1
|
Saavedra I, Rabadán-González J, Aragonés D, Figuerola J. Can Citizen Science Contribute to Avian Influenza Surveillance? Pathogens 2023; 12:1183. [PMID: 37764991 PMCID: PMC10535995 DOI: 10.3390/pathogens12091183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Global change is an important driver of the increase in emerging infectious diseases in recent decades. In parallel, interest in nature has increased, and different citizen science platforms have been developed to record wildlife observations from the general public. Some of these platforms also allow registering the observations of dead or sick birds. Here, we test the utility of live, sick and dead observations of birds recorded on the platform Observation.org for the early detection of highly pathogenic avian influenza virus (HPAIV) outbreaks in the wild in Belgium and The Netherlands. There were no significant differences in the morbidity/mortality rate through Observation.org one to four weeks in advance. However, the results show that the HPAIV outbreaks officially reported by the World Organisation for Animal Health (WOAH) overlapped in time with sudden increases in the records of sick and dead birds in the wild. In addition, in two of the five main HPAIV outbreaks recorded between 2016 and 2021, wild Anseriformes mortality increased one to two months before outbreak declaration. Although we cannot exclude that this increase was related to other causes such as other infectious diseases, we propose that Observation.org is a useful nature platform to complement animal health surveillance in wild birds. We propose possible approaches to improve the utility of the platform for pathogen surveillance in wildlife and discuss the potential for HPAIV outbreak detection systems based on citizen science to complement current surveillance programs of health authorities.
Collapse
Affiliation(s)
- Irene Saavedra
- Consejo Superior de Investigaciones Científicas, Estación Biológica de Doñana, C/Américo Vespucio 26, E-41092 Sevilla, Spain;
| | | | - David Aragonés
- Remote Sensing and GIS Laboratory (LAST-EBD), Consejo Superior de Investigaciones Cientificas, Estación Biológica de Doñana, C/Américo Vespucio 26, E-41092 Sevilla, Spain;
| | - Jordi Figuerola
- Consejo Superior de Investigaciones Científicas, Estación Biológica de Doñana, C/Américo Vespucio 26, E-41092 Sevilla, Spain;
- CIBER Epidemiology and Public Health (CIBERESP), E-28028 Madrid, Spain
| |
Collapse
|
2
|
The Impact of Selected Risk Factors on The Occurrence of Highly Pathogenic Avian Influenza in Commercial Poultry Flocks in Poland. J Vet Res 2021; 65:45-52. [PMID: 33817394 PMCID: PMC8009582 DOI: 10.2478/jvetres-2021-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/03/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction Introduction of highly pathogenic avian influenza virus (HPAIV) into a country and its further spread may have a devastating impact on the poultry industry and lead to serious economic consequences. Various risk factors may increase the probability of HPAI outbreak occurrence but their relative influence is often difficult to determine. The study evaluates how the densities of selected poultry species and proximity to the areas inhabited by wild birds impacted HPAI outbreak occurrence during the recently reported epidemics in Poland. Material and methods The analysis was developed using these risk factors in the locations of affected and randomly chosen unaffected commercial farms. Generalised linear and non-linear models, specifically logistic regression, classification tree and random forest, were used to indicate the most relevant risk factors, to quantify their association with HPAI outbreak occurrence, and to develop a map depicting spatial risk distribution. Results The most important risk factors comprised the densities of turkeys, geese and ducks. The abundance of these species of poultry in an area increased the probability of HPAI occurrence, and their farming intensity in several areas of central, western, eastern and northern Poland put these areas at the highest risk. Conclusion The results may improve the targeting of active surveillance, strengthen biosecurity in the areas at risk and contribute to early detection of HPAI in outbreak reoccurrences.
Collapse
|
3
|
The effects of climate change on avian migratory patterns and the dispersal of commercial poultry diseases in Canada - Part II. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933913000147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
|
5
|
Scott AB, Toribio JA, Singh M, Groves P, Barnes B, Glass K, Moloney B, Black A, Hernandez-Jover M. Low Pathogenic Avian Influenza Exposure Risk Assessment in Australian Commercial Chicken Farms. Front Vet Sci 2018; 5:68. [PMID: 29755987 PMCID: PMC5932326 DOI: 10.3389/fvets.2018.00068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
This study investigated the pathways of exposure to low pathogenic avian influenza (LPAI) virus among Australian commercial chicken farms and estimated the likelihood of this exposure occurring using scenario trees and a stochastic modeling approach following the World Organization for Animal Health methodology for risk assessment. Input values for the models were sourced from scientific literature and an on-farm survey conducted during 2015 and 2016 among Australian commercial chicken farms located in New South Wales and Queensland. Outputs from the models revealed that the probability of a first LPAI virus exposure to a chicken in an Australian commercial chicken farms from one wild bird at any point in time is extremely low. A comparative assessment revealed that across the five farm types (non-free-range meat chicken, free-range meat chicken, cage layer, barn layer, and free range layer farms), free-range layer farms had the highest probability of exposure (7.5 × 10-4; 5% and 95%, 5.7 × 10-4-0.001). The results indicate that the presence of a large number of wild birds on farm is required for exposure to occur across all farm types. The median probability of direct exposure was highest in free-range farm types (5.6 × 10-4 and 1.6 × 10-4 for free-range layer and free-range meat chicken farms, respectively) and indirect exposure was highest in non-free-range farm types (2.7 × 10-4, 2.0 × 10-4, and 1.9 × 10-4 for non-free-range meat chicken, cage layer, and barn layer farms, respectively). The probability of exposure was found to be lowest in summer for all farm types. Sensitivity analysis revealed that the proportion of waterfowl among wild birds on the farm, the presence of waterfowl in the range and feed storage areas, and the prevalence of LPAI in wild birds are the most influential parameters for the probability of Australian commercial chicken farms being exposed to avian influenza (AI) virus. These results highlight the importance of ensuring good biosecurity on farms to minimize the risk of exposure to AI virus and the importance of continuous surveillance of LPAI prevalence including subtypes in wild bird populations.
Collapse
Affiliation(s)
- Angela Bullanday Scott
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Jenny-Ann Toribio
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Mini Singh
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Peter Groves
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Belinda Barnes
- Quantitative Sciences, Department of Agriculture and Water Resources, Canberra, ACT, Australia
| | - Kathryn Glass
- College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, Australia
| | - Barbara Moloney
- New South Wales Department of Primary Industries, Orange, NSW, Australia
| | - Amanda Black
- New South Wales Department of Primary Industries, Orange, NSW, Australia
| | - Marta Hernandez-Jover
- Graham Centre for Agricultural Innovation, School of Animal and Veterinary Sciences, Charles Sturt University and New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia.,School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
6
|
Complete Genome Sequencing of Influenza A Viruses within Swine Farrow-to-Wean Farms Reveals the Emergence, Persistence, and Subsidence of Diverse Viral Genotypes. J Virol 2017; 91:JVI.00745-17. [PMID: 28659482 PMCID: PMC5571239 DOI: 10.1128/jvi.00745-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 02/08/2023] Open
Abstract
Influenza A viruses (IAVs) are endemic in swine and represent a public health risk. However, there is limited information on the genetic diversity of swine IAVs within farrow-to-wean farms, which is where most pigs are born. In this longitudinal study, we sampled 5 farrow-to-wean farms for a year and collected 4,190 individual nasal swabs from three distinct pig subpopulations. Of these, 207 (4.9%) samples tested PCR positive for IAV, and 124 IAVs were isolated. We sequenced the complete genomes of 123 IAV isolates and found 31 H1N1, 26 H1N2, 63 H3N2, and 3 mixed IAVs. Based on the IAV hemagglutinin, seven different influenza A viral groups (VGs) were identified. Most of the remaining IAV gene segments allowed us to differentiate the same VGs, although an additional viral group was identified for gene segment 3 (PA). Moreover, the codetection of more than one IAV VG was documented at different levels (farm, subpopulation, and individual pigs), highlighting the environment for potential IAV reassortment. Additionally, 3 out of 5 farms contained IAV isolates (n = 5) with gene segments from more than one VG, and 79% of all the IAVs sequenced contained a signature mutation (S31N) in the matrix gene that has been associated with resistance to the antiviral amantadine. Within farms, some IAVs were detected only once, while others were detected for 283 days. Our results illustrate the maintenance and subsidence of different IAVs within swine farrow-to-wean farms over time, demonstrating that pig subpopulation dynamics are important to better understand the diversity and epidemiology of swine IAVs. IMPORTANCE On a global scale, swine are one of the main reservoir species for influenza A viruses (IAVs) and play a key role in the transmission of IAVs between species. Additionally, the 2009 IAV pandemics highlighted the role of pigs in the emergence of IAVs with pandemic potential. However, limited information is available regarding the diversity and distribution of swine IAVs on farrow-to-wean farms, where novel IAVs can emerge. In this study, we studied 5 swine farrow-to-wean farms for a year and characterized the genetic diversity of IAVs among three different pig subpopulations commonly housed on this type of farm. Using next-generation-sequencing technologies, we demonstrated the complex distribution and diversity of IAVs among the pig subpopulations studied. Our results demonstrated the dynamic evolution of IAVs within farrow-to-wean farms, which is crucial to improve health interventions to reduce the risk of transmission between pigs and from pigs to people.
Collapse
|
7
|
Mutations during the Adaptation of H9N2 Avian Influenza Virus to the Respiratory Epithelium of Pigs Enhance Sialic Acid Binding Activity and Virulence in Mice. J Virol 2017; 91:JVI.02125-16. [PMID: 28148793 DOI: 10.1128/jvi.02125-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 12/23/2022] Open
Abstract
The natural reservoir for influenza viruses is waterfowl, and from there they succeeded in crossing the barrier to different mammalian species. We analyzed the adaptation of avian influenza viruses to a mammalian host by passaging an H9N2 strain three times in differentiated swine airway epithelial cells. Using precision-cut slices from the porcine lung to passage the parental virus, isolates from each of the three passages (P1 to P3) were characterized by assessing growth curves and ciliostatic effects. The only difference noted was an increased growth kinetics of the P3 virus. Sequence analysis revealed four mutations: one each in the PB2 and NS1 proteins and two in the HA protein. The HA mutations, A190V and T212I, were characterized by generating recombinant viruses containing either one or both amino acid exchanges. Whereas the parental virus recognized α2,3-linked sialic acids preferentially, the HA190 mutant bound to a broad spectrum of glycans with α2,6/8/9-linked sialic acids. The HA212 mutant alone differed only slightly from the parental virus; however, the combination of both mutations (HA190+HA212) increased the binding affinity to those glycans recognized by the HA190 mutant. Remarkably, only the HA double mutant showed a significantly increased pathogenicity in mice. In contrast, none of those mutations affected the ciliary activity of the epithelial cells which is characteristic for virulent swine influenza viruses. Taken together, our results indicate that shifts in the HA receptor affinity are just an early adaptation step of avian H9N2 strains; further mutational changes may be required to become virulent for pigs.IMPORTANCE Swine play an important role in the interspecies transmission of influenza viruses. Avian influenza A viruses (IAV) of the H9N2 subtype have successfully infected hosts from different species but have not established a stable lineage. We have analyzed the adaptation of IAV-H9N2 virus to target cells of a new host by passaging the virus three times in differentiated porcine respiratory epithelial cells. Among the four mutations detected, the two HA mutations were analyzed by generating recombinant viruses. Depending on the infection system used, the mutations differed in their phenotypic expression, e.g., sialic acid binding activity, replication kinetics, plaque size, and pathogenicity in inbred mice. However, none of the mutations affected the ciliary activity which serves as a virulence marker. Thus, early adaptive mutation enhances the replication kinetics, but more mutations are required for IAV of the H9N2 subtype to become virulent.
Collapse
|
8
|
Wang J, Tang C, Wang Q, Li R, Chen Z, Han X, Wang J, Xu X. Apoptosis induction and release of inflammatory cytokines in the oviduct of egg-laying hens experimentally infected with H9N2 avian influenza virus. Vet Microbiol 2015; 177:302-14. [DOI: 10.1016/j.vetmic.2015.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 03/31/2015] [Accepted: 04/04/2015] [Indexed: 02/04/2023]
|
9
|
Latorre-Margalef N, Tolf C, Grosbois V, Avril A, Bengtsson D, Wille M, Osterhaus ADME, Fouchier RAM, Olsen B, Waldenström J. Long-term variation in influenza A virus prevalence and subtype diversity in migratory mallards in northern Europe. Proc Biol Sci 2014; 281:20140098. [PMID: 24573857 DOI: 10.1098/rspb.2014.0098] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Data on long-term circulation of pathogens in wildlife populations are seldom collected, and hence understanding of spatial-temporal variation in prevalence and genotypes is limited. Here, we analysed a long-term surveillance series on influenza A virus (IAV) in mallards collected at an important migratory stopover site from 2002 to 2010, and characterized seasonal dynamics in virus prevalence and subtype diversity. Prevalence dynamics were influenced by year, but retained a common pattern for all years whereby prevalence was low in spring and summer, but increased in early autumn with a first peak in August, and a second more pronounced peak during October-November. A total of 74 haemagglutinin (HA)/neuraminidase (NA) combinations were isolated, including all NA and most HA (H1-H12) subtypes. The most common subtype combinations were H4N6, H1N1, H2N3, H5N2, H6N2 and H11N9, and showed a clear linkage between specific HA and NA subtypes. Furthermore, there was a temporal structuring of subtypes within seasons based on HA phylogenetic relatedness. Dissimilar HA subtypes tended to have different temporal occurrence within seasons, where the subtypes that dominated in early autumn were rare in late autumn, and vice versa. This suggests that build-up of herd immunity affected IAV dynamics in this system.
Collapse
Affiliation(s)
- Neus Latorre-Margalef
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS ), Linnaeus University, , Kalmar 391 82, Sweden, Department of Population Health, College of Veterinary Medicine, Southeastern Cooperative Wildlife Disease Study, University of Georgia, , Athens, GA 30602, USA, International Research Center in Agriculture for Development (CIRAD)-UPR AGIRs, Animal and Integrate Risk Management, , Campus international de Baillarguet, Montpellier 34398, France, Department of Virology, Erasmus Medical Center, , Rotterdam, The Netherlands, Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, , Uppsala 751 85, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pepin KM, Wang J, Webb CT, Smith GJD, Poss M, Hudson PJ, Hong W, Zhu H, Riley S, Guan Y. Multiannual patterns of influenza A transmission in Chinese live bird market systems. Influenza Other Respir Viruses 2013; 7:97-107. [PMID: 22458429 PMCID: PMC4061500 DOI: 10.1111/j.1750-2659.2012.00354.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Avian influenza viruses (AIV) cause huge economic losses in poultry industries and pose a substantial threat to human health. However, predicting AIV epizootics and emergence in humans is confounded by insufficient empirical data on the ecology and dynamics of AIV in poultry systems. To address this gap, we quantified incidence patterns for 13 hemagglutinin subtypes of AIV using 6 years of surveillance data that were collected from ten different species of poultry and three different types of poultry holdings (contexts) - retail, wholesale, or farms. METHODS We collected 42 646 samples in Shantou, China between 2000 and 2006. We screened samples for hemagglutinin subtypes 1-13 of AIV and Avian Paramyxovirus-type-1 (APMV-1) using monospecific antisera in hemagglutination inhibition tests. We analyzed the data to determine seasonality patterns, subtype-host, and subtype-subtype interactions as well as subtype bias in incidence in different contexts. RESULTS H3, H6, H9, and APMV-1 were the most prevalent. No significant seasonality was found when all subtypes were considered together. For most AIV subtypes and APMV-1, there was subtype specificity for host, context, and coinfection partner. H5 showed the most generalized host usage pattern, followed by H9 and H6. CONCLUSION Subtype-specific patterns because of host, context, and other subtypes suggest that risk assessments that exclude these details are likely inaccurate. Surveillance should include longitudinal sampling of multiple host species in multiple contexts. Quantitative models of control strategies must consider multiple subtypes, hosts, and source contexts to assess the effectiveness of interventions.
Collapse
Affiliation(s)
- Kim M. Pepin
- International Institution of Infection and Immunity, Shantou University Medical College, Shantou, China
- Colorado State University, Fort Collins, CO, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Jia Wang
- International Institution of Infection and Immunity, Shantou University Medical College, Shantou, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
| | - Colleen T. Webb
- International Institution of Infection and Immunity, Shantou University Medical College, Shantou, China
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Gavin J. D. Smith
- International Institution of Infection and Immunity, Shantou University Medical College, Shantou, China
- Duke‐NUS Graduate Medical School, Singapore
| | - Mary Poss
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
- Penn State University, State College, PA, USA
| | - Peter J. Hudson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
- Penn State University, State College, PA, USA
| | - Wenshan Hong
- International Institution of Infection and Immunity, Shantou University Medical College, Shantou, China
| | - Huachen Zhu
- International Institution of Infection and Immunity, Shantou University Medical College, Shantou, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
| | - Steven Riley
- International Institution of Infection and Immunity, Shantou University Medical College, Shantou, China
- MRC Centre for Outbreak Analysis and Modelling, Imperial College London, London, UK
| | - Yi Guan
- International Institution of Infection and Immunity, Shantou University Medical College, Shantou, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Prosser DJ, Cui P, Takekawa JY, Tang M, Hou Y, Collins BM, Yan B, Hill NJ, Li T, Li Y, Lei F, Guo S, Xing Z, He Y, Zhou Y, Douglas DC, Perry WM, Newman SH. Wild bird migration across the Qinghai-Tibetan plateau: a transmission route for highly pathogenic H5N1. PLoS One 2011; 6:e17622. [PMID: 21408010 PMCID: PMC3052365 DOI: 10.1371/journal.pone.0017622] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/03/2011] [Indexed: 12/03/2022] Open
Abstract
Background Qinghai Lake in central China has been at the center of debate on whether wild birds play a role in circulation of highly pathogenic avian influenza virus H5N1. In 2005, an unprecedented epizootic at Qinghai Lake killed more than 6000 migratory birds including over 3000 bar-headed geese (Anser indicus). H5N1 subsequently spread to Europe and Africa, and in following years has re-emerged in wild birds along the Central Asia flyway several times. Methodology/Principal Findings To better understand the potential involvement of wild birds in the spread of H5N1, we studied the movements of bar-headed geese marked with GPS satellite transmitters at Qinghai Lake in relation to virus outbreaks and disease risk factors. We discovered a previously undocumented migratory pathway between Qinghai Lake and the Lhasa Valley of Tibet where 93% of the 29 marked geese overwintered. From 2003–2009, sixteen outbreaks in poultry or wild birds were confirmed on the Qinghai-Tibet Plateau, and the majority were located within the migratory pathway of the geese. Spatial and temporal concordance between goose movements and three potential H5N1 virus sources (poultry farms, a captive bar-headed goose facility, and H5N1 outbreak locations) indicated ample opportunities existed for virus spillover and infection of migratory geese on the wintering grounds. Their potential as a vector of H5N1 was supported by rapid migration movements of some geese and genetic relatedness of H5N1 virus isolated from geese in Tibet and Qinghai Lake. Conclusions/Significance This is the first study to compare phylogenetics of the virus with spatial ecology of its host, and the combined results suggest that wild birds play a role in the spread of H5N1 in this region. However, the strength of the evidence would be improved with additional sequences from both poultry and wild birds on the Qinghai-Tibet Plateau where H5N1 has a clear stronghold.
Collapse
Affiliation(s)
- Diann J Prosser
- Patuxent Wildlife Research Center, United States Geological Survey, Beltsville, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rawdon TG, Tana T, Thornton RN, McKenzie JS, Stanislawek WL, Kittelberger R, Geale D, Stevenson MA, Gerber N, Cork SC. Surveillance for avian influenza virus subtypes H5 and H7 in chickens and turkeys farmed commercially in New Zealand. N Z Vet J 2010; 58:292-8. [DOI: 10.1080/00480169.2010.69756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Msoffe PLM, Bunn D, Muhairwa AP, Mtambo MMA, Mwamhehe H, Msago A, Mlozi M, Cardona CJ. Preparation for the prevention and control of highly pathogenic avian influenza in rural Tanzanian village settings. Avian Dis 2010; 54:768-71. [PMID: 20521730 DOI: 10.1637/8775-033109-resnote.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Free-ranging local chicken flocks are important for the livelihood of resource-poor rural farmers in Tanzania, as they provide a critical source of animal protein and a ready source of income through the sale of chickens and eggs. An occurrence of highly pathogenic avian influenza (HPAI) in the village setting of Tanzania would result in a disastrous loss of livelihood. This paper attempts to offer an alternative method for preventing and controlling HPAI in village settings of Tanzania through community-based approaches.
Collapse
Affiliation(s)
- Peter L M Msoffe
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, P.O. Box 3021, Chuo Kikuu, Morogoro, Tanzania.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Savić V, Labrović A, Zelenika TA, Balenović M, Separović S, Jurinović L. Multiple introduction of Asian H5N1 avian influenza virus in Croatia by wild birds during 2005-2006 and isolation of the virus from apparently healthy black-headed gulls (Larus ridibundus). Vector Borne Zoonotic Dis 2010; 10:915-20. [PMID: 20370426 DOI: 10.1089/vbz.2009.0107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study describes the introduction and spread of avian influenza A (H5N1) subtype in Croatia. Seventeen isolates were identified during the period from October 2005 to March 2006, all originating from wild birds. The full-length nucleotide sequence analysis of the hemagglutinin (HA) gene of seven representative isolates revealed that three distinct genetic strains involved in the outbreaks, implicating at least three independent introductions of the virus into Croatia during a relatively short period of time. All three genetic strains belonged to clade 2.2 (Qinghai-like viruses) and each strain displayed significant similarity to concurrent H5N1 viruses from other European countries. The dominant strain of the virus was present in all four affected areas and in all three bird species (mute swan, mallard, and black-headed gull), indicating cross-species transmission of the virus. Two other genetic strains were found, together with the dominant strain, only in a marsh at the Adriatic coast during late February and early March 2006, which could be associated with frozen water surfaces in the continental part of Croatia as well as in Eastern Europe in early 2006 and the movement of birds toward warmer areas. This is also the first isolation of highly pathogenic avian influenza virus of H5N1 subtype from apparently healthy black-headed gulls.
Collapse
Affiliation(s)
- Vladimir Savić
- Poultry Center, Croatian Veterinary Institute, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
15
|
Zheng T, Adlam B, Rawdon TG, Stanislawek WL, Cork SC, Hope V, Buddle BM, Grimwood K, Baker MG, O'Keefe JS, Huang QS. A cross-sectional survey of influenza A infection, and management practices in small rural backyard poultry flocks in two regions of New Zealand. N Z Vet J 2010; 58:74-80. [DOI: 10.1080/00480169.2010.65086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|