1
|
Caravedo Martinez MA, Ramírez-Hernández A, Blanton LS. Manifestations and Management of Flea-Borne Rickettsioses. Res Rep Trop Med 2021; 12:1-14. [PMID: 33574726 PMCID: PMC7873028 DOI: 10.2147/rrtm.s274724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Murine typhus and flea-borne spotted fever are undifferentiated febrile illnesses caused by Rickettsia typhi and Rickettsia felis, respectively. These organisms are small obligately intracellular bacteria and are transmitted to humans by fleas. Murine typhus is endemic to coastal areas of the tropics and subtropics (especially port cities), where rats are the primary mammalian host and rat fleas (Xenopsylla cheopis) are the vector. In the United States, a cycle of transmission involving opossums and cat fleas (Ctenocephalides felis) are the presumed reservoir and vector, respectively. The incidence and distribution of murine typhus appear to be increasing in endemic areas of the US. Rickettsia felis has also been reported throughout the world and is found within the ubiquitous cat flea. Flea-borne rickettsioses manifest as an undifferentiated febrile illness. Headache, malaise, and myalgia are frequent symptoms that accompany fever. The incidence of rash is variable, so its absence should not dissuade the clinician to consider a rickettsial illness as part of the differential diagnosis. When present, the rash is usually macular or papular. Although not a feature of murine typhus, eschar has been found in 12% of those with flea-borne spotted fever. Confirmatory laboratory diagnosis is usually obtained by serology; the indirect immunofluorescence assay is the serologic test of choice. Antibodies are seldom present during the first few days of illness. Thus, the diagnosis requires acute- and convalescent-phase specimens to document seroconversion or a four-fold increase in antibody titer. Since laboratory diagnosis is usually retrospective, when a flea-borne rickettsiosis is considered, empiric treatment should be initiated. The treatment of choice for both children and adults is doxycycline, which results in a swift and effective response. The following review is aimed to summarize the key clinical, epidemiological, ecological, diagnostic, and treatment aspects of flea-borne rickettsioses.
Collapse
Affiliation(s)
- Maria A Caravedo Martinez
- Department of Internal Medicine – Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Lucas S Blanton
- Department of Internal Medicine – Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
Dougas G, Mavrouli M, Tsakris A, Billinis C, Papaparaskevas J. Serosurvey of IgG Antibodies against Bartonella henselae and Rickettsia typhi in the Population of Attica, Greece. Trop Med Infect Dis 2020; 5:E145. [PMID: 32947795 PMCID: PMC7559870 DOI: 10.3390/tropicalmed5030145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Rickettsia typhi and Bartonella henselae are the causative agents of murine typhus and cat-scratch disease, respectively. A small-scale survey (N = 202) was conducted in the Attica region, Greece, for determining the prevalence rates of IgG antibodies against B. henselae and R. typhi by indirect fluorescence antibody test. IgG against B. henselae and R. typhi were present in 17.8% (36/202) and 4.5% (9/202) of the participants, respectively; co-occurring IgG against both B. henselae and R. typhi were detected in 3.5% (7/202), whereas only anti-B. henselae IgG in 14.3% (29/202), and only anti-R. typhi IgG in 1.0% (2/202). Titres 1/64, 1/128, 1/256, and 1/512, of anti-B. henselae IgG were identified in 6.4%, 4.5%, 4.5%, and 2.4%, whereas titres 1/40 and 1/80 of anti-R. typhi IgG were detected in 4.0%, and 0.5%, respectively. A positive association of anti-B. henselae IgG prevalence with a coastal area featuring a major seaport (p = 0.009) and with younger age (p = 0.046) was identified. The findings of this survey raise concern for exposure of the population of Attica to B. henselae and R. typhi, which should be considered in the differential diagnosis when compatible symptoms are present. Our results also suggest that seaports may represent high-risk areas for exposure to Bartonella spp.
Collapse
Affiliation(s)
- Georgios Dougas
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (A.T.); (J.P.)
| | - Maria Mavrouli
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (A.T.); (J.P.)
| | - Athanassios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (A.T.); (J.P.)
| | - Charalambos Billinis
- Department of Microbiology and Parasitology, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Joseph Papaparaskevas
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (A.T.); (J.P.)
| |
Collapse
|
3
|
Dhawan S, Robinson MT, Stenos J, Graves SR, Wangrangsimakul T, Newton PN, Day NPJ, Blacksell SD. Selection of Diagnostic Cutoffs for Murine Typhus IgM and IgG Immunofluorescence Assay: A Systematic Review. Am J Trop Med Hyg 2020; 103:55-63. [PMID: 32274984 PMCID: PMC7356422 DOI: 10.4269/ajtmh.19-0818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
Murine typhus is a neglected but widespread infectious disease that results in acute fever. The immunofluorescence assay (IFA) is the "gold standard" to identify IgM or IgG antibodies, although there is a lack of standardization in methodologies. The objective of this review is to summarize 1) the differences in published methodologies, 2) the diagnostic cutoff titers, and 3) the justification of diagnostic cutoffs. Searches were performed by combining the following search terms: "murine typhus," "rickettsia typhi," "immunofluorescence," "IFA," and "serologic" with restrictions (i.e., "rickettsia typhi" or "murine typhus," and "IFA" or "immunofluorescence," or "serologic*"). The search identified 78 studies that used IFA or immunoperoxidase assay (IIP) antibody cutoffs to diagnose murine typhus, 39 of which were case series. Overall, 45 studies (57.7%) provided little to no rationale as to how the cutoff was derived. Variation was seen locally in the cutoff titers used, but a 4-fold or greater increase was often applied. The cutoffs varied depending on the antibody target. No consensus was observed in establishing a cutoff, or for a single-value diagnostic cutoff. In conclusion, there is a lack of consensus in the establishment of a single-value cutoff. Further studies will need to be executed at each distinct geographic location to identify region-specific cutoffs, while also considering background antibody levels to distinguish between healthy and infected patients.
Collapse
Affiliation(s)
- Sandhya Dhawan
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Matthew T. Robinson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, Australia
| | - Stephen R. Graves
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, Australia
| | - Tri Wangrangsimakul
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul N. Newton
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Nicholas P. J. Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stuart D. Blacksell
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| |
Collapse
|
4
|
Wilson N, McIntyre M, Blaschke P, Muellner P, Mansoor OD, Baker MG. Potential public health benefits from eradicating rats in New Zealand cities and a tentative research agenda. J R Soc N Z 2017. [DOI: 10.1080/03036758.2017.1343193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nick Wilson
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Mary McIntyre
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Paul Blaschke
- Department of Public Health, University of Otago, Wellington, New Zealand
| | | | | | - Michael G. Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| |
Collapse
|