, Scheuermann J, Neri D. Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nat Chem 2021; 13:540-548. [PMID: 33833446 PMCID: PMC8405038 DOI: 10.1038/s41557-021-00660-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/10/2021] [Indexed: 02/01/2023]
Abstract
The encoding of chemical compounds with amplifiable DNA tags facilitates the discovery of small-molecule ligands for proteins. To investigate the impact of stereo- and regiochemistry on ligand discovery, we synthesized a DNA-encoded library of 670,752 derivatives based on 2-azido-3-iodophenylpropionic acids. The library was selected against multiple proteins and yielded specific ligands. The selection fingerprints obtained for a set of protein targets of pharmaceutical relevance clearly showed the preferential enrichment of ortho-, meta- or para-regioisomers, which was experimentally verified by affinity measurements in the absence of DNA. The discovered ligands included novel selective enzyme inhibitors and binders to tumour-associated antigens, which enabled conditional chimeric antigen receptor T-cell activation and tumour targeting.
Collapse
Affiliation(s)
- Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | | | | | | | - Su Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Anika Trenner
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Nour L Mozaffari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Mustafa Moroglu
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, USA
| | - Peter K Vogt
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
6
|
Lin CW, Lerner RA. Antibody Libraries as Tools to Discover Functional Antibodies and Receptor Pleiotropism. Int J Mol Sci 2021; 22:4123. [PMID: 33923551 PMCID: PMC8073236 DOI: 10.3390/ijms22084123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Most antibodies currently in use have been selected based on their binding affinity. However, nowadays, antibodies that can not only bind but can also alter the function of cell surface signaling components are increasingly sought after as therapeutic drugs. Therefore, the identification of such functional antibodies from a large antibody library is the subject of intensive research. New methods applied to combinatorial antibody libraries now allow the isolation of functional antibodies in the cellular environment. These selected agonist antibodies have provided new insights into important issues of signal transduction. Notably, when certain antibodies bind to a given receptor, the cell fate induced by them may be the same or different from that induced by natural agonists. In addition, combined with phenotypic screening, this platform allows us to discover unexpected experimental results and explore various phenomena in cell biology, such as those associated with stem cells and cancer cells.
Collapse
Affiliation(s)
| | - Richard A. Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA;
| |
Collapse
|
7
|
Tao P, Kuang Y, Li Y, Li W, Gao Z, Liu L, Qiang M, Zha Z, Fan K, Ma P, Friedman JM, Yang G, Lerner RA. Selection of a Full Agonist Combinatorial Antibody that Rescues Leptin Deficiency In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000818. [PMID: 32832353 PMCID: PMC7435230 DOI: 10.1002/advs.202000818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Indexed: 05/15/2023]
Abstract
Growth factor deficiency in adulthood constitutes a distinct clinical syndrome with significant morbidities including abnormal body composition, reduced energy, affective disturbances, dyslipidemia, and increased cardiovascular risk. Protein replacement therapies using recombinant proteins or enzymes represent the only approved treatment. Combinatorial antibodies have shown great promise as a new class of therapeutic molecules because they act as "mechanism-based antibodies" with both agonist and antagonist activities. Using leptin, a key hormone in energy metabolism, as an example, a function-guided approach is developed to select combinatorial antibodies with high potency and full agonist activity that substitute natural growth factors in vivo. The identified antibody shows identical biochemical properties and cellular profiles as leptin, and rescues leptin-deficiency in ob/ob mice. Remarkably, the antibody activates leptin receptors that are otherwise nonfunctional because of mutations (L372A and A409E). Combinatorial antibodies have significant advantages over recombinant proteins for chronical usage in terms of immunological tolerance and biological stability.
Collapse
Affiliation(s)
- Pingdong Tao
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- School of Life Science and Technology
ShanghaiTech UniversityShanghai201210China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuanyuan Kuang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- School of Life Science and Technology
ShanghaiTech UniversityShanghai201210China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yu Li
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- School of Life Science and Technology
ShanghaiTech UniversityShanghai201210China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenping Li
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- School of Life Science and Technology
ShanghaiTech UniversityShanghai201210China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zibei Gao
- School of Life Science and Technology
ShanghaiTech UniversityShanghai201210China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Min Qiang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Zhao Zha
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Kun Fan
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- School of Life Science and Technology
ShanghaiTech UniversityShanghai201210China
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Jeffrey M. Friedman
- Laboratory of Molecular GeneticsHoward Hughes Medical InstituteThe Rockefeller UniversityNew YorkNY10065USA
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | | |
Collapse
|
8
|
Han KH, Arlian BM, Lin CW, Jin HY, Kang GH, Lee S, Lee PCW, Lerner RA. Agonist Antibody Converts Stem Cells into Migrating Brown Adipocyte-Like Cells in Heart. Cells 2020; 9:cells9010256. [PMID: 31968623 PMCID: PMC7017361 DOI: 10.3390/cells9010256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
We present data showing that Iodotyrosine Deiodinase (IYD) is a dual-function enzyme acting as a catalyst in metabolism and a receptor for cooperative stem cell differentiation. IYD is present both in thyroid cells where it is critical for scavenging iodine from halogenated by-products of thyroid hormone production and on hematopoietic stem cells. To close the cooperative loop, the mono- and di-Iodotyrosine (MIT and DIT) substrates of IYD in the thyroid are also agonists for IYD now acting as a receptor on bone marrow stem cells. While studying intracellular combinatorial antibody libraries, we discovered an agonist antibody, H3 Ab, of which the target is the enzyme IYD. When agonized by H3 Ab, IYD expressed on stem cells induces differentiation of the cells into brown adipocyte-like cells, which selectively migrate to mouse heart tissue. H3 Ab also binds to IYD expressed on human myocardium. Thus, one has a single enzyme acting in different ways on different cells for the cooperative purpose of enhancing thermogenesis or of regenerating damaged heart tissue.
Collapse
Affiliation(s)
- Kyung Ho Han
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; (K.H.H.); (C.-W.L.)
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, Korea
| | - Britni M. Arlian
- Departments of Molecular Medicine, Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; (K.H.H.); (C.-W.L.)
| | - Hyun Yong Jin
- Department of Urology, University of California, San Francisco, CA 94158, USA;
| | - Geun-Hyung Kang
- Division of Cardiology, Asan Medical Center Heart Institute, University of Ulsan College of Medicine, Seoul 05505, Korea; (G.-H.K.); (S.L.)
| | - Sahmin Lee
- Division of Cardiology, Asan Medical Center Heart Institute, University of Ulsan College of Medicine, Seoul 05505, Korea; (G.-H.K.); (S.L.)
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, Korea
- Correspondence: (P.C.-W.L.); (R.A.L.); Tel.: +82-2-3010-2799 (P.C.-W.L.); +1-858-784-8265 (R.A.L.)
| | - Richard A. Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; (K.H.H.); (C.-W.L.)
- Correspondence: (P.C.-W.L.); (R.A.L.); Tel.: +82-2-3010-2799 (P.C.-W.L.); +1-858-784-8265 (R.A.L.)
| |
Collapse
|
9
|
Jung D, Bucher F, Ryu S, Jeong J, Lee BY, Jeong Y, Kim MS, Oh YS, Baek MC, Yoon JH, Yea K. An adiponectin receptor agonist antibody stimulates glucose uptake and fatty-acid oxidation by activating AMP-activated protein kinase. Cytokine 2019; 126:154863. [PMID: 31629112 DOI: 10.1016/j.cyto.2019.154863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022]
Abstract
Adiponectin (Ad) is a representative adipocytokine that regulates energy homeostasis including glucose transport and lipid oxidation through activation of AMP-activated protein kinase (AMPK) pathways. Plasma levels of Ad are reduced in obesity, which contributes to type 2 diabetes. Therefore, agents that activate the Ad signaling pathway could ameliorate metabolic diseases such as type 2 diabetes. Here, we report the identification of a high-affinitive agonist antibody against Ad receptors. The antibody was selected by using phage display of human combinatorial antibody libraries. The selected antibody induced phosphorylation of the acetyl-CoA carboxylase (ACC) and AMPK in skeletal muscle cells and stimulated glucose uptake and fatty-acid oxidation (FAO) in myotubes. In addition, the antibody significantly lowered blood glucose levels during a glucose challenge in normal mice as well as basal blood glucose levels in a type 2 diabetic mouse model. Taken together, these results suggest that the agonist antibody could be a promising therapeutic agent for the treatment of metabolic syndrome such as type 2 diabetes.
Collapse
Affiliation(s)
- Dokyung Jung
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Suyeon Ryu
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jongwon Jeong
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Beom Yong Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Youngtae Jeong
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Minseok S Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Yong-Seok Oh
- Department of Brain-Cognitive Science, DGIST, Daegu 42988, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jong Hyuk Yoon
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Kyungmoo Yea
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
10
|
An agonist antibody prefers relapsed AML for induction of cells that kill each other. Sci Rep 2019; 9:3494. [PMID: 30837591 PMCID: PMC6401169 DOI: 10.1038/s41598-019-40087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 02/04/2019] [Indexed: 11/09/2022] Open
Abstract
Previously, we reported an agonist antibody to a cytokine receptor, Thrombopoietin receptor (TPOR) that effectively induces cytotoxic killer cells from precursor tumor cells isolated from newly diagnosed AML patients. Here, we show that the TPOR agonist antibody can induce even relapsed AML cells into killer cells more potently than newly diagnosed AML cells. After stimulation by the agonist antibody, these relapsed leukemic cells enter into a differentiation process of killer cells. The antibody-induced killer cells express, Granzyme B and Perforin that assault and kill other members of the AML cell population. Particularly, the agonist antibody showed potent efficacy on the AML xenograft model in mice using the NOD/LtSz-scid IL2Rγc null (NSG) mice. These results show that the TPOR agonist antibody that induces AML cells to kill each other is effective on both relapsed AML cells and in vivo. Therefore, this study suggests a new strategy for the treatment of cancer relapse after chemotherapy.
Collapse
|
11
|
Migration-based selections of antibodies that convert bone marrow into trafficking microglia-like cells that reduce brain amyloid β. Proc Natl Acad Sci U S A 2018; 115:E372-E381. [PMID: 29295920 PMCID: PMC5777004 DOI: 10.1073/pnas.1719259115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A migration-based selection system is used to identify antibodies from combinatorial libraries that induce stem cells to both differentiate and selectively traffic to different tissues in adult animals. Significantly, a single agonist antibody induces microglia-like cells, which have the capacity to migrate to the brain and decrease amyloid beta deposition in the brain. One goal of regenerative medicine is to repair damaged tissue. This requires not only generating new cells of the proper phenotype, but also selecting for those that properly integrate into sites of injury. In our laboratory we are using a cell-migration–based in vivo selection system to generate antibodies that induce cells to both differentiate and selectively localize to different tissues. Here we describe an antibody that induces bone marrow stem cells to differentiate into microglia-like cells that traffic to the brain where they organize into typical networks. Interestingly, in the APP/PS1 Alzheimer’s disease mouse model, these induced microglia-like cells are found at sites of plaque formation and significantly reduce their number. These results raise the intriguing question as to whether one can use such antibody-induced differentiation of stem cells to essentially recapitulate embryogenesis in adults to discover cells that can regenerate damaged organ systems.
Collapse
|
12
|
Kennedy PJ, Oliveira C, Granja PL, Sarmento B. Monoclonal antibodies: technologies for early discovery and engineering. Crit Rev Biotechnol 2017; 38:394-408. [PMID: 28789584 DOI: 10.1080/07388551.2017.1357002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibodies are essential in modern life sciences biotechnology. Their architecture and diversity allow for high specificity and affinity to a wide array of biochemicals. Combining monoclonal antibody (mAb) technology with recombinant DNA and protein expression links antibody genotype with phenotype. Yet, the ability to select and screen for high affinity binders from recombinantly-displayed, combinatorial libraries unleashes the true power of mAbs and a flood of clinical applications. The identification of novel antibodies can be accomplished by a myriad of in vitro display technologies from the proven (e.g. phage) to the emerging (e.g. mammalian cell and cell-free) based on affinity binding as well as function. Lead candidates can be further engineered for increased affinity and half-life, reduced immunogenicity and/or enhanced manufacturing, and storage capabilities. This review begins with antibody biology and how the structure and genetic machinery relate to function, diversity, and in vivo affinity maturation and follows with the general requirements of (therapeutic) antibody discovery and engineering with an emphasis on in vitro display technologies. Throughout, we highlight where antibody biology inspires technology development and where high-throughput, "big data" and in silico strategies are playing an increasing role. Antibodies dominate the growing class of targeted therapeutics, alone or as bioconjugates. However, their versatility extends to research, diagnostics, and beyond.
Collapse
Affiliation(s)
- Patrick J Kennedy
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,c IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto , Porto , Portugal.,d ICBAS - Instituto de Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal
| | - Carla Oliveira
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,c IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto , Porto , Portugal
| | - Pedro L Granja
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,d ICBAS - Instituto de Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal.,e Departmento de Engenharia Metalúrgica e de Materiais , FEUP - Faculdade de Engenharia da Universidade do Porto , Porto , Portugal
| | - Bruno Sarmento
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,f CESPU , Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde , Gandra , Portugal
| |
Collapse
|
13
|
Combinatorial antibody libraries: new advances, new immunological insights. Nat Rev Immunol 2016; 16:498-508. [DOI: 10.1038/nri.2016.67] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Agonist antibody that induces human malignant cells to kill one another. Proc Natl Acad Sci U S A 2015; 112:E6158-65. [PMID: 26487683 DOI: 10.1073/pnas.1519079112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An attractive, but as yet generally unrealized, approach to cancer therapy concerns discovering agents that change the state of differentiation of the cancer cells. Recently, we discovered a phenomenon that we call "receptor pleiotropism" in which agonist antibodies against known receptors induce cell fates that are very different from those induced by the natural agonist to the same receptor. Here, we show that one can take advantage of this phenomenon to convert acute myeloblastic leukemic cells into natural killer cells. Upon induction with the antibody, these leukemic cells enter into a differentiation cascade in which as many as 80% of the starting leukemic cells can be differentiated. The antibody-induced killer cells make large amounts of perforin, IFN-γ, and granzyme B and attack and kill other members of the leukemic cell population. Importantly, induction of killer cells is confined to transformed cells, in that normal bone marrow cells are not induced to form killer cells. Thus, it seems possible to use agonist antibodies to change the differentiation state of cancer cells into those that attack and kill other members of the malignant clone from which they originate.
Collapse
|