1
|
Zhang D, Lu Y, Zhao X, Zhang Q, Li L. Aerobic exercise attenuates neurodegeneration and promotes functional recovery - Why it matters for neurorehabilitation & neural repair. Neurochem Int 2020; 141:104862. [PMID: 33031857 DOI: 10.1016/j.neuint.2020.104862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Aerobic exercise facilitates optimal neurological function and exerts beneficial effects in neurologic injuries. Both animal and clinical studies have shown that aerobic exercise reduces brain lesion volume and improves multiple aspects of cognition and motor function after stroke. Studies using animal models have proposed a wide range of potential molecular mechanisms that underlie the neurological benefits of aerobic exercise. Furthermore, additional exercise parameters, including time of initiation, exercise dosage (exercise duration and intensity), and treatment modality are also critical for clinical application, as identifying the optimal combination of parameters will afford patients with maximal functional gains. To clarify these issues, the current review summarizes the known neurological benefits of aerobic exercise under both physiological and pathological conditions and then considers the molecular mechanisms underlying these benefits in the contexts of stroke-like focal cerebral ischemia and cardiac arrest-induced global cerebral ischemia. In addition, we explore the key roles of exercise parameters on the extent of aerobic exercise-induced neurological benefits to elucidate the optimal combination for aerobic exercise intervention. Finally, the current challenges for aerobic exercise implementation after stroke are discussed.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Xudong Zhao
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Lei Li
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
2
|
Wang YL, Cheng JC, Chang CP, Su FC, Chen CC. Individualized Running Wheel System with a Dynamically Adjustable Exercise Area and Speed for Rats Following Ischemic Stroke. Med Sci Monit 2020; 26:e924411. [PMID: 32886655 PMCID: PMC7491243 DOI: 10.12659/msm.924411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background An innovative animal running wheel with an individualized design was implemented for the rehabilitation of rats following ischemic stroke. Material/Methods The design of the running wheel platform included the running wheel and a side plate for exercise area adjustments. A U-curve with a width of 2 cm was drawn on the lower half of the side plate for the dynamic adjustments of five infrared (IR) sensors based on the physical fitness of the rats. The individualized training process for this running wheel consisted of 2 days of free training to record their average and maximum speeds, 3 days of progressive training to determine their exercise areas, and 2 weeks of normal training based on their average speeds, maximum speeds, and exercise areas. Blood samples were obtained from the tail veins of all rats before the operations and on Days 14, 21, and 28 postsurgery to measure cortisol levels. The motor function tests were performed on Days 7 and 28 postsurgery. On Day 28 postsurgery, the rats were sacrificed under anesthesia, and their brains were removed for Nissl and H&E staining. Results On Day 28 after surgery, the motor function, lesion volume, and cell damage of the DEARW and control groups differed significantly, indicating that this device is effective for stroke rehabilitation. Conclusions The outcomes of the rats that were rehabilitated using the newly designed training system were better than those of their control-group counterparts, indicating the advantages of this designed system.
Collapse
Affiliation(s)
- Yu-Lin Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Center of General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jui-Chi Cheng
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
| |
Collapse
|
3
|
Chen CC, Chang CP. Development of a three-channel automatic climbing training system for rat rehabilitation after ischemic stroke. ACTA ACUST UNITED AC 2020; 53:e8943. [PMID: 32555931 PMCID: PMC7296713 DOI: 10.1590/1414-431x20208943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/16/2020] [Indexed: 01/21/2023]
Abstract
This paper reports the development of a three-channel automatic speed-matching climbing training system that could train three rats at the same time for rehabilitation after an ischemic stroke. An infrared (IR) remote sensor was installed at the end of each channel to monitor the real-time position of a climbing rat. This research was carried out in five stages: i) system design; ii) hardware circuit; iii) running speed control; iv) functional testing; and v) verification using an animal model of cerebral stroke. The rehabilitated group significantly outperformed the middle cerebral artery occlusion (MCAo) sedentary group in the rota-rod and inclined plate tests 21 days after a stroke. The rehabilitated group also had a cerebral infarction volume of 28.34±19.4%, far below 56.81±18.12% of the MCAo group 28 days after the stroke, validating the effectiveness of this training platform for stroke rehabilitation. The running speed of the climbing rehabilitation training platform was designed to adapt to the physical conditions of subjects, and overtraining injuries can be completely prevented accordingly.
Collapse
Affiliation(s)
- Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
4
|
Remarkable cell recovery from cerebral ischemia in rats using an adaptive escalator-based rehabilitation mechanism. PLoS One 2019; 14:e0223820. [PMID: 31603928 PMCID: PMC6788702 DOI: 10.1371/journal.pone.0223820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/01/2019] [Indexed: 12/22/2022] Open
Abstract
Currently, many ischemic stroke patients worldwide suffer from physical and mental impairments, and thus have a low quality of life. However, although rehabilitation is acknowledged as an effective way to recover patients’ health, there does not exist yet an adaptive training platform for animal tests so far. For this sake, this paper aims to develop an adaptive escalator (AE) for rehabilitation of rats with cerebral ischemia. Rats were observed to climb upward spontaneously, and a motor-driven escalator, equipped with a position detection feature and an acceleration/deceleration mechanism, was constructed accordingly as an adaptive training platform. The rehabilitation performance was subsequently rated using an incline test, a rotarod test, the infarction volume, the lesion volume, the number of MAP2 positive cells and the level of cortisol. This paper is presented in 3 parts as follows. Part 1 refers to the escalator mechanism design, part 2 describes the adaptive ladder-climbing rehabilitation mechanism, and part 3 discusses the validation of an ischemic stroke model. As it turned out, a rehabilitated group using this training platform, designated as the AE group, significantly outperformed a control counterpart in terms of a rotarod test. After the sacrifice of the rats, the AE group gave an average infarction volume of (34.36 ± 3.8)%, while the control group gave (66.41 ± 3.1)%, validating the outperformance of the escalator-based rehabilitation platform in a sense. An obvious difference between the presented training platform and conventional counterparts is the platform mechanism, and for the first time in the literature rats can be well and voluntarily rehabilitated at full capacity using an adaptive escalator. Taking into account the physical diversity among rats, the training strength provided was made adaptive as a reliable way to eliminate workout or secondary injury. Accordingly, more convincing arguments can be made using this mental stress-free training platform.
Collapse
|
5
|
Ke Z, Hu S, Cui W, Sun J, Zhang S, Mak S, Wang J, Tang J, Pang Y, Han Y, Tong K. Bis(propyl)-cognitin potentiates rehabilitation of treadmill exercise after a transient focal cerebral ischemia, possibly via inhibiting NMDA receptor and regulating VEGF expression. Neurochem Int 2019; 128:143-153. [DOI: 10.1016/j.neuint.2019.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/18/2022]
|
6
|
Pan X, Jiang T, Zhang L, Zheng H, Luo J, Hu X. Physical Exercise Promotes Novel Object Recognition Memory in Spontaneously Hypertensive Rats after Ischemic Stroke by Promoting Neural Plasticity in the Entorhinal Cortex. Front Behav Neurosci 2017; 11:185. [PMID: 29167635 PMCID: PMC5682296 DOI: 10.3389/fnbeh.2017.00185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/19/2017] [Indexed: 01/22/2023] Open
Abstract
Cerebral ischemia leads to memory impairment, and several studies have indicated that physical exercise (PE) has memory-improving effects after ischemia. This study was designed to further explore the specific role of PE in novel object recognition (NOR) memory after stroke and the exact cortical regions in which memory is restored by PE. Spontaneously hypertensive rats (SHR) were subjected to transient middle cerebral artery occlusion (tMCAO) or sham surgery, followed by 26 days of PE starting on day 3 post-tMCAO. Thereafter, infarct volume, neurobehavioral outcome and NOR memory were assessed. Immunofluorescence staining and Luxol Fast Blue (LFB) staining were performed in the prefrontal cortex, entorhinal cortex and corpus callosum regions. Western blot analysis was performed to detect expressions of Nestin, Bcl-2 and SYN proteins in the entorhinal cortex. After tMCAO, NOR memory impairment was found in SHR. Rats subjected to PE post-tMCAO showed increased discrimination ratio, as well as significant decreases in infarct volumes and modified neurological severity scores (mNSS), when compared with tMCAO rats without PE. After stroke, NeuN-positive cell number was drastically reduced in the entorhinal cortex, rather than in the prefrontal cortex. Ischemic stroke had no impact on myelin and phospholipids, and the ratio of SMI-32/MBP in the corpus callosum. PE increased NeuN, Nestin, Ki67, MBP, SYN, PSD-95 and Bcl-2 expressions in the entorhinal cortex, while TUNEL and SMI-32 expressions were decreased. In conclusion, the NOR memory-improving capacity promoted by PE was closely related to neuronal cell proliferation and synaptic plasticity of the entorhinal cortex.
Collapse
Affiliation(s)
- Xiaona Pan
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ting Jiang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Luo
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
da Silva PGC, Domingues DD, de Carvalho LA, Allodi S, Correa CL. Neurotrophic factors in Parkinson's disease are regulated by exercise: Evidence-based practice. J Neurol Sci 2016; 363:5-15. [PMID: 27000212 DOI: 10.1016/j.jns.2016.02.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 12/24/2022]
Abstract
We carried out a qualitative review of the literature on the influence of forced or voluntary exercise in Parkinson's Disease (PD)-induced animals, to better understand neural mechanisms and the role of neurotrophic factors (NFs) involved in the improvement of motor behavior. A few studies indicated that forced or voluntary exercise may promote neuroprotection, through upregulation of NF expression, against toxicity of drugs that simulate PD. Forced training, such as treadmill exercise and forced-limb use, adopted in most studies, in addition to voluntary exercise on a running wheel are suitable methods for NFs upregulation.
Collapse
Affiliation(s)
- Paula Grazielle Chaves da Silva
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Daniel Desidério Domingues
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Litia Alves de Carvalho
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas-Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Clynton Lourenço Correa
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Educação Física, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Neuroprotection of Early Locomotor Exercise Poststroke: Evidence From Animal Studies. Can J Neurol Sci 2015; 42:213-20. [PMID: 26041314 DOI: 10.1017/cjn.2015.39] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Early locomotor exercise after stroke has attracted a great deal of attention in clinical and animal research in recent years. A series of animal studies showed that early locomotor exercise poststroke could protect against ischemic brain injury and improve functional outcomes through the promotion of angiogenesis, inhibition of acute inflammatory response and neuron apoptosis, and protection of the blood-brain barrier. However, to date, the clinical application of early locomotor exercise poststroke was limited because some clinicians have little confidence in its effectiveness. Here we review the current progress of early locomotor exercise poststroke in animal models. We hope that a comprehensive awareness of the early locomotor exercise poststroke may help to implement early locomotor exercise more appropriately in treatment for ischemic stroke.
Collapse
|
9
|
McCain KJ, Smith PS. Locomotor Treadmill Training with Body-Weight Support Prior to Over-Ground Gait: Promoting Symmetrical Gait in a Subject with Acute Stroke. Top Stroke Rehabil 2014; 14:18-27. [PMID: 17901012 DOI: 10.1310/tsr1405-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND PURPOSE An asymmetrical gait pattern is frequently observed in persons recovering from stroke. Locomotor training with partial body-weight support (BWS) has been demonstrated to be effective for restoring ambulation abilities in persons poststroke. However, the optimal treatment parameters for this intervention have not been defined. The purpose of this case study was to report outcomes for a person in the acute period poststroke who experienced locomotor treadmill training with BWS prior to walking over ground. METHOD The subject of this report was a 60-year-old male with a large right-sided infarct extending into the basal ganglia. Locomotor training with BWS began on day 10 following the infarct. The subject had five sessions, totaling 40 minutes of walking practice, prior to starting gait training over ground. RESULTS The subject walked with a single-point cane (contact guard to standby assistance) for a total of 1,000 feet at a speed of 0.94 m/s (185 ft/min) when discharged on day 25 of rehabilitation. He demonstrated comparable stance time and step length bilaterally. DISCUSSION/CONCLUSION The subject of this case report experienced a good outcome using a combination of early locomotor treadmill training and traditional therapeutic activities. Further investigation of early treadmill training may be warranted in subjects with acute stroke.
Collapse
|
10
|
CHANG HENGCHIH, YANG YEARU, WANG PAULUSS, WANG RAYYAU. Quercetin Enhances Exercise-Mediated Neuroprotective Effects in Brain Ischemic Rats. Med Sci Sports Exerc 2014; 46:1908-16. [DOI: 10.1249/mss.0000000000000310] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Austin MW, Ploughman M, Glynn L, Corbett D. Aerobic exercise effects on neuroprotection and brain repair following stroke: a systematic review and perspective. Neurosci Res 2014; 87:8-15. [PMID: 24997243 DOI: 10.1016/j.neures.2014.06.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/04/2014] [Accepted: 06/24/2014] [Indexed: 01/02/2023]
Abstract
Aerobic exercise (AE) enhances neuroplasticity and improves functional outcome in animal models of stroke, however the optimal parameters (days post-stroke, intensity, mode, and duration) to influence brain repair processes are not known. We searched PubMed, CINAHL, PsychInfo, the Cochrane Library, and the Central Register of Controlled Clinical Trials, using predefined criteria, including all years up to July 2013 (English language only). Clinical studies were included if participants had experienced an ischemic or hemorrhagic stroke. We included animal studies that utilized any method of global or focal ischemic stroke or intracerebral hemorrhage. Any intervention utilizing AE-based activity with the intention of improving cardiorespiratory fitness was included. Of the 4250 titles returned, 47 studies (all in animal models) met criteria and measured the effects of exercise on brain repair parameters (lesion volume, oxidative damage, inflammation and cell death, neurogenesis, angiogenesis and markers of stress). Our synthesized findings show that early-initiated (24-48h post-stroke) moderate forced exercise (10m/min, 5-7 days per week for about 30min) reduced lesion volume and protected perilesional tissue against oxidative damage and inflammation at least for the short term (4 weeks). The applicability and translation of experimental exercise paradigms to clinical trials are discussed.
Collapse
Affiliation(s)
- Mark W Austin
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Lindsay Glynn
- Health Sciences Library, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Dale Corbett
- Canadian Partnership for Stroke Recovery and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Gradually increased training intensity benefits rehabilitation outcome after stroke by BDNF upregulation and stress suppression. BIOMED RESEARCH INTERNATIONAL 2014; 2014:925762. [PMID: 25045713 PMCID: PMC4090448 DOI: 10.1155/2014/925762] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/14/2014] [Accepted: 05/21/2014] [Indexed: 12/02/2022]
Abstract
Physical training is necessary for effective rehabilitation in the early poststroke period. Animal studies commonly use fixed training intensity throughout rehabilitation and without adapting it to the animals' recovered motor ability. This study investigated the correlation between training intensity and rehabilitation efficacy by using a focal ischemic stroke rat model. Eighty male Sprague-Dawley rats were induced with middle cerebral artery occlusion/reperfusion surgery. Sixty rats with successful stroke were then randomly assigned into four groups: control (CG, n = 15), low intensity (LG, n = 15), gradually increased intensity (GIG, n = 15), and high intensity (HG, n = 15). Behavioral tests were conducted daily to evaluate motor function recovery. Stress level and neural recovery were evaluated via plasma corticosterone and brain-derived neurotrophic factor (BDNF) concentration, respectively. GIG rats significantly (P < 0.05) recovered motor function and produced higher hippocampal BDNF (112.87 ± 25.18 ng/g). GIG and LG rats exhibited similar stress levels (540.63 ± 117.40 nM/L and 508.07 ± 161.30 nM/L, resp.), which were significantly lower (P < 0.05) than that (716.90 ± 156.48 nM/L) of HG rats. Training with gradually increased intensity achieved better recovery with lower stress. Our observations indicate that a training protocol that includes gradually increasing training intensity should be considered in both animal and clinical studies for better stroke recovery.
Collapse
|
13
|
Zhang Q, Zhang L, Yang X, Wan Y, Jia J. The effects of exercise preconditioning on cerebral blood flow change and endothelin-1 expression after cerebral ischemia in rats. J Stroke Cerebrovasc Dis 2014; 23:1696-702. [PMID: 24774439 DOI: 10.1016/j.jstrokecerebrovasdis.2014.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/20/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022] Open
Abstract
Stroke is an acute cerebrovascular disease with high incidence, morbidity, and mortality. Preischemic treadmill training has been shown to be effective in improving behavioral and neuropathologic indices after cerebral ischemia. However, the exact neuroprotective mechanism of preischemic treadmill training against ischemic injury has not been elucidated clearly. The present study investigated whether preischemic treadmill training could protect the brain from ischemic injury via regulating cerebral blood flow (CBF) and endothelin 1 (ET-1). We analyzed the CBF by laser speckle imaging and ET-1 expression by an enzyme-linked immunosorbent assay using an ischemic rat model with preischemic treadmill training. Generally speaking, ET-1 expression decreased and CBF increased significantly in the pretreadmill group. It is worth noting that ET-1 expression is increased at 24 hours of reperfusion in the pretreadmill group compared with the level of the time after middle cerebral artery occlusion. These changes were followed by significant changes in neurologic deficits and cerebral infarct volume. This study indicated that preconditioning exercise protected brain from ischemic injury through the improvement of CBF and regulation of ET-1 expression, which may be a novel component of the neuroprotective mechanism of preischemic treadmill training against brain injury.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaojiao Yang
- The First Hospital of Xinxiang Medical University, Weihui, China
| | - Yonggan Wan
- The First Hospital of Xinxiang Medical University, Weihui, China
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; The Yonghe Branch of Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Pin-Barre C, Laurin J, Felix MS, Pertici V, Kober F, Marqueste T, Matarazzo V, Muscatelli-Bossy F, Temprado JJ, Brisswalter J, Decherchi P. Acute neuromuscular adaptation at the spinal level following middle cerebral artery occlusion-reperfusion in the rat. PLoS One 2014; 9:e89953. [PMID: 24587147 PMCID: PMC3938604 DOI: 10.1371/journal.pone.0089953] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/24/2014] [Indexed: 11/18/2022] Open
Abstract
The purpose of the study was to highlight the acute motor reflex adaptation and to deepen functional deficits following a middle cerebral artery occlusion-reperfusion (MCAO-r). Thirty-six Sprague-Dawley rats were included in this study. The middle cerebral artery occlusion (MCAO; 120 min) was performed on 16 rats studied at 1 and 7 days, respectively (MCAO-D1 and MCAO-D7, n = 8 for each group). The other animals were divided into 3 groups: SHAM-D1 (n = 6), SHAM-D7 (n = 6) and Control (n = 8). Rats performed 4 behavioral tests (the elevated body swing test, the beam balance test, the ladder-climbing test and the forelimb grip force) before the surgery and daily after MCAO-r. H-reflex on triceps brachii was measured before and after isometric exercise. Infarction size and cerebral edema were respectively assessed by histological (Cresyl violet) and MRI measurements at the same time points than H-reflex recordings. Animals with cerebral ischemia showed persistent functional deficits during the first week post-MCAO-r. H-reflex was not decreased in response to isometric exercise one day after the cerebral ischemia contrary to the other groups. The motor reflex regulation was recovered 7 days post-MCAO-r. This result reflects an acute sensorimotor adaptation at the spinal level after MCAO-r.
Collapse
Affiliation(s)
- Caroline Pin-Barre
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Faculté des Sciences du Sport, Marseille, France
- Université de Nice Sophia-Antipolis et Université du Sud Toulon-Var, Motricité Humaine Éducation Sport Santé, Nice, France
| | - Jérôme Laurin
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Faculté des Sciences du Sport, Marseille, France
- * E-mail:
| | - Marie-Solenne Felix
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Faculté des Sciences du Sport, Marseille, France
| | - Vincent Pertici
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Faculté des Sciences du Sport, Marseille, France
| | - Frank Kober
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Faculté de Médecine Timone, Marseille, France
| | - Tanguy Marqueste
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Faculté des Sciences du Sport, Marseille, France
| | - Valery Matarazzo
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurobiologie de la Méditerranée, Marseille, France
| | - Françoise Muscatelli-Bossy
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurobiologie de la Méditerranée, Marseille, France
| | - Jean-Jacques Temprado
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Faculté des Sciences du Sport, Marseille, France
| | - Jeanick Brisswalter
- Université de Nice Sophia-Antipolis et Université du Sud Toulon-Var, Motricité Humaine Éducation Sport Santé, Nice, France
| | - Patrick Decherchi
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Faculté des Sciences du Sport, Marseille, France
| |
Collapse
|
15
|
Zhang QW, Deng XX, Sun X, Xu JX, Sun FY. Exercise promotes axon regeneration of newborn striatonigral and corticonigral projection neurons in rats after ischemic stroke. PLoS One 2013; 8:e80139. [PMID: 24260348 PMCID: PMC3833893 DOI: 10.1371/journal.pone.0080139] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/29/2013] [Indexed: 12/20/2022] Open
Abstract
Newborn striatal neurons induced by middle cerebral artery occlusion (MCAO) can form functional projections targeting into the substantia nigra, which should be very important for the recovery of motor function. Exercise training post-stroke improves motor recovery in clinic patients and increases striatal neurogenesis in experimental animals. This study aimed to investigate the effects of exercise on axon regeneration of newborn projection neurons in adult rat brains following ischemic stroke. Rats were subjected to a transient MCAO to induce focal cerebral ischemic injury, followed by 30 minutes of exercise training daily from 5 to 28 days after MCAO. Motor function was tested using the rotarod test. We used fluorogold (FG) nigral injection to trace striatonigral and corticonigral projection neurons, and green fluorescent protein (GFP)-targeting retroviral vectors combined with FG double labeling (GFP+ -FG+) to detect newborn projection neurons. The results showed that exercise improved the recovery of motor function of rats after MCAO. Meanwhile, exercise also increased the levels of BDNF and VEGF, and reduced Nogo-A in ischemic brain. On this condition, we further found that exercise significantly increased the number of GFP+ -FG+ neurons in the striatum and frontal and parietal cortex ipsilateral to MCAO, suggesting an increase of newborn striatonigral and corticonigral projection neurons by exercise post-stroke. In addition, we found that exercise also increased NeuN+ and FG+ cells in the striatum and frontal and parietal cortex, the ischemic territory, and tyrosine hydroxylase (TH) immunopositive staining cells in the substantia nigra, a region remote from the ischemic territory. Our results provide the first evidence that exercise can effectively enhance the capacity for regeneration of newborn projection neurons in ischemic injured mammalian brains while improving motor function. Our results provide a very important cellular mechanism to illustrate the effectiveness of rehabilitative treatment post-stroke in the clinic.
Collapse
Affiliation(s)
- Qiu-Wan Zhang
- Department of Neurobiology of School of Basic Medical Sciences and Institute for Stem Cell and Regenerative Medicine of Institutes for Biomedical Science of Shanghai Medical College of Fudan University, Shanghai, P. R. China
- State Key Laboratory of Medical Neurobiology of Fudan University, Shanghai, P. R. China
| | - Xu-Xu Deng
- State Key Laboratory of Medical Neurobiology of Fudan University, Shanghai, P. R. China
| | - Xiao Sun
- Department of Neurobiology of School of Basic Medical Sciences and Institute for Stem Cell and Regenerative Medicine of Institutes for Biomedical Science of Shanghai Medical College of Fudan University, Shanghai, P. R. China
- State Key Laboratory of Medical Neurobiology of Fudan University, Shanghai, P. R. China
| | - Jin-Xiu Xu
- State Key Laboratory of Medical Neurobiology of Fudan University, Shanghai, P. R. China
| | - Feng-Yan Sun
- Department of Neurobiology of School of Basic Medical Sciences and Institute for Stem Cell and Regenerative Medicine of Institutes for Biomedical Science of Shanghai Medical College of Fudan University, Shanghai, P. R. China
- State Key Laboratory of Medical Neurobiology of Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
16
|
Kim G, Kim E. The Effects of Antecedent Exercise on Motor Function Recovery and Brain-derived Neurotrophic Factor Expression after Focal Cerebral Ischemia in Rats. J Phys Ther Sci 2013; 25:553-6. [PMID: 24259800 PMCID: PMC3804980 DOI: 10.1589/jpts.25.553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/19/2012] [Indexed: 12/31/2022] Open
Abstract
[Purpose] In the present study, we investigated the effect of antecedent exercise on
functional recovery and brain-derived neurotrophic factor (BDNF) expression following
focal cerebral ischemia injury. [Subjects] The rat middle cerebral artery occlusion (MCAO)
model was employed. Adult male Sprague-Dawley rats were randomly divided into 4 groups.
Group I included untreated normal rats (n=10); Group II included untreated rats with focal
cerebral ischemia (n=10); Group III included rats that performed treadmill exercise (20
m/min) training after focal cerebral ischemia (n=10); and Group IV included rats that
performed antecedent treadmill exercise (20 m/min) training before focal cerebral ischemia
(n=10) as well as treadmill exercise after ischemia. At different time points (1, 7, 14,
and 21 days) Garcia’s score, and the hippocampal expressions level of BDNF were examined.
[Results] In the antecedent exercise group, improvements in the motor behavior index
(Garcia’s score) were observed and hippocampal BDNF protein expression levels increased.
[Conclusion] These results indicate that antecedent treadmill exercise, before permanent
brain ischemia exerts a neuroprotective effect against ischemia brain injury by improving
motor performance and increasing the level of BDNF expression. Furthermore, the antecedent
treadmill exercise of appropriate intensity is critical for post-stroke
rehabilitation.
Collapse
Affiliation(s)
- Gyeyeop Kim
- Department of Physical Therapy, College of Health and Welfare, Dongshin University
| | | |
Collapse
|
17
|
Chang HC, Yang YR, Wang PS, Kuo CH, Wang RY. The neuroprotective effects of intramuscular insulin-like growth factor-I treatment in brain ischemic rats. PLoS One 2013; 8:e64015. [PMID: 23717526 PMCID: PMC3661564 DOI: 10.1371/journal.pone.0064015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/09/2013] [Indexed: 11/19/2022] Open
Abstract
Brain ischemia leads to muscle inactivity-induced atrophy and may exacerbate motor function deficits. Intramuscular insulin-like growth factor I (IGF-I) injection has been shown to alleviate the brain ischemia-induced muscle atrophy and thus improve the motor function. Motor function is normally gauged by the integrity and coordination of the central nervous system and peripheral muscles. Whether brain ischemic regions are adaptively changed by the intramuscular IGF-I injection is not well understood. In this study, the effect of intramuscular IGF-I injection was examined on the central nervous system of brain ischemic rats. Rats were divided into 4 groups: sham control, brain ischemia control, brain ischemia with IGF-I treatment, and brain ischemia with IGF-I plus IGF-I receptor inhibitor treatment. Brain ischemia was induced by right middle cerebral artery occlusion. IGF-I and an IGF-1 receptor inhibitor were injected into the affected calf and anterior tibialis muscles of the treated rats for 4 times. There was an interval of 2 days between each injection. Motor function was examined and measured at the 24 hours and 7 days following a brain ischemia. The affected hind-limb muscles, sciatic nerve, lumbar spinal cord, and motor cortex were collected for examination after euthanizing the rats. IGF-I expression in the central nervous system and affected muscles were significantly decreased after brain ischemia. Intramuscular IGF-I injection increased the IGF-I expression in the affected muscles, sciatic nerve, lumbar spinal cord, and motor cortex. It also increased the p-Akt expression in the affected motor cortex. Furthermore, intramuscular IGF-I injection decreased the neuronal apoptosis and improved the motor function. However, co-administration of the IGF-I receptor inhibitor eliminated these effects. Intramuscular IGF-I injection after brain ischemia attenuated or reversed the decrease of IGF-I in both central and peripheral tissues, and these effects could contribute to neuroprotection and improve motor function.
Collapse
Affiliation(s)
- Heng-Chih Chang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taiwan
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taiwan
| | - Paulus S. Wang
- Department and Institute of Physiology, National Yang-Ming University, Taiwan
- Graduate Institute of Basic Medical Science, Ph.D. Program for Aging, College of Medicine, China Medical University, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taiwan
| | - Chia-Hua Kuo
- Graduate Institute of Exercise Science, Taipei Physical Education College, Taiwan
| | - Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Kim G, Kim E. The Effects of Antecedent Exercise on Motor Function Recovery and Brain-derived Neurotrophic Factor Expression after Focal Cerebral Ischemia in Rats. J Phys Ther Sci 2013. [DOI: 10.1589/jpts.25.5_553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Gyeyeop Kim
- Department of Physical Therapy, College of Health and Welfare, Dongshin University
| | - Eunjung Kim
- Department of Physical Therapy, Nambu University: Chemdan, Jungang 1-ro, Gwangsan-gu, Gwangju 506-706, Republic of Korea
| |
Collapse
|
19
|
Park S, Shin J, Hong Y, Kim S, Lee S, Park K, Lkhagvasuren T, Lee SR, Chang KT, Hong Y. Forced exercise enhances functional recovery after focal cerebral ischemia in spontaneously hypertensive rats. Brain Sci 2012; 2:483-503. [PMID: 24961257 PMCID: PMC4061815 DOI: 10.3390/brainsci2040483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/03/2012] [Accepted: 10/03/2012] [Indexed: 11/16/2022] Open
Abstract
Caveolin is the principal protein of caveolae and has been implicated in the pathogenesis of cerebral ischemia. To investigate whether changed expression of caveolins has a pivotal role in focal cerebral ischemia, we induced middle cerebral artery occlusion (MCAo)-reperfusion and examined expression of caveolins, inflammatory activation markers, and mediators of autophagic cell death. We also treated MCAo rats with forced exercise to determine its effects on neurological outcome. Particularly, spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were used to compare the effects of hypertension on focal cerebral ischemia. All MCAo groups showed neurological deficiencies, motor dysfunction, and disruption of balancing ability; however, these pathological changes were more severe in SHR than WKY rats. Expression of caveolins was decreased in MCAo brain tissue, whereas the levels of iNOS and glial fibrillary acidic protein (GFAP) increased. Additionally, LC3-II and beclin-1 levels were elevated in the MCAo groups. Forced exercise attenuated both molecular and behavioral changes in MCAo animals, but SHR rats showed delayed functional recovery and residual molecular changes when compared to WKY rats. These results suggest that forced exercise may be beneficial for promoting functional recovery following cerebral ischemia through caveolin-dependent mechanisms or interactions between caveolins and these signaling molecules in ischemic brain regions.
Collapse
Affiliation(s)
- Sookyoung Park
- Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae 621-749, Korea.
| | - Jinhee Shin
- Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae 621-749, Korea.
| | - Yunkyung Hong
- Department of Rehabilitation Science in Interdisciplinary PhD Program, Graduate School of Inje University, Gimhae 621-749, Korea.
| | - Sunmi Kim
- Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae 621-749, Korea.
| | - Seunghoon Lee
- Department of Rehabilitation Science in Interdisciplinary PhD Program, Graduate School of Inje University, Gimhae 621-749, Korea.
| | - Kanghui Park
- Department of Rehabilitation Science in Interdisciplinary PhD Program, Graduate School of Inje University, Gimhae 621-749, Korea.
| | - Tserentogtokh Lkhagvasuren
- Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae 621-749, Korea.
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 363-883, Korea.
| | - Kyu-Tae Chang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 363-883, Korea.
| | - Yonggeun Hong
- Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae 621-749, Korea.
| |
Collapse
|
20
|
Yang X, He Z, Zhang Q, Wu Y, Hu Y, Wang X, Li M, Wu Z, Guo Z, Guo J, Jia J. Pre-ischemic treadmill training for prevention of ischemic brain injury via regulation of glutamate and its transporter GLT-1. Int J Mol Sci 2012; 13:9447-9459. [PMID: 22949807 PMCID: PMC3431805 DOI: 10.3390/ijms13089447] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/14/2012] [Accepted: 07/19/2012] [Indexed: 12/12/2022] Open
Abstract
Pre-ischemic treadmill training exerts cerebral protection in the prevention of cerebral ischemia by alleviating neurotoxicity induced by excessive glutamate release following ischemic stroke. However, the underlying mechanism of this process remains unclear. Cerebral ischemia-reperfusion injury was observed in a rat model after 2 weeks of pre-ischemic treadmill training. Cerebrospinal fluid was collected using the microdialysis sampling method, and the concentration of glutamate was determined every 40 min from the beginning of ischemia to 4 h after reperfusion with high-performance liquid chromatography (HPLC)-fluorescence detection. At 3, 12, 24, and 48 h after ischemia, the expression of the glutamate transporter-1 (GLT-1) protein in brain tissues was determined by Western blot respectively. The effect of pre-ischemic treadmill training on glutamate concentration and GLT-1 expression after cerebral ischemia in rats along with changes in neurobehavioral score and cerebral infarct volume after 24 h ischemia yields critical information necessary to understand the protection mechanism exhibited by pre-ischemic treadmill training. The results demonstrated that pre-ischemic treadmill training up-regulates GLT-1 expression, decreases extracellular glutamate concentration, reduces cerebral infarct volume, and improves neurobehavioral score. Pre-ischemic treadmill training is likely to induce neuroprotection after cerebral ischemia by regulating GLT-1 expression, which results in re-uptake of excessive glutamate.
Collapse
Affiliation(s)
- Xiaojiao Yang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Zhijie He
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Qi Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
| | - Yi Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
| | - Yongshan Hu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
| | - Xiaolou Wang
- The Third Teaching Hospital of Xinxiang Medical University, Xinxiang 453003, China; E-Mail:
| | - Mingfen Li
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
| | - Zhiyuan Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
| | - Zhenzhen Guo
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
| | - Jingchun Guo
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
- Authors to whom correspondence should be addressed; E-Mails: (J.G.); (J.J.); Tel./Fax: +86-21-542-373-98 (J.G.); +86-21-528-878-20 (J.J.)
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
- Authors to whom correspondence should be addressed; E-Mails: (J.G.); (J.J.); Tel./Fax: +86-21-542-373-98 (J.G.); +86-21-528-878-20 (J.J.)
| |
Collapse
|
21
|
Ke Z, Yip SP, Li L, Zheng XX, Tam WK, Tong KY. The effects of voluntary, involuntary, and forced exercises on motor recovery in a stroke rat model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:8223-6. [PMID: 22256251 DOI: 10.1109/iembs.2011.6092028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stroke rehabilitation with different exercise paradigms has been investigated, but a comparison study on motor recovery after voluntary, involuntary, and forced exercises is limited. The current study used a rat brain ischemia model to investigate the effects of voluntary wheel running, involuntary muscle movement caused by functional electrical stimulation (FES), and forced treadmill exercise on motor recovery and brain BDNF changes. The results showed that voluntary exercise is the most effective intervention in upregulating the hippocampal BDNF level, and facilitating motor recovery after brain ischemia.
Collapse
Affiliation(s)
- Zheng Ke
- the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
22
|
Chang HC, Yang YR, Wang PS, Kuo CH, Wang RY. Insulin-like growth factor I signaling for brain recovery and exercise ability in brain ischemic rats. Med Sci Sports Exerc 2012; 43:2274-80. [PMID: 21606872 DOI: 10.1249/mss.0b013e318223b5d9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Exercise increases neuron survival and plasticity in the adult brain by enhancing the uptake of insulin-like growth factor I (IGF-I). Exercise also reduces the infarct volume in the ischemic brain and improves motor function after such a brain insult. However, the underlying mechanisms are not fully known. The purpose of this study was to investigate the involvement of IGF-I signaling in neuroprotection after exercise. METHOD Rats were assigned to one of four groups: middle cerebral artery occlusion (MCAO) without exercise training (MC), MCAO with exercise training (ME), MCAO with IGF-I receptor inhibitor and without exercise training (MAg), and MCAO with IGF-I receptor inhibitor and exercise training (MEAg). Rats in the ME and MEAg groups underwent treadmill training for 14 d, and rats in the MC and MAg groups served as controls. After the final intervention, rats were sacrificed under anesthesia, and samples were collected from the affected motor cortex, striatum, and plasma. RESULTS IGF-I and p-Akt levels in the affected motor cortex and the striatum of the ME group were significantly higher than those in the MC group, with significant decreases in infarct volume and improvements in motor function. However, IGF-I receptor inhibitor eliminated these effects and decreased the exercise ability. The brain IGF-I signaling strongly correlated with exercise ability. CONCLUSIONS Exercise-enhanced IGF-I entrance into ischemic brain and IGF-I signaling was related to exercise-mediated neuroprotection. IGF-1 signaling also affected the ability to exercise after brain ischemia.
Collapse
Affiliation(s)
- Heng-Chih Chang
- Department and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Yang YR, Chang HC, Wang PS, Wang RY. Motor Performance Improved by Exercises in Cerebral Ischemic Rats. J Mot Behav 2012; 44:97-103. [DOI: 10.1080/00222895.2012.654524] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Zhang Q, Wu Y, Sha H, Zhang P, Jia J, Hu Y, Zhu J. Early exercise affects mitochondrial transcription factors expression after cerebral ischemia in rats. Int J Mol Sci 2012; 13:1670-1679. [PMID: 22408416 PMCID: PMC3291985 DOI: 10.3390/ijms13021670] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/20/2012] [Accepted: 01/29/2012] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence shows that exercise training is neuroprotective after stroke, but the underlying mechanisms are unknown. To clarify this critical issue, the current study investigated the effects of early treadmill exercise on the expression of mitochondrial biogenesis factors. Adult rats were subjected to ischemia induced by middle cerebral artery occlusion followed by reperfusion. Expression of two genes critical for transcriptional regulation of mitochondrial biogenesis, peroxisome proliferator-activated receptor coactivator-1 (PGC-1) and nuclear respiratory factor-1 (NRF-1), were examined by RT-PCR after five days of exercise starting at 24 h after ischemia. Mitochondrial protein cytochrome C oxidase subunit IV (COX IV) was detected by Western blot. Neurological status and cerebral infarct volume were evaluated as indices of brain damage. Treadmill training increased levels of PGC-1 and NRF-1 mRNA, indicating that exercise promotes rehabilitation after ischemia via regulation of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (Q.Z.); (P.Z.); (J.J.); (Y.H.)
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
| | - Yi Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (Q.Z.); (P.Z.); (J.J.); (Y.H.)
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
- The Yonghe Branch of Huashan Hospital, Fudan University, Shanghai 200436, China
- Author to whom correspondence should be addressed: E-Mail: ; Tel.: +86-21-528-878-20; Fax: +86-21-528-878-20
| | - Hongying Sha
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; E-Mails: (H.S.); (J.Z.)
| | - Pengyue Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (Q.Z.); (P.Z.); (J.J.); (Y.H.)
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (Q.Z.); (P.Z.); (J.J.); (Y.H.)
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
| | - Yongshan Hu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (Q.Z.); (P.Z.); (J.J.); (Y.H.)
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
- The Yonghe Branch of Huashan Hospital, Fudan University, Shanghai 200436, China
| | - Jianhong Zhu
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; E-Mails: (H.S.); (J.Z.)
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
25
|
Liu N, Huang H, Lin F, Chen A, Zhang Y, Chen R, Du H. Effects of treadmill exercise on the expression of netrin-1 and its receptors in rat brain after cerebral ischemia. Neuroscience 2011; 194:349-58. [PMID: 21820492 DOI: 10.1016/j.neuroscience.2011.07.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/26/2022]
Abstract
Recent evidence suggests that exercise improves functional outcome in animal models of cerebral ischemia. Since netrin-1 and its receptors, deleted in colorectal cancer (DCC) and uncoordinated gene 5B (Unc5B), act as important regulators in neural and vascular activities, we sought to determine whether netrin-1 and DCC and Unc5B are involved in the neuroprotective effects of exercise on rats with induced cerebral ischemia. A total of 108 rats were randomly distributed into three groups: sham-operated group (n = 12), middle cerebral artery occlusion (MCAO) group (n = 48), MCAO+treadmill exercise group (n = 48). Behavioral testing indicated that treadmill exercise could significantly improve neurologic deficits of rats with cerebral ischemia at day 14 and 28 after MCAO (n = 12, P<0.05 and P<0.01), but there was no significant difference at day 4 and 7. Quantitative reverse transcription polymerase chain reaction (qPCR) and Western blot analysis revealed that treadmill exercise enhanced netrin-1 and DCC expression, while it suppressed Unc5B expression in rat peri-ischemic brain area, especially at day 14 and 28 after MCAO (n = 4, P<0.05 or P<0.01). Immunofluorescence analysis showed that in the peri-ischemic area, netrin-1 was expressed in neuronal perikarya, DCC, however, was expressed in neural processes and peri-vascular astrocytes, while Unc5B was expressed mostly in neuronal perikarya and some processes. These results suggest that netrin-1 and its receptors DCC and Unc5B may engage in exercise-induced neural circuit remodeling in the peri-ischemic area, and exercise may promote survival of neurons in this area by regulating netrin-1-Unc5B signaling. Additionally, netrin-1 may also play a role in brain-blood barrier via DCC-immunoreactive peri-vascular astrocytes. In conclusion, we demonstrate that treadmill exercise has beneficial effects that may be attributed, at least in part, to the involvement of netrin-1 and its receptors DCC and Unc5B in the neuronal and vascular activities in brain-ischemic rats.
Collapse
Affiliation(s)
- N Liu
- Department of Rehabilitation, The Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian 350001, PR China.
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Wang RY, Chang HC, Chen CH, Tsai YW, Yang YR. Effects of hyperbaric oxygenation on oxidative stress in acute transient focal cerebral ischemic rats. Eur J Appl Physiol 2011; 112:215-21. [DOI: 10.1007/s00421-011-1976-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 04/18/2011] [Indexed: 11/30/2022]
|
28
|
Ke Z, Yip SP, Li L, Zheng XX, Tong KY. The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: a rat brain ischemia model. PLoS One 2011; 6:e16643. [PMID: 21347437 PMCID: PMC3035657 DOI: 10.1371/journal.pone.0016643] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/03/2011] [Indexed: 12/31/2022] Open
Abstract
Background Stroke rehabilitation with different exercise paradigms has been investigated, but which one is more effective in facilitating motor recovery and up-regulating brain neurotrophic factor (BDNF) after brain ischemia would be interesting to clinicians and patients. Voluntary exercise, forced exercise, and involuntary muscle movement caused by functional electrical stimulation (FES) have been individually demonstrated effective as stroke rehabilitation intervention. The aim of this study was to investigate the effects of these three common interventions on brain BDNF changes and motor recovery levels using a rat ischemic stroke model. Methodology/Principal Findings One hundred and seventeen Sprague-Dawley rats were randomly distributed into four groups: Control (Con), Voluntary exercise of wheel running (V-Ex), Forced exercise of treadmill running (F-Ex), and Involuntary exercise of FES (I-Ex) with implanted electrodes placed in two hind limb muscles on the affected side to mimic gait-like walking pattern during stimulation. Ischemic stroke was induced in all rats with the middle cerebral artery occlusion/reperfusion model and fifty-seven rats had motor deficits after stroke. Twenty-four hours after reperfusion, rats were arranged to their intervention programs. De Ryck's behavioral test was conducted daily during the 7-day intervention as an evaluation tool of motor recovery. Serum corticosterone concentration and BDNF levels in the hippocampus, striatum, and cortex were measured after the rats were sacrificed. V-Ex had significantly better motor recovery in the behavioral test. V-Ex also had significantly higher hippocampal BDNF concentration than F-Ex and Con. F-Ex had significantly higher serum corticosterone level than other groups. Conclusion/Significance Voluntary exercise is the most effective intervention in upregulating the hippocampal BDNF level, and facilitating motor recovery. Rats that exercised voluntarily also showed less corticosterone stress response than other groups. The results also suggested that the forced exercise group was the least preferred intervention with high stress, low brain BDNF levels and less motor recovery.
Collapse
Affiliation(s)
- Zheng Ke
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Le Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiao-Xiang Zheng
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Kai-Yu Tong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
29
|
Leasure JL, Grider M. The effect of mild post-stroke exercise on reactive neurogenesis and recovery of somatosensation in aged rats. Exp Neurol 2010; 226:58-67. [DOI: 10.1016/j.expneurol.2010.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/06/2010] [Accepted: 08/02/2010] [Indexed: 11/25/2022]
|
30
|
Dickstein R. Rehabilitation of gait speed after stroke: a critical review of intervention approaches. Neurorehabil Neural Repair 2009; 22:649-60. [PMID: 18971380 DOI: 10.1177/1545968308315997] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Walking speed is a cardinal indicator of poststroke gait performance; however, no consensus exists regarding the optimal treatment method(s) for its enhancement. The most widely accepted criterion for establishing the contribution of treatment to walking speed is the gain in speed. The actual speed, however, at the end of the intervention (final speed) may be more important for functional community ambulation. This review examines the contribution of the prevailing methods for gait rehabilitation to final walking speed. METHOD Walking speed information was derived from studies included in meta-analyses, systematic reviews, and clinical practice guidelines. Recent references, not included in the mentioned sources, were incorporated in cases when gait speed was an outcome variable. Final speed was assessed by the reported speed values and by inferring the capacity for functional community walking at the end of the intervention period. RESULTS Similar outcomes for final walking speed were found for the different prevailing treatment methods. Treatment gains were likewise comparable and generally insufficient for upgrading patients' functional community walking capacity. CONCLUSIONS Different treatment methods exist for poststroke gait rehabilitation. Their availability, mode of application, and costs vary, yet outcomes are largely similar. Therefore, choosing an appropriate method may be guided by a pragmatic approach. Simple "low technology" and conventional exercise to date is at least as efficacious as more complex strategies such as treadmill and robotic-based interventions.
Collapse
Affiliation(s)
- Ruth Dickstein
- Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Mt Carmel, Haifa, Israel.
| |
Collapse
|
31
|
Abstract
OBJECTIVE We examined the effects of various exercise intensities on recovery from middle cerebral artery occlusion (MCAO) in rats. METHODS First, we administered a 120-minute left MCAO to male Sprague-Dawley rats and randomly assigned them to one of four groups: no exercise (Group 1), mild exercise (Group 2), moderate exercise (Group 3), and severe exercise (Group 4). Then, we trained the rats for 30 min per day for one week or two weeks. We used a five-point neurological evaluation scale to measure neurological deficits 1-day, 4-days, 7-days, 10-days and 14-days after MCAO and measured infarct volume by use of 2% 2,3,4-triphenyltetrazolium chloride in exercised brains. We also performed immunohistochemistry analysis of the brain to observe reactive astrocytosis at the peri-infarct region. RESULTS Neurological examination indicated that Group 2 and 3 recovered better than Group 1 after one week and two weeks (p < 0.05). Moreover, Group 2 and 3 had reduced brain infarct volume compared with Group 1 after one week (p < 0.05). There were no significant differences between Group 4 and Group 1. The thickness of the peri-infarct astrocytosis was significantly reduced in Group 4 relative to Group 1 after one week. There was a significant negative correlation between the extent of reactive astrocytosis and neurological recovery (r = -0.648, p < 0.01). CONCLUSION This study demonstrates that mild to moderate exercise that begins soon after induced cerebral ischemia promotes recovery and that astrocytes may have an important role in the recovery process.
Collapse
|
32
|
Leung LY, Tong KY, Zhang SM, Zeng XH, Zhang KP, Zheng XX. Neurochemical effects of exercise and neuromuscular electrical stimulation on brain after stroke: a microdialysis study using rat model. Neurosci Lett 2005; 397:135-9. [PMID: 16384643 DOI: 10.1016/j.neulet.2005.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 12/03/2005] [Accepted: 12/04/2005] [Indexed: 11/30/2022]
Abstract
Treadmill exercise and neuromuscular electrical stimulation are common clinical approaches for stroke rehabilitation. Both animal and clinical studies have shown the functional improvements after these interventions. However, the neurochemical effects on the ischemic brain had not been well studied. This study aimed at evaluating the effects of treadmill exercise and neuromuscular electrical stimulation (NMES), and studying their effects during a 2-week training, on the levels of common neurotransmitters (aspartate, glutamate, taurine and gamma-aminobutyric acid (GABA)) in the hippocampus following transient focal cerebral ischemia. Either treadmill exercise or neuromuscular electrical stimulation was prescribed to the rats 24 h after cerebral ischemia whereas Control group remained in cages for 2 weeks. Microdialysis technique was used to collect dialysates from ipsilesional hippocampus in vivo. It was found that the glutamate level was increased significantly during treadmill exercise and then returned to baseline level. Both interventions did not trigger significant effects on aspartate and glutamate basal levels during the 2 weeks. The relatively high taurine level in Control groups may suggest that the interventions might suppress the taurine release in hippocampus. GABA and aspartate levels did not showed significant changes over the 2 weeks in all groups. These results provide insights to explain the neurochemical effects on the ischemic injured brain during the course of rehabilitation.
Collapse
Affiliation(s)
- Lai-Yee Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | | | | | | | | | | |
Collapse
|