1
|
Geoffray L, Tuchtan L, Piercecchi-Marti MD, Delteil C. Post-mortem transmission risk of infectious disease: A systematic review. Leg Med (Tokyo) 2024; 71:102530. [PMID: 39361989 DOI: 10.1016/j.legalmed.2024.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Autopsies may expose to infectious risks. The objective of this study is to assess the risk of post-mortem transmission of HIV, HBV, HCV, Mycobacterium tuberculosis (MBT), SARS-CoV2 and prion in the workplace and to estimate the duration of their infectiousness. MATERIAL AND METHOD the PRISMA 2020 guideline was used. Pubmed, Web of Science, Google Scholar and Sciencedirect databases were assessed until February 28, 2023. We searched for articles in any language and any date of publication. Studies involving animals, transmission between two living people or transmission outside the workplace were excluded. Risk of bias was assessed using the appropriate assessment tools for each type of study. A descriptive analysis was performed. RESULTS A total of 46 studies were included. Cases of post-mortem transmission were certain for HIV (n = 1) and MBT (n = 18). The longest post-mortem interval for positive diagnostic tests was 17 days for HIV, 60 for HBV, 7 for HCV, 36 for MBT and 17 for SARS-CoV2. The longest post-mortem interval for positive cultures was 21 h for HIV, 6 days for HBV, 36 days for MBT, 17 days for SARS-CoV2. The methodology of the studies was heterogeneous, some of them associated with a high risk of bias. CONCLUSION There is a lack of consistent data in the literature concerning the infectivity of cadavers, except for MBT. Legislation appears to be based on minimizing contact between the biological agent and the professional. In the absence of recent robust scientific data, workers should systematically follow the best practice recommendations.
Collapse
Affiliation(s)
- L Geoffray
- Institut médico-légal, hôpital de la Timone, 264, rue St-Pierre, 13005 Marseille Cedex 5, France.
| | - L Tuchtan
- Institut médico-légal, hôpital de la Timone, 264, rue St-Pierre, 13005 Marseille Cedex 5, France; Aix Marseille université, CNRS, EFS, ADES, Marseille, France
| | - M-D Piercecchi-Marti
- Institut médico-légal, hôpital de la Timone, 264, rue St-Pierre, 13005 Marseille Cedex 5, France; Aix Marseille université, CNRS, EFS, ADES, Marseille, France
| | - C Delteil
- Institut médico-légal, hôpital de la Timone, 264, rue St-Pierre, 13005 Marseille Cedex 5, France; Aix Marseille université, CNRS, EFS, ADES, Marseille, France
| |
Collapse
|
2
|
Akaishi T, Tarasawa K, Fushimi K, Ota C, Sekiguchi S, Aoyagi T, Yaegashi N, Aoki M, Fujimori K. A Reduction in the Number of Hospitalized Cases of Acute Meningitis during the COVID-19 Pandemic in Japan. Intern Med 2024; 63:1353-1359. [PMID: 38432966 PMCID: PMC11157317 DOI: 10.2169/internalmedicine.3022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 03/05/2024] Open
Abstract
Objective The changes in the prevalence of acute meningitis during the coronavirus disease 2019 (COVID-19) pandemic remain unclear. This study aimed to compare the prevalence of acute meningitis before and during the COVID-19 pandemic in Japan. Methods We retrospectively reviewed the Japanese nationwide administrative medical payment system database, Diagnosis Procedure Combination (DPC), from 2016 to 2022. A total of 547 hospitals consistently and seamlessly offered DPC data during this period. The study period was divided into the following three periods: April 2016 to March 2018 (fiscal years 2016-2017), April 2018-March 2020 (2018-2019), and April 2020-March 2022 (2020-2021). Results Among the 28,161,806 patients hospitalized during the study period, 28,399 were hospitalized for acute meningitis: 16,678 for viral/aseptic type, 6,189 for bacterial type, 655 for fungal type, 429 for tuberculous, 2,310 for carcinomatous type, and 2,138 for other or unknown types of meningitis. A significant decrease during the pandemic was confirmed in viral (n=7,032, n=5,775, and n=3,871 in each period; p<0.0001) and bacterial meningitis (n=2,291, n=2,239, and n=1,659; p<0.0001) cases. Meanwhile, no decrease was observed in fungal meningitis (n=212, n=246, and n=197; p=0.056) or carcinomatous meningitis (n=781, n=795, and n=734; p=0.27). The decrease in the number of tuberculous meningitis cases was equivocal (n=166, n=146, and n=117; p=0.014). The decrease during the pandemic was more remarkable in younger populations aged <50 years than in older populations, both for viral and bacterial meningitis. Conclusion The number of hospitalized cases of acute meningitis clearly decreased during the COVID-19 pandemic, especially for viral and bacterial meningitis in younger populations aged <50 years.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University Graduate School of Medicine, Japan
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Japan
| | - Kunio Tarasawa
- Department of Health Administration and Policy, Tohoku University Graduate School of Medicine, Japan
| | - Kiyohide Fushimi
- Department of Health Policy and Informatics, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Japan
| | - Chiharu Ota
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Japan
- Development and Environmental Medicine, Tohoku University Graduate School of Medicine, Japan
- Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Japan
| | | | - Tetsuji Aoyagi
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine, Japan
| | - Nobuo Yaegashi
- Development and Environmental Medicine, Tohoku University Graduate School of Medicine, Japan
- Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Japan
| | - Kenji Fujimori
- Department of Health Administration and Policy, Tohoku University Graduate School of Medicine, Japan
| |
Collapse
|
3
|
Decreased Antibiotic Consumption Coincided with Reduction in Bacteremia Caused by Bacterial Species with Respiratory Transmission Potential during the COVID-19 Pandemic. Antibiotics (Basel) 2022; 11:antibiotics11060746. [PMID: 35740153 PMCID: PMC9219721 DOI: 10.3390/antibiotics11060746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Nonpharmaceutical interventions implemented during the COVID-19 pandemic (2020−2021) have provided a unique opportunity to understand their impact on the wholesale supply of antibiotics and incidences of infections represented by bacteremia due to common bacterial species in Hong Kong. The wholesale antibiotic supply data (surrogate indicator of antibiotic consumption) and notifications of scarlet fever, chickenpox, and tuberculosis collected by the Centre for Health Protection, and the data of blood cultures of patients admitted to public hospitals in Hong Kong collected by the Hospital Authority for the last 10 years, were tabulated and analyzed. A reduction in the wholesale supply of antibiotics was observed. This decrease coincided with a significant reduction in the incidence of community-onset bacteremia due to Streptococcus pyogenes, Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are encapsulated bacteria with respiratory transmission potential. This reduction was sustained during two pandemic years (period 2: 2020−2021), compared with eight pre-pandemic years (period 1: 2012−2019). Although the mean number of patient admissions per year (1,704,079 vs. 1,702,484, p = 0.985) and blood culture requests per 1000 patient admissions (149.0 vs. 158.3, p = 0.132) were not significantly different between periods 1 and 2, a significant reduction in community-onset bacteremia due to encapsulated bacteria was observed in terms of the mean number of episodes per year (257 vs. 58, p < 0.001), episodes per 100,000 admissions (15.1 vs. 3.4, p < 0.001), and per 10,000 blood culture requests (10.1 vs. 2.1, p < 0.001), out of 17,037,598 episodes of patient admissions with 2,570,164 blood culture requests. Consistent with the findings of bacteremia, a reduction in case notification of scarlet fever and airborne infections, including tuberculosis and chickenpox, was also observed; however, there was no reduction in the incidence of hospital-onset bacteremia due to Staphylococcus aureus or Escherichia coli. Sustained implementation of non-pharmaceutical interventions against respiratory microbes may reduce the overall consumption of antibiotics, which may have a consequential impact on antimicrobial resistance. Rebound of conventional respiratory microbial infections is likely with the relaxation of these interventions.
Collapse
|
4
|
Investigation of Sources, Diversity, and Variability of Bacterial Aerosols in Athens, Greece: A Pilot Study. ATMOSPHERE 2021. [DOI: 10.3390/atmos13010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We characterized the composition, diversity, and potential bacterial aerosol sources in Athens’ urban air by DNA barcoding (analysis of 16S rRNA genes) during three seasons in 2019. Air samples were collected using the recently developed Rutgers Electrostatic Passive Sampler (REPS). It is the first field application of REPS to study bacterial aerosol diversity. REPS samplers captured a sufficient amount of biological material to demonstrate the diversity of airborne bacteria and their variability over time. Overall, in the air of Athens, we detected 793 operational taxonomic units (OTUs), which were fully classified into the six distinct taxonomic categories (Phylum, Class, Order, etc.). These OTUs belonged to Phyla Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, Cyanobacteria, and Fusobacteria. We found a complex community of bacterial aerosols with several opportunistic or potential pathogens in Athens’ urban air. Referring to the available literature, we discuss the likely sources of observed airborne bacteria, including soil, plants, animals, and humans. Our results on bacterial diversity are comparable to earlier studies, even though the sampling sites are different or geographically distant. However, the exact functional and ecological role of bioaerosols and, even more importantly, their impact on public health and the ecosystem requires further air monitoring and analysis.
Collapse
|
5
|
Quan K, Hou J, Zhang Z, Ren Y, Peterson BW, Flemming HC, Mayer C, Busscher HJ, van der Mei HC. Water in bacterial biofilms: pores and channels, storage and transport functions. Crit Rev Microbiol 2021; 48:283-302. [PMID: 34411498 DOI: 10.1080/1040841x.2021.1962802] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial biofilms occur in many natural and industrial environments. Besides bacteria, biofilms comprise over 70 wt% water. Water in biofilms occurs as bound- or free-water. Bound-water is adsorbed to bacterial surfaces or biofilm (matrix) structures and possesses different Infra-red and Nuclear-Magnetic-Resonance signatures than free-water. Bound-water is different from intra-cellularly confined-water or water confined within biofilm structures and bacteria are actively involved in building water-filled structures by bacterial swimmers, dispersion or lytic self-sacrifice. Water-filled structures can be transient due to blocking, resulting from bacterial growth, compression or additional matrix formation and are generally referred to as "channels and pores." Channels and pores can be distinguished based on mechanism of formation, function and dimension. Channels allow transport of nutrients, waste-products, signalling molecules and antibiotics through a biofilm provided the cargo does not adsorb to channel walls and channels have a large length/width ratio. Pores serve a storage function for nutrients and dilute waste-products or antimicrobials and thus should have a length/width ratio close to unity. The understanding provided here on the role of water in biofilms, can be employed to artificially engineer by-pass channels or additional pores in industrial and environmental biofilms to increase production yields or enhance antimicrobial penetration in infectious biofilms.
Collapse
Affiliation(s)
- Kecheng Quan
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, P.R. China
| | - Jiapeng Hou
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, P.R. China
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Brandon W Peterson
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences/Engineering and the School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Faculty of Chemistry, Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Christian Mayer
- Faculty of Chemistry, Physical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Bonadonna L, Briancesco R, Coccia AM, Meloni P, Rosa GL, Moscato U. Microbial Air Quality in Healthcare Facilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6226. [PMID: 34207509 PMCID: PMC8296088 DOI: 10.3390/ijerph18126226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022]
Abstract
There is increasing evidence that indoor air quality and contaminated surfaces provide an important potential source for transmission of pathogens in hospitals. Airborne hospital microorganisms are apparently harmless to healthy people. Nevertheless, healthcare settings are characterized by different environmental critical conditions and high infective risk, mainly due to the compromised immunologic conditions of the patients that make them more vulnerable to infections. Thus, spread, survival and persistence of microbial communities are important factors in hospital environments affecting health of inpatients as well as of medical and nursing staff. In this paper, airborne and aerosolized microorganisms and their presence in hospital environments are taken into consideration, and the factors that collectively contribute to defining the infection risk in these facilities are illustrated.
Collapse
Affiliation(s)
- Lucia Bonadonna
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Rossella Briancesco
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Anna Maria Coccia
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Pierluigi Meloni
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Giuseppina La Rosa
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Umberto Moscato
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Section of Occupational Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
7
|
Detection of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae in Culture Negative Cerebrospinal Fluid Samples from Meningitis Patients Using a Multiplex Polymerase Chain Reaction in Nepal. Infect Dis Rep 2021; 13:173-180. [PMID: 33804301 PMCID: PMC7930938 DOI: 10.3390/idr13010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022] Open
Abstract
The rapid identification of bacteria causing meningitis is crucial as delays in the treatment increase mortality rate. Though considered as the gold standard for the laboratory diagnosis of bacterial meningitis, culture might give false negative results in a case of patients under antibiotics prior to lumbar puncture. This study aimed to detect Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae by a multiplex polymerase chain reaction (PCR) in culture-negative cerebrospinal fluid samples collected from clinically suspected meningitis cases attending different hospitals in Kathmandu, Nepal from January 2017 to December 2019. S. pneumoniae, N. meningitidis and H. influenzae were detected in 8.59% (33/384) of the specimens by PCR and 7.55% (29/384) of the specimens by culture. Correlation between culture and PCR of the same sample was good (Spearman's rho correlation coefficient = 0.932). However, the difference in positivity between culture and PCR was statistically not significant (p value > 0.05). In four specimens, culture could not detect any of the targeted bacteria whereas PCR could detect presence of H. influenzae. PCR increases the diagnostic yield for bacterial meningitis. PCR may be considered as an adjunctive test for establishing the cause of infection in culture negative clinically suspected meningitis cases.
Collapse
|
8
|
Patel RK, Shackelford IA, Priddy MC, Kopechek JA. Effect of speech volume on respiratory emission of oral bacteria as a potential indicator of pathogen transmissibility risk. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:2322. [PMID: 33138475 PMCID: PMC7861351 DOI: 10.1121/10.0002278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Respiratory droplets emitted during speech can transmit oral bacteria and infectious viruses to others, including COVID-19. Loud speech can generate significantly higher numbers of potentially infectious respiratory droplets. This study assessed the effect of speech volume on respiratory emission of oral bacteria as an indicator of potential pathogen transmission risk. Loud speech (average 83 dBA, peak 94 dBA) caused significantly higher emission of oral bacteria (p = 0.004 compared to no speech) within 1 ft from the speaker. N99 respirators and simple cloth masks both significantly reduced emission of oral bacteria. This study demonstrates that loud speech without face coverings increases emission of respiratory droplets that carry oral bacteria and may also carry other pathogens such as COVID-19.
Collapse
Affiliation(s)
- Riyakumari K Patel
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Isis A Shackelford
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Mariah C Priddy
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Jonathan A Kopechek
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| |
Collapse
|
9
|
Esbelin J, Santos T, Hébraud M. Desiccation: An environmental and food industry stress that bacteria commonly face. Food Microbiol 2018; 69:82-88. [DOI: 10.1016/j.fm.2017.07.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/09/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
|
10
|
Survival of Neisseria meningitidis outside of the host: environmental effects and differences among strains. Epidemiol Infect 2017; 145:3525-3534. [PMID: 29103405 DOI: 10.1017/s0950268817002473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neisseria meningitidis is a gram-negative bacterium that lives as a commensal in the human nasopharynx. Meningococci are generally non-invasive, but can invade the nasopharyngeal epithelia and enter the bloodstream causing life-threatening illnesses. It is generally thought that meningococci do not survive for long outside the host, and that transmission requires relatively close contact between hosts. There are some reports, however, that meningococci can survive drying on surfaces, including glass, plastic and cloth. Our examination of N. meningitidis strains dried on glass showed differences in survival of isolates belonging to serogroups B, C and W135, including persistence of Cuban, New Zealand, and Norwegian epidemic strains up to 8 days, depending on temperature and humidity. Survival of a New Zealand epidemic strain isolate NZ98/254 under ambient conditions in the laboratory was greatest in winter suggesting that environmental factors impacted survival. For most isolates, including NZ98/254, survival under controlled conditions at 30 °C was greater at 22% than 30% relative humidity. There were also some differences in survival between carriage and invasive strains. The results suggest that N. meningitidis could be transmitted through contact with surfaces outside the host, potentially including contact through shared drinking vessels.
Collapse
|
11
|
Abstract
Neisseria meningitidis, a devastating pathogen exclusive to humans, expresses capsular polysaccharides that are the major meningococcal virulence determinants and the basis for successful meningococcal vaccines. With rare exceptions, the expression of capsule (serogroups A, B, C, W, X, Y) is required for systemic invasive meningococcal disease. Changes in capsule expression or structure (e.g. hypo- or hyper-encapsulation, capsule "switching", acetylation) can influence immunologic diagnostic assays or lead to immune escape. The loss or down-regulation of capsule is also critical in meningococcal biology facilitating meningococcal attachment, microcolony formation and the carriage state at human mucosal surfaces. Encapsulated meningococci contain a cps locus with promoters located in an intergenic region between the biosynthesis and the conserved capsule transport operons. The cps intergenic region is transcriptionally regulated (and thus the amount of capsule expressed) by IS element insertion, by a two-component system, MisR/MisS and through sequence changes that result in post-transcriptional RNA thermoregulation. Reversible on-off phase variation of capsule expression is controlled by slipped strand mispairing of homo-polymeric tracts and by precise insertion and excision of IS elements (e.g. IS1301) in the biosynthesis operon. Capsule structure can be altered by phase-variable expression of capsular polymer modification enzymes or "switched" through transformation and homologous recombination of different polymerases. Understanding the complex regulation of meningococcal capsule has important implications for meningococcal biology, pathogenesis, diagnostics, current and future vaccine development and vaccine strategies.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- a Department of Medicine , Emory University School of Medicine, Woodruff Health Sciences Center , Atlanta , GA , USA
| | - Jennifer Thomas
- a Department of Medicine , Emory University School of Medicine, Woodruff Health Sciences Center , Atlanta , GA , USA
| | - David S Stephens
- a Department of Medicine , Emory University School of Medicine, Woodruff Health Sciences Center , Atlanta , GA , USA
| |
Collapse
|
12
|
Osculati A, Visonà SD, Colombo A, Basso P, Andrello L, Toniolo A. Neisseria meningitides Can Survive in Corpses for At Least Eleven Days. Front Cell Infect Microbiol 2016; 6:74. [PMID: 27468408 PMCID: PMC4942473 DOI: 10.3389/fcimb.2016.00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/27/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Antonio Osculati
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia Pavia, Italy
| | - Silvia D Visonà
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia Pavia, Italy
| | - Alberto Colombo
- Laboratory of Microbiology, ASST-Settelaghi, University of Insubria Varese, Italy
| | - Petra Basso
- Department of Biotechnology and Life Sciences, University of Insubria Varese, Italy
| | - Luisa Andrello
- Service of Legal Medicine of Canton Ticino Bellinzona, Switzerland
| | - Antonio Toniolo
- Laboratory of Microbiology, ASST-Settelaghi, University of Insubria Varese, Italy
| |
Collapse
|
13
|
Liu G, Tang CM, Exley RM. Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. MICROBIOLOGY-SGM 2015; 161:1297-1312. [PMID: 25814039 DOI: 10.1099/mic.0.000086] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Neisseria contains the important pathogens Neisseria meningitidis and Neisseria gonorrhoeae. These Gram-negative coccoid bacteria are generally thought to be restricted to humans and inhabit mucosal surfaces in the upper respiratory and genito-urinary tracts. While the meningococcus and gonococcus have been widely studied, far less attention has been paid to other Neisseria species. Here we review current knowledge of the distribution of commensal Neisseria in humans and other hosts. Analysis of the microbiome has revealed that Neisseria is an abundant member of the oropharyngeal flora, and we review its potential impact on health and disease. Neisseria also exhibit remarkable diversity, exhibiting both coccoid and rod-shaped morphologies, as well as environmental strains which are capable of degrading complex organic molecules.
Collapse
Affiliation(s)
- Guangyu Liu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Rachel M Exley
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
14
|
Abstract
The exclusive reservoir of the genus Neisseria is the human. Of the broad range of species that comprise the Neisseria, only two are frequently pathogenic, and only one of those is a resident of the nasopharynx. Although Neisseria meningitidis can cause severe disease if it invades the bloodstream, the vast majority of interactions between humans and Neisseria are benign, with the bacteria inhabiting its mucosal niche as a non-invasive commensal. Understandably, with the exception of Neisseria gonorrhoeae, which preferentially colonises the urogenital tract, the neisseriae are extremely well adapted to survival in the human nasopharynx, their sole biological niche. The purpose of this review is to provide an overview of the molecular mechanisms evolved by Neisseria to facilitate colonisation and survival within the nasopharynx, focussing on N. meningitidis. The organism has adapted to survive in aerosolised transmission and to attach to mucosal surfaces. It then has to replicate in a nutrition-poor environment and resist immune and competitive pressure within a polymicrobial complex. Temperature and relative gas concentrations (nitric oxide and oxygen) are likely to be potent initial signals of arrival within the nasopharyngeal environment, and this review will focus on how N. meningitidis responds to these to increase the likelihood of its survival.
Collapse
|
15
|
Biofilm formation enhances fomite survival of Streptococcus pneumoniae and Streptococcus pyogenes. Infect Immun 2013; 82:1141-6. [PMID: 24371220 DOI: 10.1128/iai.01310-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Both Streptococcus pyogenes and Streptococcus pneumoniae are widely thought to rapidly die outside the human host, losing infectivity following desiccation in the environment. However, to date, all literature investigating the infectivity of desiccated streptococci has used broth-grown, planktonic populations. In this study, we examined the impact of biofilm formation on environmental survival of clinical and laboratory isolates of S. pyogenes and S. pneumoniae as both organisms are thought to colonize the human host as biofilms. Results clearly demonstrate that while planktonic cells that are desiccated rapidly lose viability both on hands and abiotic surfaces, such as plastic, biofilm bacteria remain viable over extended periods of time outside the host and remain infectious in a murine colonization model. To explore the level and extent of streptococcal fomite contamination that children might be exposed to naturally, direct bacteriologic cultures of items in a day care center were conducted, which demonstrated high levels of viable streptococci of both species. These findings raise the possibility that streptococci may survive in the environment and be transferred from person to person via fomites contaminated with oropharyngeal secretions containing biofilm streptococci.
Collapse
|
16
|
Abstract
Despite considerable advances in the understanding of the pathogenesis of meningococcal disease, this infection remains a major cause of morbidity and mortality globally. The role of the complement system in innate immune defenses against invasive meningococcal disease is well established. Individuals deficient in components of the alternative and terminal complement pathways are highly predisposed to invasive, often recurrent meningococcal infections. Genome-wide analysis studies also point to a central role for complement in disease pathogenesis. Here we review the pathophysiologic events pertinent to the complement system that accompany meningococcal sepsis in humans. Meningococci use several often redundant mechanisms to evade killing by human complement. Capsular polysaccharide and lipooligosaccharide glycan composition play critical roles in complement evasion. Some of the newly described protein vaccine antigens interact with complement components and have sparked considerable research interest.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|