1
|
Hu Y, Li T, Liu W, Zhu D, Feng X, Chen Y, Zheng H. Prevalence and antimicrobial susceptibility pattern of Mycobacterium abscessus complex isolates in Chongqing, Southwest China. Heliyon 2024; 10:e34546. [PMID: 39113955 PMCID: PMC11305262 DOI: 10.1016/j.heliyon.2024.e34546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Objectives To investigate the prevalence of Mycobacterium abscessus complex (MABC), drug resistance characteristics, and the relationship between clarithromycin (CLA) susceptibility and MABC genotype in Chongqing, China. Methods A total of 434 NTM patient isolates were collected between October 2018 and October 2019. Isolates confirmed to be non-tuberculous mycobacteria (NTM) were tested for minimal inhibitory concentrations of antimicrobial agents. In addition, rrl and erm(41) gene sequences were used to analyze the acquired macrolide resistance and inducible macrolide resistance. Results Overall, 17 different NTM species were detected, of which M. abscessus (22.6 %, 91/403) was most prevalent. Amikacin, CLA, azithromycin and cefoxitin exhibited potent activities against MABC organisms, but no significant differences were observed in drug resistance rates between M. abscessus and M. massiliense (P > 0.05). On day 3 of culture, the acquired resistance rate against CLA was 7.4 % (9/121). Of 41 MABC isolates with inducible CLA resistant, 95.1 % (39/41) isolates belonged to the erm(41) T28 sequevar, while the remaining 4.9 % (2/41) possessed the M. massiliense genotype. All erm(41) C28 sequevar isolates were sensitive to CLA on day3 and day 14 of culture. Meanwhile, of the 5 erm(41) T28 isolates with acquired resistance, all possessed rrl 2058/2059 mutations, including 3 isolates with A2058C mutation and 2 isolates with A2059G mutation. While 2 of the 4 M. massiliense isolates with acquired resistance possessed the A2059G mutation, and one isolate possessed the A2058G mutation. Conclusion Erm(41) and rrl gene could serve as useful markers for predicting macrolide susceptibility of MABC complex isolates.
Collapse
Affiliation(s)
- Yan Hu
- Tuberculosis Reference Laboratory, Chongqing Tuberculosis Control Institute, 400050, China
| | - Tongxin Li
- Department of Clinical Laboratory, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Wenguo Liu
- Tuberculosis Reference Laboratory, Chongqing Tuberculosis Control Institute, 400050, China
| | - Damian Zhu
- Tuberculosis Reference Laboratory, Chongqing Tuberculosis Control Institute, 400050, China
| | - Xin Feng
- Tuberculosis Reference Laboratory, Chongqing Tuberculosis Control Institute, 400050, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqjing, 400036, China
| | - Huiwen Zheng
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, 100045, China
| |
Collapse
|
2
|
Lin WH, Yao C, Mei L, Wang DP, Bao XD, Liu SS. Screening, epidemic trends and drug sensitivity analysis of nontuberculous mycobacteria in a local area of China. Am J Transl Res 2024; 16:3298-3305. [PMID: 39114690 PMCID: PMC11301460 DOI: 10.62347/majy5046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE To analyze the isolation rate, prevalence trends, species distribution, and drug sensitivity of non-tuberculous mycobacteria (NTM) in Anhui Province, providing a reference for diagnosis and treatment strategies. METHODS Specimens from suspected mycobacterial infection patients at Anhui Chest Hospital (including outpatients and inpatients) from January 2021 to December 2023 were cultured. Identified NTM strains were analyzed for species distribution and drug sensitivity. RESULTS Of 10,519 mycobacteria strains cultured, 1,589 were NTM (15.11%). The top four species were Mycobacterium intracellulare (75.36%), Mycobacterium abscessus (11.78%), Mycobacterium kansasii (7.09%), and Mycobacterium avium (2.85%). NTM strains showed high sensitivity to amikacin and clarithromycin (≥90%) and significant sensitivity to rifabutin, moxifloxacin, and rifampicin (89.03%-79.61%). They exhibited high resistance to imipenem/cilastatin, sulfamethoxazole, minocycline, and doxycycline (≥95%). CONCLUSION NTM isolation rates in Anhui have remained stable, with the predominant species being M. intracellulare, M. kansasii, M. abscessus, and M. avium. NTM strains are highly sensitive to amikacin, clarithromycin, rifabutin, moxifloxacin, and rifampicin. These findings can guide diagnosis, treatment strategies, and drug selection for NTM disease in Anhui Province.
Collapse
Affiliation(s)
- Wen-Hong Lin
- Department of Tuberculosis, Anhui Chest HospitalHefei, Anhui, P. R. China
| | - Chao Yao
- Department of Tuberculosis, Anhui Chest HospitalHefei, Anhui, P. R. China
| | - Lin Mei
- Department of Tuberculosis, Anhui Chest HospitalHefei, Anhui, P. R. China
| | - Dong-Ping Wang
- Department of Laboratory, Anhui Chest HospitalHefei, Anhui, P. R. China
| | - Xun-Di Bao
- Department of Laboratory, Anhui Chest HospitalHefei, Anhui, P. R. China
| | - Sheng-Sheng Liu
- Department of Tuberculosis, Anhui Chest HospitalHefei, Anhui, P. R. China
| |
Collapse
|
3
|
Narimisa N, Bostanghadiri N, Goodarzi F, Razavi S, Jazi FM. Prevalence of Mycobacterium kansasii in clinical and environmental isolates, a systematic review and meta-analysis. Front Microbiol 2024; 15:1321273. [PMID: 38440139 PMCID: PMC10911025 DOI: 10.3389/fmicb.2024.1321273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Background Mycobacterium kansasii infection is one of the most common causes of non-tuberculosis mycobacterial (NTM) disease worldwide. However, accurate information on the global prevalence of this bacterium is lacking. Therefore, this study was conducted to investigate the prevalence of M. kansasii in clinical and environmental isolates. Methods Databases, including PubMed, Scopus, and the Web of Science, were utilized to gather articles on the prevalence of M. kansasii in clinical and environmental isolates. The collected data were analyzed using Comprehensive Meta-Analysis software. Results A total of 118 and 16 studies met the inclusion criteria and were used to analyze the prevalence of M. kansasii in clinical and environmental isolates, respectively. The prevalence of M. kansasii in NTM and environmental isolates were 9.4 and 5.8%, respectively. Subsequent analysis showed an increasing prevalence of M. kansasii over the years. Additionally, the results indicated a significant difference in the prevalence of this bacteria among different regions. Conclusion The relatively high prevalence of M. kansasii among NTM isolates suggests the need for further implementation of infection control strategies. It is also important to establish appropriate diagnostic criteria and management guidelines for screening this microorganism in environmental samples in order to prevent its spread, given its high prevalence in environmental isolates.
Collapse
Affiliation(s)
- Negar Narimisa
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Forough Goodarzi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Prevots DR, Marshall JE, Wagner D, Morimoto K. Global Epidemiology of Nontuberculous Mycobacterial Pulmonary Disease: A Review. Clin Chest Med 2023; 44:675-721. [PMID: 37890910 PMCID: PMC10625169 DOI: 10.1016/j.ccm.2023.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Nontuberculous mycobacterial (NTM) isolation and pulmonary disease (NTM-PD) have continued to increase in most regions of the world, driven mainly by Mycobacterium avium. Single-center studies also support increasing trends as well as a persistent burden of undiagnosed NTM among persons suspected of having tuberculosis (TB), in countries with moderate-to-high TB prevalence. Cumulative exposure to water and soil presents an increased risk to susceptible hosts, and trace metals in water supply are recently recognized risk factors. Establishing standard case definitions for subnational and national surveillance systems with mandatory notification of NTM-PD are needed to allow comparisons within and across countries and regions.
Collapse
Affiliation(s)
- D Rebecca Prevots
- Epidemiology and Population Studies Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Bethesda, MD 20852, USA.
| | - Julia E Marshall
- Epidemiology and Population Studies Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Bethesda, MD 20852, USA
| | - Dirk Wagner
- Division of Infectious Diseases, Department of Internal Medicine II, Medical Center- University of Freiburg, Faculty of Medicine, Hugstetter Street. 55, Freiburg b106, Germany
| | - Kozo Morimoto
- Division of Clinical Research, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), 3-1-24, Matsuyama, Kiyose, Tokyo, Japan
| |
Collapse
|
5
|
Park HJ, Choi B, Song YK, Oh YJ, Lee EB, Kim IW, Oh JM. Association of Tumor Necrosis Factor Inhibitors with the Risk of Nontuberculous Mycobacterial Infection in Patients with Rheumatoid Arthritis: A Nationwide Cohort Study. J Clin Med 2023; 12:6998. [PMID: 38002613 PMCID: PMC10671978 DOI: 10.3390/jcm12226998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Tumor necrosis factor inhibitors (TNFi) are proposed as a risk factor for nontuberculous mycobacteria (NTM) infection. Limited research investigates NTM infection risk in rheumatoid arthritis (RA) patients treated with TNFi compared to conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), considering other concurrent or prior non-TNFi antirheumatic drugs. We aimed to evaluate the NTM infection risk associated with TNFi using a real-world database. Patients with RA treated with TNFi or csDMARDs between 2005 and 2016 were identified utilizing the Korean National Health Insurance Service database. To minimize potential bias, we aligned the initiation year of csDMARDs for both TNFi and csDMARD users and tracked them from their respective treatment start dates. The association of TNFi with NTM infection risk was estimated in a one-to-one matched cohort using a multivariable conditional Cox regression analysis. In the matched cohort (n = 4556), the incidence rates of NTM infection were 2.47 and 3.66 per 1000 person-year in TNFi and csDMARD users. Compared to csDMARDs, TNFi did not increase the risk of NTM infection (adjusted hazard ratio (aHR) 0.517 (95% confidence interval, 0.205-1.301)). The TNFi use in RA patients was not associated with an increased risk of NTM infection compared to csDMARDs. Nevertheless, monitoring during TNFi treatment is crucial.
Collapse
Affiliation(s)
- Hyun Jin Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (B.C.); (Y.-K.S.)
| | - Boyoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (B.C.); (Y.-K.S.)
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si 11160, Gyeonggi, Republic of Korea
| | - Yun-Kyoung Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (B.C.); (Y.-K.S.)
- College of Pharmacy, Daegu Catholic University, Gyeongsan-si 38430, Gyeongbuk, Republic of Korea
| | - Yoon-Jeong Oh
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (Y.-J.O.); (E.B.L.)
| | - Eun Bong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (Y.-J.O.); (E.B.L.)
| | - In-Wha Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (B.C.); (Y.-K.S.)
| | - Jung Mi Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (B.C.); (Y.-K.S.)
| |
Collapse
|
6
|
Loebinger MR, Quint JK, van der Laan R, Obradovic M, Chawla R, Kishore A, van Ingen J. Risk Factors for Nontuberculous Mycobacterial Pulmonary Disease: A Systematic Literature Review and Meta-Analysis. Chest 2023; 164:1115-1124. [PMID: 37429481 DOI: 10.1016/j.chest.2023.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Nontuberculous mycobacterial pulmonary disease (NTM-PD) is widely underdiagnosed, and certain patient groups, such as those with underlying respiratory diseases, are at increased risk of developing the disease. Understanding patients at risk is essential to allow for prompt testing and diagnosis and appropriate management to prevent disease progression. RESEARCH QUESTION What are the risk factors for NTM-PD that should prompt a physician to consider NTM testing and diagnosis? STUDY DESIGN AND METHODS Electronic searches of PubMed and EMBASE were conducted in July 2021 for the period 2011-2021. Inclusion criteria were studies of patients with NTM-PD with associated risk factors. Data were extracted and assessed using the Newcastle-Ottawa Scale. Data analysis was conducted using the R-based "meta" package. Only studies that reported association outcomes for cases with NTM-PD compared with control participants (healthy populations or participants without NTM-PD) were considered for the meta-analysis. RESULTS Of the 9,530 searched publications, 99 met the criteria for the study. Of these, 24 formally reported an association between possible risk factors and the presence of NTM-PD against a control population and were included in the meta-analysis. Comorbid respiratory disease was associated with a significant increase in the OR for NTM-PD (bronchiectasis [OR, 21.43; 95% CI, 5.90-77.82], history of TB [OR, 12.69; 95% CI, 2.39-67.26], interstitial lung disease [OR, 6.39; 95% CI, 2.65-15.37], COPD [OR, 6.63; 95% CI, 4.57-9.63], and asthma [OR, 4.15; 95% CI, 2.81-6.14]). Other factors noted to be associated with an increased risk of NTM-PD were the use of inhaled corticosteroids (OR 4.46; 95% CI, 2.13-9.35), solid tumors (OR, 4.66; 95% CI, 1.04-20.94) and the presence of pneumonia (OR, 5.54; 95% CI, 2.72-11.26). INTERPRETATION The greatest risk for NTM-PD is conferred by comorbid respiratory diseases such as bronchiectasis. These findings could help with identification of patient populations at risk for NTM-PD to drive prompt testing and appropriate initiation of therapy.
Collapse
Affiliation(s)
| | - Jennifer K Quint
- Royal Brompton Hospital and NHLI, Imperial College London, London, England
| | | | | | | | | | - Jakko van Ingen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Liu Q, Du J, An H, Li X, Guo D, Li J, Gong W, Liang J. Clinical characteristics of patients with non-tuberculous mycobacterial pulmonary disease: a seven-year follow-up study conducted in a certain tertiary hospital in Beijing. Front Cell Infect Microbiol 2023; 13:1205225. [PMID: 37424783 PMCID: PMC10325861 DOI: 10.3389/fcimb.2023.1205225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Background The incidence of non-tuberculous mycobacterial pulmonary disease (NTM-PD) has increased in recent years. However, the clinical and immunologic characteristics of NTM-PD patients have received little attention. Methods NTM strains, clinical symptoms, underlying diseases, lung CT findings, lymphocyte subsets, and drug susceptibility tests (DSTs) of NTM-PD patients were investigated. Then, the counts of immune cells of NTM-PD patients and their correlation were evaluated using principal component analysis (PCA) and correlation analysis. Results 135 NTM-PD patients and 30 healthy controls (HCs) were enrolled from 2015 to 2021 in a certain tertiary hospital in Beijing. The number of NTM-PD patients increased every year, and Mycobacterium intracellulare (M. intracellulare), M. abscessus, M. avium, and M. kansasii were the major pathogens of NTM-PD. The main clinical symptoms of NTM-PD patients were cough and sputum production, and the primary lung CT findings were thin-walled cavity, bronchiectasis, and nodules. In addition, we identified 23 clinical isolates from 87 NTM-PD patients with strain records. The DST showed that almost all of M. abscessus and M. avium and more than half of the M. intracellulare and M. avium complex groups were resistant to anti-tuberculosis drugs tested in this study. M. xenopi was resistant to all aminoglycosides. M. kansasii was 100% resistant to kanamycin, capreomycin, amikacin, and para-aminosalicylic acid, and sensitive to streptomycin, ethambutol, levofloxacin, azithromycin, and rifamycin. Compared to other drugs, low resistance to rifabutin and azithromycin was observed among NTM-PD isolates. Furthermore, the absolute counts of innate and adaptive immune cells in NTM-PD patients were significantly lower than those in HCs. PCA and correlation analysis revealed that total T, CD4+, and CD8+ T lymphocytes played an essential role in the protective immunity of NTM-PD patients, and there was a robust positive correlation between them. Conclusion The incidence of NTM-PD increased annually in Beijing. Individuals with bronchiectasis and COPD have been shown to be highly susceptible to NTM-PD. NTM-PD patients is characterized by compromised immune function, non-specific clinical symptoms, high drug resistance, thin-walled cavity damage on imaging, as well as significantly reduced numbers of both innate and adaptive immune cells.
Collapse
Affiliation(s)
- Qi Liu
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Jingli Du
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Huiru An
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xianan Li
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Donglin Guo
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jiebai Li
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jianqin Liang
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Yin H, Gu X, Wang Y, Fan G, Lu B, Liu M, Wang C, Cao B, Wang C. Clinical characteristics of patients with bronchiectasis with nontuberculous mycobacterial disease in Mainland China: a single center cross-sectional study. BMC Infect Dis 2021; 21:1216. [PMID: 34872515 PMCID: PMC8650543 DOI: 10.1186/s12879-021-06917-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The diagnosis and treatment of patients with bronchiectasis and nontuberculous mycobacterium (NTM) pulmonary disease are challenging issues and the treatment is also prolonged and depends on the species. There is limited information on patients with bronchiectasis and NTM pulmonary disease in Mainland China. METHODS This cross-sectional study was conducted at the China-Japan Friendship Hospital, Beijing, China. Those adult patients who met the diagnostic criteria for bronchiectasis and obtained a culture result of mycobacteria from lower respiratory tract specimens or lung tissue were included in this study. A logistic regression model was used to identify the related factors in patients with NTM pulmonary disease. RESULTS A total of 202 patients with bronchiectasis from 19 cities, 155 without and 47 (23.3%) with NTM pulmonary disease, were included. In all the 47 patients with NTM pulmonary disease, Mycobacterium avium complex was the most common species (66.0%), and 72.3% of them were initiated on standard anti-NTM treatment within 3 months after the diagnosis of NTM pulmonary disease. A larger proportion of patients with NTM pulmonary disease had acute exacerbations of ≥ 3 times within 1 year and were diagnosed bronchiectasis ≥ 50 years among patients with NTM pulmonary disease. The HRCT chest images revealed higher proportions of nodular shadow (100% vs. 35.3%), tree-in-bud sign (97.9% vs. 29.0%), cavities (29.8% vs. 5.8%), and airway dilation of the right middle lobe or the left lingular lobe (63.8% vs. 23.9%) in patients with NTM pulmonary disease than in those without NTM pulmonary disease (all P values = 0.001). The multivariable logistic regression model indicated that three and more abnormal features (OR 33.8; 95% CI 11.1-102.8) and main lesions of bronchial expansion in the middle or lingual lobe (OR 6.4; 95% CI 2.4-16.6) in HRCT chest images were independently associated with NTM pulmonary disease (P values = 0.001). CONCLUSION In a single center of Mainland China, > 23% of patients with bronchiectasis had NTM pulmonary disease, and most patients were started on standard treatment within 3 months after the diagnosis of NTM pulmonary disease. These findings suggest that patients with bronchiectasis should be thoroughly examined for the presence of NTM pulmonary disease. TRIAL REGISTRATION NCT03594032.
Collapse
Affiliation(s)
- Hongjun Yin
- Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, East Yinghua Road, Chaoyang District, Beijing, China
- Department of Infectious Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaoying Gu
- Department of Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China
- National Clinical Research Center of Respiratory Diseases, Beijing, China
| | - Yimin Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, East Yinghua Road, Chaoyang District, Beijing, China
- National Clinical Research Center of Respiratory Diseases, Beijing, China
| | - Guohui Fan
- Department of Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China
- National Clinical Research Center of Respiratory Diseases, Beijing, China
| | - Binghuai Lu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, East Yinghua Road, Chaoyang District, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan, Friendship Hospital, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Chunlei Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, East Yinghua Road, Chaoyang District, Beijing, China
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan, Friendship Hospital, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, East Yinghua Road, Chaoyang District, Beijing, China.
- Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China.
- Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center of Respiratory Diseases, China-Japan Friendship Hospital, East Yinghua Road, Chaoyang District, Beijing, China.
- Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Shafipour M, Shirzad-Aski H, Ghaemi EA, Sohrabi A, Taziki M, Kochkaksaraei MB, Rahimi S. Occurrence and risk factors of nontuberculous mycobacteria in tuberculosis-suspected patients in the north of Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:190-198. [PMID: 34540154 PMCID: PMC8408032 DOI: 10.18502/ijm.v13i2.5980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives: Some Nontuberculous Mycobacteria (NTM) can occasionally infect the human population and cause infections having symptoms similar to tuberculosis (TB). This study tried to provide updated data about the frequency and diversity of NTM species. Materials and Methods: Suspicious samples of Mycobacterium tuberculosis (MTB) with both positive results in Ziehl-Neelsen (ZN) staining and Löwenstein-Jensen medium culturing were evaluated during January 2016 and December 2018 in Gorgan, Iran. After determination of MTB isolates by the growth rate, pigmentation status, the niacin test, and the insertion sequence 6110 (IS6110) PCR assay, other unknown isolates (presumably NTM) were detected by the 16S rDNA sequencing method and drawing the phylogenetic tree. Based on the patients’ demographic information, their risk factors were also assessed. Results: Among 226 culture-positive samples, obtained from 2994 individuals with suspected symptoms of TB, the analyses found 12 (5.3%) NTM and three Mycobacterium caprae isolates. Mycobacterium simiae (6/12) was the most prevalent NTM species. The average nucleotide similarity value was 98.2% ± 3.7. In comparison to patients with MTB (211 confirmed cases), other mycobacterium infections were more common in patients over 65 years old (Odd ratio (95% convenience interval): 2.96 (0.69 – 12.59), P = 0.14). Conclusion: Although the NTM species has a small portion in TB suspected patients, their prevalence has increased, mainly in elderly patients. Moreover, M. simiae was the most prevalent NTM species in our region. Therefore, identification of common species in each region is recommended and clinicians should pay more attention to them in each region.
Collapse
Affiliation(s)
- Maryam Shafipour
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | | | - Ezzat Allah Ghaemi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahmad Sohrabi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Taziki
- Tuberculosis Laboratory of Health Care Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Somayeh Rahimi
- Tuberculosis Laboratory of Health Care Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
10
|
Liu CF, Song YM, He WC, Liu DX, He P, Bao JJ, Wang XY, Li YM, Zhao YL. Nontuberculous mycobacteria in China: incidence and antimicrobial resistance spectrum from a nationwide survey. Infect Dis Poverty 2021; 10:59. [PMID: 33926548 PMCID: PMC8082609 DOI: 10.1186/s40249-021-00844-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Information on the prevalence and resistance spectrum of nontuberculous mycobacteria (NTM) in China is mainly based on regional or local data. To estimate the proportion of NTM cases in China, a national survey of NTM pulmonary disease was carried out based on acid-fast positive sputum samples collected in 2013. METHODS Sputum samples collected from enrolled presumptive cases in 72 nationwide tuberculosis surveillance sites from the 31 provinces in the mainland of China were cultured using L-J medium at the National tuberculosis reference laboratory (NTRL). MALDI-TOF MS identified the species of re-cultured strains, and minimal inhibitory concentrations (MICs) were determined to evaluate the drug susceptibility of NTM isolates. Data analysis used statistical software SPSS version 22.0 for Windows statistical package. RESULTS Of 4917 mycobacterial isolates cultured, 6.4% [317/4917, 95% confidence interval (CI) 5.8%-7.2%] were confirmed as NTM, among which 7.7% (287/3709, 95% CI 6.9%-8.6%) were from the southern region. In inland and coastal China, 87.7% (95% CI 78.7%-93.2%) and 50.0% (95% CI 43.7%-56.3%) of isolates, respectively, were slow-growing mycobacteria (SGM), with the remaining rapid growing mycobacteria (RGM). A total of 29 species were detected, Mycobacterium abscessus had higher clarithromycin-inducible resistance rates than M. massiliense (65.67% vs 2.22%). M. kansasii presented lower resistance rates in linezolid and moxifloxacin than M. avium-intracellulare complex (3.23% vs 66.67%, 0 vs 47.22%) and other SGM (3.23% vs 38%, 0 vs 26%). CONCLUSIONS More NTM pulmonary disease was observed in the south and coastal China (P < 0.01). SGM was widely distributed, and more RGM are present in southern and coastal China (P < 0.01). The antimicrobial resistance spectrum of different NTM species was significantly different and accurate species identification would be facilitated to NTM pulmonary disease treatment.
Collapse
Affiliation(s)
- Chun-Fa Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing102206, China
| | - Yi-Meng Song
- National Center of Gerontology, Beijing Hospital, Dongdandahua Road 1, Dongcheng, Beijing, 100730, China
| | - Wen-Cong He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Dong-Xin Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Guangdong, 518112, China
| | - Ping He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jing-Jing Bao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Inner Mongolia Medical University, Inner Mongolia, 010110, China
| | - Xin-Yang Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Department of Basic Medicine, Harbin Medical University, Heilongjiang, 150081, China
| | - Yan-Ming Li
- National Center of Gerontology, Beijing Hospital, Dongdandahua Road 1, Dongcheng, Beijing, 100730, China.
| | - Yan-Lin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing102206, China.
| |
Collapse
|
11
|
Prevalence of Nontuberculous Mycobacterial Disease in the Changchun District of China. Curr Microbiol 2021; 78:1643-1647. [PMID: 33687509 DOI: 10.1007/s00284-021-02422-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Rates of nontuberculous mycobacterial (NTM) disease are rapidly increasing throughout the globe. NTM disease, as an emerging infectious disease, it is very important to summarize and analyze the prevalence and main pathogenic bacteria. However, there is no relevant report in Changchun district. In the present report, 8765 clinical samples were collected between January 2017 and December 2019, we reviewed patient electronic medical records and thereby summarized the causative species associated with NTM disease in the Changchun district of China. Of 8765 clinical samples, 1987 samples yielded positive cultures. Of these cultures, 1868 (94.01%) were Mycobacterium tuberculosis, 37 (1.86%) were Mycobacterium bovis, and 82 (4.13%) were NTM. A total of 84 NTM strains were isolated from these 82 cultures, with Mycobacterium intracellulare being the most prevalent isolate therein (44.05%). NTM infection status was associated with location of residence [OR (95% CI) 3.92 (1.20-12.8)]. No apparent correlations were observed between cultured NTM species and patient clinical symptoms. Bronchiectasis was the most prevalent radiographic finding associated with NTM cases [OR (95% CI) 9.00 (1.27-63.89)]. In summary, NTM disease is a growing threat to global public health, and researchers and clinicians should thus focus on the appropriate identification of NTM species and the differentiation between NTM infections and tuberculosis.
Collapse
|
12
|
Chin KL, Sarmiento ME, Alvarez-Cabrera N, Norazmi MN, Acosta A. Pulmonary non-tuberculous mycobacterial infections: current state and future management. Eur J Clin Microbiol Infect Dis 2020; 39:799-826. [PMID: 31853742 PMCID: PMC7222044 DOI: 10.1007/s10096-019-03771-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Currently, there is a trend of increasing incidence in pulmonary non-tuberculous mycobacterial infections (PNTM) together with a decrease in tuberculosis (TB) incidence, particularly in developed countries. The prevalence of PNTM in underdeveloped and developing countries remains unclear as there is still a lack of detection methods that could clearly diagnose PNTM applicable in these low-resource settings. Since non-tuberculous mycobacteria (NTM) are environmental pathogens, the vicinity favouring host-pathogen interactions is known as important predisposing factor for PNTM. The ongoing changes in world population, as well as socio-political and economic factors, are linked to the rise in the incidence of PNTM. Development is an important factor for the improvement of population well-being, but it has also been linked, in general, to detrimental environmental consequences, including the rise of emergent (usually neglected) infectious diseases, such as PNTM. The rise of neglected PNTM infections requires the expansion of the current efforts on the development of diagnostics, therapies and vaccines for mycobacterial diseases, which at present, are mainly focused on TB. This review discuss the current situation of PNTM and its predisposing factors, as well as the efforts and challenges for their control.
Collapse
Affiliation(s)
- Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah (UMS), Kota Kinabalu, Sabah, Malaysia.
| | - Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia
| | - Nadine Alvarez-Cabrera
- Center for Discovery and Innovation (CDI), Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
13
|
Ji S, Xu W, Sun J, Shi Y, Pan X. Retrospective analysis of patients with non-tuberculous mycobacteria from a primary hospital in Southeast China. Sci Rep 2020; 10:1060. [PMID: 31974461 PMCID: PMC6978455 DOI: 10.1038/s41598-020-58105-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/08/2020] [Indexed: 11/10/2022] Open
Abstract
To achieve a comprehensive understanding of the characteristics of patients with non-tuberculous mycobacteria (NTM), patients with NTM between January 2016 and June 2019 were recruited from a primary hospital. NTM were identified based on the MBP64 protein assay. The clinical records and laboratory assay results were retrospectively reviewed. A total of 204 patients with NTM were included in the final analysis. The patients with multiple isolations were more likely accompanied with chronic obstructive pulmonary disease (COPD) (p = 0.029) and arthritis (p = 0.049), but showed a lower percentage of positive T-spot results (p = 0.022). In addition, patients with multiple isolations showed a higher rate of positive acid-fast staining results and their symptom duration was more likely longer than 30 days (p = 0.019). Patients with a positive response in T-spot assay showed a higher proportion of nodular manifestation on computed tomography (CT) than those with a negative response. Compared with male patients with NTM, female patients showed lower rates of positive acid-fast staining results (p = 0.03), but were more likely accompanied with COPD (p < 0.0001). The positive acid-fast staining results were closely associated with pulmonary cavities and tuberculosis antibody. Patients with different NTM isolation frequencies were closely associated with coexisting diseases and examination results.
Collapse
Affiliation(s)
- Songjun Ji
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Wanping Xu
- Department of Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Jianmin Sun
- Department of Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yunzhen Shi
- Department of Infectious Diseases, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Xinling Pan
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China.
| |
Collapse
|