1
|
Zhang X, Wang X, Zhu J, Chen K, Ullah R, Tong J, Shen Y. Retinal VIP-amacrine cells: their development, structure, and function. Eye (Lond) 2024; 38:1065-1076. [PMID: 38066110 PMCID: PMC11009269 DOI: 10.1038/s41433-023-02844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 04/13/2024] Open
Abstract
Amacrine cells (ACs) are the most structurally and functionally diverse neuron type in the retina. Different ACs have distinct functions, such as neuropeptide secretion and inhibitory connection. Vasoactive intestinal peptide (VIP) -ergic -ACs are retina gamma-aminobutyric acid (GABA) -ergic -ACs that were discovered long ago. They secrete VIP and form connections with bipolar cells (BCs), other ACs, and retinal ganglion cells (RGCs). They have a specific structure, density, distribution, and function. They play an important role in myopia, light stimulated responses, retinal vascular disease and other ocular diseases. Their significance in the study of refractive development and disease is increasing daily. However, a systematic review of the structure and function of retinal VIP-ACs is lacking. We discussed the detailed characteristics of VIP-ACs from every aspect across species and providing systematic knowledge base for future studies. Our review led to the main conclusion that retinal VIP-ACs develop early, and although their morphology and distribution across species are not the same, they have similar functions in a wide range of ocular diseases based on their function of secreting neuropeptides and forming inhibitory connections with other cells.
Collapse
Affiliation(s)
- Xuhong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jiru Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Rahim Ullah
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Pérez de Sevilla Müller L, Solomon A, Sheets K, Hapukino H, Rodriguez AR, Brecha NC. Multiple cell types form the VIP amacrine cell population. J Comp Neurol 2017; 527:133-158. [PMID: 28472856 DOI: 10.1002/cne.24234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
Amacrine cells are a heterogeneous group of interneurons that form microcircuits with bipolar, amacrine and ganglion cells to process visual information in the inner retina. This study has characterized the morphology, neurochemistry and major cell types of a VIP-ires-Cre amacrine cell population. VIP-tdTomato and -Confetti (Brainbow2.1) mouse lines were generated by crossing a VIP-ires-Cre line with either a Cre-dependent tdTomato or Brainbow2.1 reporter line. Retinal sections and whole-mounts were evaluated by quantitative, immunohistochemical, and intracellular labeling approaches. The majority of tdTomato and Confetti fluorescent cell bodies were in the inner nuclear layer (INL) and a few cell bodies were in the ganglion cell layer (GCL). Fluorescent processes ramified in strata 1, 3, 4, and 5 of the inner plexiform layer (IPL). All tdTomato fluorescent cells expressed syntaxin 1A and GABA-immunoreactivity indicating they were amacrine cells. The average VIP-tdTomato fluorescent cell density in the INL and GCL was 535 and 24 cells/mm2 , respectively. TdTomato fluorescent cells in the INL and GCL contained VIP-immunoreactivity. The VIP-ires-Cre amacrine cell types were identified in VIP-Brainbow2.1 retinas or by intracellular labeling in VIP-tdTomato retinas. VIP-1 amacrine cells are bistratified, wide-field cells that ramify in strata 1, 4, and 5, VIP-2A and 2B amacrine cells are medium-field cells that mainly ramify in strata 3 and 4, and VIP-3 displaced amacrine cells are medium-field cells that ramify in strata 4 and 5 of the IPL. VIP-ires-Cre amacrine cells form a neuropeptide-expressing cell population with multiple cell types, which are likely to have distinct roles in visual processing.
Collapse
Affiliation(s)
- Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Alexander Solomon
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Kristopher Sheets
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Hinekura Hapukino
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Allen R Rodriguez
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Department of Medicine, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Department of Ophthalmology and the Stein Eye Institute, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,CURE Digestive Diseases Research Center, David Geffen School of Medicine at Los Angeles, University of California at Los Angeles, Los Angeles, California, 90095-1763.,Veterans Administration Greater Los Angeles Health System, Los Angeles, California, 90073
| |
Collapse
|
3
|
Akrouh A, Kerschensteiner D. Morphology and function of three VIP-expressing amacrine cell types in the mouse retina. J Neurophysiol 2015; 114:2431-8. [PMID: 26311183 PMCID: PMC4620131 DOI: 10.1152/jn.00526.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/21/2015] [Indexed: 12/29/2022] Open
Abstract
Amacrine cells (ACs) are the most diverse class of neurons in the retina. The variety of signals provided by ACs allows the retina to encode a wide range of visual features. Of the 30-50 AC types in mammalian species, few have been studied in detail. Here, we combine genetic and viral strategies to identify and to characterize morphologically three vasoactive intestinal polypeptide-expressing GABAergic AC types (VIP1-, VIP2-, and VIP3-ACs) in mice. Somata of VIP1- and VIP2-ACs reside in the inner nuclear layer and somata of VIP3-ACs in the ganglion cell layer, and they show asymmetric distributions along the dorsoventral axis of the retina. Neurite arbors of VIP-ACs differ in size (VIP1-ACs ≈ VIP3-ACs > VIP2-ACs) and stratify in distinct sublaminae of the inner plexiform layer. To analyze light responses and underlying synaptic inputs, we target VIP-ACs under 2-photon guidance for patch-clamp recordings. VIP1-ACs depolarize strongly to light increments (ON) over a wide range of stimulus sizes but show size-selective responses to light decrements (OFF), depolarizing to small and hyperpolarizing to large stimuli. The switch in polarity of OFF responses is caused by pre- and postsynaptic surround inhibition. VIP2- and VIP3-ACs both show small depolarizations to ON stimuli and large hyperpolarizations to OFF stimuli but differ in their spatial response profiles. Depolarizations are caused by ON excitation outweighing ON inhibition, whereas hyperpolarizations result from pre- and postsynaptic OFF-ON crossover inhibition. VIP1-, VIP2-, and VIP3-ACs thus differ in response polarity and spatial tuning and contribute to the diversity of inhibitory and neuromodulatory signals in the retina.
Collapse
Affiliation(s)
- Alejandro Akrouh
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri; and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
4
|
Abdel-Majid RM, Tremblay F, Baldridge WH. Localization of adenylyl cyclase proteins in the rodent retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 101:62-70. [PMID: 12007833 DOI: 10.1016/s0169-328x(02)00163-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The isoforms of adenylyl cyclase that mediate cyclic AMP signaling pathways in the retina are, for the most part, unknown. Therefore, the protein expression patterns of adenylyl cyclase isoforms in the rodent retina were characterized immunocytochemically using antibodies directed against Ca(2+)-stimulated (AC1, AC3 and AC8), Ca(2+)-inhibited (AC9) and Ca(2+)-insensitive (AC2, AC4, AC7) isoforms of adenylyl cyclase. The ganglion cell layer and the inner nuclear layer (INL) were immunoreactive for both Ca(2+)-sensitive (AC1, AC3) and Ca(2+)-insensitive (AC2, AC4) isoforms of adenylyl cyclase. Antibodies against isoforms from all three classes of adenylyl cyclase labeled the inner plexiform layer. In the outer retina, antibodies against Ca(2+)-insensitive isoforms labeled photoreceptors and the outer plexiform layer (OPL). Radial elements in the ONL and INL were AC4-immunoreactive and the nerve fibre layer and optic nerve were AC2-, AC4- and AC9-immunoreactive. Antibodies against AC7 did not label rodent neural retina. These data indicate that there is a heterogeneous distribution of adenylyl cyclase isoforms throughout the rodent retina. Nonetheless, there is a general indication of a greater expression of Ca(2+)-insensitive adenylyl cyclase isoforms in the outer retina, particularly within photoreceptors.
Collapse
Affiliation(s)
- Raja' M Abdel-Majid
- Laboratory for Retina and Optic Nerve Research, Department of Anatomy & Neurobiology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | |
Collapse
|
5
|
Lee EJ, Park SH, Kim IB, Kang WS, Oh SJ, Chun MH. Light- and electron-microscopic analysis of vasoactive intestinal polypeptide-immunoreactive amacrine cells in the guinea pig retina. J Comp Neurol 2002; 445:325-35. [PMID: 11920710 DOI: 10.1002/cne.10181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vasoactive intestinal polypeptide (VIP) is a neuroactive substance that is expressed in both nonmammalian and mammalian retinas. This study investigated the morphology and synaptic connections of VIP-containing neurons in the guinea pig retina by immunocytochemistry, by using antisera against VIP. Specific VIP immunoreactivity was localized to a population of wide-field and regularly spaced amacrine cells with processes ramifying mainly in strata 1 and 2 of the inner plexiform layer (IPL). Double-label immunohistochemistry demonstrated that all VIP-immunoreactive cells possessed gamma-aminobutyric acid immunoreactivity. The synaptic connectivity of VIP-immunoreactive amacrine cells was identified in the IPL by electron microscopy. The VIP-labeled amacrine cell processes received synaptic input from other amacrine cell processes and bipolar cell axon terminals in strata 1 to 3 of the IPL. The most frequent postsynaptic targets of VIP-immunoreactive amacrine cells were other amacrine cell processes in strata 1 to 3 of the IPL. Synaptic outputs to bipolar cells were also observed in strata 1 to 3 of the IPL. In addition, ganglion cell dendrites were also postsynaptic to VIP-immunoreactive neurons in the sublamina a of the IPL. These studies show that one type of VIP-immunoreactive amacrine cells make contact predominantly with other amacrine cell processes. This finding suggests that VIP-containing amacrine cells may influence inner retinal circuitry, thus mediating visual processing.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | |
Collapse
|
6
|
D'Agata V, Cavallaro S. Functional and molecular expression of PACAP/VIP receptors in the rat retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 54:161-4. [PMID: 9526072 DOI: 10.1016/s0169-328x(97)00335-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Receptor binding sites for pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP), positively coupled to adenylate cyclase, have been previously described in the retina of different mammalian species. In the present study, we determined the mRNA expression of PACAP/VIP receptor variants in the rat retina and investigated their coupling to phospholipase C in addition to adenylate cyclase. The two forms of PACAP, PACAP27 and PACAP38, induced a dose-dependent (1-100 nM) increase of cAMP and [3H]inositol monophosphate levels, whereas VIP stimulated, with lower potency and efficacy, cAMP formation only. Reverse transcription-PCR analysis in the rat retina detected both type-I (PACAP-R and PACAP-HOP splice variants) and type-II (VIP-I and -2) receptor-mRNAs. These data indicate that PACAP and VIP may interact with multiple receptor subtypes and activate one (VIP) or two (PACAP) signal transduction mechanisms in the rat retina.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/biosynthesis
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/physiology
- Receptors, Vasoactive Intestinal Peptide/biosynthesis
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Peptide/physiology
- Retina/metabolism
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- V D'Agata
- Istituto di Bioimmagini e Fisiopatologia del Sistema Nervoso Centrale, Italian National Research Council (CNR), Catania, Italy
| | | |
Collapse
|
7
|
Abstract
PURPOSE To offer clinical evidence that deficiency of vitamin B12 may adversely affect the neuronal function of patients who also have the 14,484 mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy (LHON). METHODS A case of a 27-year-old man with vitamin B12 deficiency and the 14,484 mitochondrial DNA mutation is presented and the literature on causes of some metabolic optic neuropathies reviewed. RESULTS Visual loss and neurologic symptoms of vitamin B12 deficiency occurred together, at a time when the level of vitamin B12 was subnormal. Vision and other sensory functions began to improve within 2 months of vitamin therapy, and normal vision eventually was restored. CONCLUSIONS The relatively prompt improvement and the eventual complete recovery of vision following vitamin replacement therapy suggest that the subnormal level of vitamin B12 precipitated visual loss. Given the clinical similarities of subnormal vitamin B12, LHON, and nutritional/tobacco amblyopia, deficiency of adenosine triphosphate might be a unifying etiology for several types of optic neuropathy. This energy hypothesis provides a theoretical basis for the enigmatic phenomena of centrocecal scotomata and recovery of visual function after prolonged blindness.
Collapse
Affiliation(s)
- J F Rizzo
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Veruki ML, Yeh HH. Vasoactive intestinal polypeptide modulates GABAA receptor function through activation of cyclic AMP. Vis Neurosci 1994; 11:899-908. [PMID: 7947403 DOI: 10.1017/s0952523800003850] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vasoactive intestinal polypeptide (VIP) has been shown to potentiate current responses elicited by activation of the GABAA receptor (IGABA) in freshly dissociated ganglion cells of the rat retina. Here we tested the hypothesis that this heteroreceptor cross talk is mediated by an intracellular cascade of events that includes the sequential activation of a stimulatory guanine nucleotide binding (Gs) protein and adenylate cyclase, the subsequent increase in levels of cyclic AMP and, finally, the action of the cyclic AMP-dependent protein kinase (PKA). Intracellular dialysis of freshly dissociated ganglion cells with GTP gamma s irreversibly potentiated IGABA, while GDP beta s either decreased or had no effect on IGABA. Additionally, GDP beta s blocked the potentiation of IGABA by VIP. Cholera toxin rendered VIP ineffective in potentiating IGABA, while pertussis toxin had no effect on the VIP-induced potentiation of IGABA. Extracellular application of either forskolin or 8-bromo-cyclic AMP potentiated IGABA, as did the introduction of cyclic AMP directly into the intracellular compartment through the recording pipet. Intracellular application of cyclic AMP-dependent protein kinase (PKA) potentiated IGABA, while a PKA inhibitor blocked the potentiating effect of VIP. These results lead us to conclude that activation of a cyclic AMP-dependent second-messenger system mediates the modulation of GABAA receptor function by VIP in retinal ganglion cells.
Collapse
Affiliation(s)
- M L Veruki
- Graduate Program in Neuroscience, University of Rochester School of Medicine and Dentistry
| | | |
Collapse
|
9
|
Casini G, Molnar M, Brecha NC. Vasoactive intestinal polypeptide/peptide histidine isoleucine messenger RNA in the rat retina: adult distribution and developmental expression. Neuroscience 1994; 58:657-67. [PMID: 8170541 DOI: 10.1016/0306-4522(94)90089-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the adult nervous system, vasoactive intestinal polypeptide acts as a neurotransmitter or neuromodulator, and during development, it may also act as a neurotrophic factor. In the adult mammalian retina, this peptide is contained in a population of wide-field amacrine cells. Using in situ hybridization histochemistry, we examined the distribution and developmental expression of vasoactive intestinal polypeptide/peptide histidine isoleucine messenger RNA in the rat retina. Retinas collected from birth to adulthood were hybridized with an RNA probe as whole mounts, and then cut either perpendicular or parallel to the vitreal surface. Adult retinas were used in double labeling experiments for the visualization of both the hybridization signal and vasoactive intestinal polypeptide immunoreactivity in the same tissue section. In adult retinas, vasoactive intestinal polypeptide/peptide histidine isoleucine messenger RNA is localized to amacrine cells positioned in the proximal inner nuclear layer, and rarely to displaced amacrine cells in the inner plexiform layer and ganglion cell layer. The neurons expressing this messenger RNA are sparsely distributed, with a non-random distribution and densities of about 190 cells/mm2. An estimate of their total number gives about 12,350 cells/retina. The double labeling experiments showed that the hybridization signal is specifically confined to neurons displaying vasoactive intestinal polypeptide immunoreactivity. Vasoactive intestinal polypeptide/peptide histidine isoleucine messenger RNA is first detected at postnatal day 5 in cells located in the proximal part of the neuroblastic layer. A greater number of these neurons is present in the inner nuclear layer at postnatal day 10, and a few labeled neurons are also detected in the inner plexiform layer and in the ganglion cell layer. At this time, vasoactive intestinal polypeptide/peptide histidine isoleucine messenger RNA-containing amacrines in the inner nuclear layer are non-randomly distributed on the retinal surface, as in adult retinas. At postnatal day 15 (eye opening), there is a peak in both the density and the estimated number of labeled neurons, and their pattern of distribution in the retinal layers is similar to that in the adult. The present study shows that in the adult rat retina vasoactive intestinal polypeptide and peptide histidine isoleucine are synthesized in a sparsely distributed amacrine cell population, extending previous immunohistochemical findings. The appearance of vasoactive intestinal polypeptide peptide histidine isoleucine messenger RNA during the first postnatal week is consistent with the reported appearance of other transmitter-identified amacrine cell populations.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G Casini
- Department of Anatomy & Cell Biology, UCLA School of Medicine
| | | | | |
Collapse
|