1
|
Kovács-Öller T, Szarka G, Hoffmann G, Péntek L, Valentin G, Ross L, Völgyi B. Extrinsic and Intrinsic Factors Determine Expression Levels of Gap Junction-Forming Connexins in the Mammalian Retina. Biomolecules 2023; 13:1119. [PMID: 37509155 PMCID: PMC10377540 DOI: 10.3390/biom13071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Gap junctions (GJs) are not static bridges; instead, GJs as well as the molecular building block connexin (Cx) proteins undergo major expression changes in the degenerating retinal tissue. Various progressive diseases, including retinitis pigmentosa, glaucoma, age-related retinal degeneration, etc., affect neurons of the retina and thus their neuronal connections endure irreversible changes as well. Although Cx expression changes might be the hallmarks of tissue deterioration, GJs are not static bridges and as such they undergo adaptive changes even in healthy tissue to respond to the ever-changing environment. It is, therefore, imperative to determine these latter adaptive changes in GJ functionality as well as in their morphology and Cx makeup to identify and distinguish them from alterations following tissue deterioration. In this review, we summarize GJ alterations that take place in healthy retinal tissue and occur on three different time scales: throughout the entire lifespan, during daily changes and as a result of quick changes of light adaptation.
Collapse
Affiliation(s)
- Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Gergely Szarka
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Gyula Hoffmann
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Loretta Péntek
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
| | - Gréta Valentin
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
| | - Liliana Ross
- Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
2
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Abstract
Retinas of all classes of vertebrates contain endogenous circadian clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis, and cellular events such as rod disk shedding, intracellular signaling pathways, and gene expression. The vertebrate retina is an example of a “peripheral” oscillator that is particularly amenable to study because this tissue is well characterized, the relationships between the various cell types are extensively studied, and many local clock-controlled rhythms are known. Although the existence of a photoreceptor clock is well established in several species, emerging data are consistent with multiple or dual oscillators within the retina that interact to control local physiology. Aprominent example is the antiphasic regulation of melaton in and dopamine in photoreceptors and inner retina, respectively. This review focuses on the similarities and differences in the molecular mechanisms of the retinal versus the SCN oscillators, as well as on the expression of core components of the circadian clockwork in retina. Finally, the interactions between the retinal clock(s) and the master clock in the SCN are examined.
Collapse
Affiliation(s)
- Carla B Green
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
4
|
Cornide-Petronio ME, Anadón R, Barreiro-Iglesias A, Rodicio MC. Tryptophan hydroxylase and serotonin receptor 1A expression in the retina of the sea lamprey. Exp Eye Res 2015; 135:81-7. [DOI: 10.1016/j.exer.2015.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/25/2015] [Accepted: 04/25/2015] [Indexed: 11/16/2022]
|
5
|
Role of melatonin and its receptors in the vertebrate retina. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:211-42. [PMID: 23273863 DOI: 10.1016/b978-0-12-405210-9.00006-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melatonin is a chemical signal of darkness that is produced by retinal photoreceptors and pinealocytes. In the retina, melatonin diffuses from the photoreceptors to bind to specific receptors on a variety of inner retinal neurons to modify their activity. Potential target cells for melatonin in the inner retina are amacrine cells, bipolar cells, horizontal cells, and ganglion cells. Melatonin inhibits the release of dopamine from amacrine cells and increases the light sensitivity of horizontal cells. Melatonin receptor subtypes show differential, cell-specific patterns of expression that are likely to underlie differential functional modulation of specific retinal pathways. Melatonin potentiates rod signals to ON-type bipolar cells, via activation of the melatonin MT2 (Mel1b) receptor, suggesting that melatonin modulates the function of specific retinal circuits based on the differential distribution of its receptors. The selective and differential expression of melatonin receptor subtypes in cone circuits suggest a conserved function for melatonin in enhancing transmission from rods to second-order neurons and thus promote dark adaptation.
Collapse
|
6
|
Hayasaka N, LaRue SI, Green CB. Differential contribution of rod and cone circadian clocks in driving retinal melatonin rhythms in Xenopus. PLoS One 2010; 5:e15599. [PMID: 21187976 PMCID: PMC3004937 DOI: 10.1371/journal.pone.0015599] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 11/15/2010] [Indexed: 11/18/2022] Open
Abstract
Background Although an endogenous circadian clock located in the retinal photoreceptor layer governs various physiological events including melatonin rhythms in Xenopus laevis, it remains unknown which of the photoreceptors, rod and/or cone, is responsible for the circadian regulation of melatonin release. Methodology/Principal Findings We selectively disrupted circadian clock function in either the rod or cone photoreceptor cells by generating transgenic Xenopus tadpoles expressing a dominant-negative CLOCK (XCLΔQ) under the control of a rod or cone-specific promoter. Eyecup culture and continuous melatonin measurement revealed that circadian rhythms of melatonin release were abolished in a majority of the rod-specific XCLΔQ transgenic tadpoles, although the percentage of arrhythmia was lower than that of transgenic tadpole eyes expressing XCLΔQ in both rods and cones. In contrast, whereas a higher percentage of arrhythmia was observed in the eyes of the cone-specific XCLΔQ transgenic tadpoles compare to wild-type counterparts, the rate was significantly lower than in rod-specific transgenics. The levels of the transgene expression were comparable between these two different types of transgenics. In addition, the average overall melatonin levels were not changed in the arrhythmic eyes, suggesting that CLOCK does not affect absolute levels of melatonin, only its temporal expression pattern. Conclusions/Significance These results suggest that although the Xenopus retina is made up of approximately equal numbers of rods and cones, the circadian clocks in the rod cells play a dominant role in driving circadian melatonin rhythmicity in the Xenopus retina, although some contribution of the clock in cone cells cannot be excluded.
Collapse
Affiliation(s)
- Naoto Hayasaka
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America.
| | | | | |
Collapse
|
7
|
Abstract
Ion channels are the gatekeepers to neuronal excitability. Retinal neurons of vertebrates and invertebrates, neurons of the suprachiasmatic nucleus (SCN) of vertebrates, and pinealocytes of non-mammalian vertebrates display daily rhythms in their activities. The interlocking transcription-translation feedback loops with specific post-translational modulations within individual cells form the molecular clock, the basic mechanism that maintains the autonomic approximately 24-h rhythm. The molecular clock regulates downstream output signaling pathways that further modulate activities of various ion channels. Ultimately, it is the circadian regulation of ion channel properties that govern excitability and behavior output of these neurons. In this review, we focus on the recent development of research in circadian neurobiology mainly from 1980 forward. We will emphasize the circadian regulation of various ion channels, including cGMP-gated cation channels, various voltage-gated calcium and potassium channels, Na(+)/K(+)-ATPase, and a long-opening cation channel. The cellular mechanisms underlying the circadian regulation of these ion channels and their functions in various tissues and organisms will also be discussed. Despite the magnitude of chronobiological studies in recent years, the circadian regulation of ion channels still remains largely unexplored. Through more investigation and understanding of the circadian regulation of ion channels, the future development of therapeutic strategies for the treatment of sleep disorders, cardiovascular diseases, and other illnesses linked to circadian misalignment will benefit.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA.
| | | | | |
Collapse
|
8
|
Wiechmann AF, Summers JA. Circadian rhythms in the eye: The physiological significance of melatonin receptors in ocular tissues. Prog Retin Eye Res 2008; 27:137-60. [DOI: 10.1016/j.preteyeres.2007.10.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Influence of dietary melatonin on photoreceptor survival in the rat retina: an ocular toxicity study. Exp Eye Res 2007; 86:241-50. [PMID: 18078931 DOI: 10.1016/j.exer.2007.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 10/23/2007] [Accepted: 10/24/2007] [Indexed: 11/24/2022]
Abstract
Previous studies have shown that melatonin treatment increases the susceptibility of retinal photoreceptors to light-induced cell death. The purpose of this study was to evaluate under various conditions the potential toxicity of dietary melatonin on retinal photoreceptors. Male and female Fischer 344 (non-pigmented) and Long-Evans (pigmented) rats were treated with daily single doses of melatonin by gavage for a period of 14 days early in the light period or early in the dark period. In another group, rats were treated 3 times per week with melatonin early in the light period, and then exposed to high intensity illumination (1000-1500 lx; HII) for 2h, and then returned to the normal cyclic lighting regime. At the end of the treatment periods, morphometric measurements of outer nuclear layer thickness (ONL; the layer containing the photoreceptor cell nuclei) were made at specific loci throughout the retinas. In male and female non-pigmented Fischer rats, melatonin administration increased the degree of photoreceptor cell death when administered during the nighttime and during the day when followed by exposure to HII. There were some modest effects of melatonin on photoreceptor cell death when administered to Fischer rats during the day or night without exposure to HII. Melatonin treatment caused increases in the degree of photoreceptor cell death when administered in the night to male pigmented Long-Evans rats, but melatonin administration during the day, either with or without exposure to HII, had little if any effect on photoreceptor cell survival. In pigmented female Long-Evans rats, melatonin administration did not appear to have significant effects on photoreceptor cell death in any treatment group. The results of this study confirm and extend previous reports that melatonin increases the susceptibility of photoreceptors to light-induced cell death in non-pigmented rats. It further suggests that during the dark period, melatonin administration alone (i.e., no HII exposure) to pigmented male rats may have a toxic effect on retinal cells. These results suggest that dietary melatonin, in combination with a brief exposure to high intensity illumination, induces cellular disruption in a small number of photoreceptors. Chronic exposure to natural or artificial light and simultaneous intake of melatonin may potentially contribute to a significant loss of photoreceptor cells in the aging retina.
Collapse
|
10
|
Tang GY, Ip AK, Siu AW. Pinoline and N-acetylserotonin reduce glutamate-induced lipid peroxidation in retinal homogenates. Neurosci Lett 2006; 412:191-4. [PMID: 17125922 DOI: 10.1016/j.neulet.2006.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/23/2022]
Abstract
Glutamate is a neurotransmitter associated with oxidative retinal disorders. Pinoline (PIN) and N-acetylserotonin (NAS) are newly identified neural protectors. We investigated the glutamate-induced lipid peroxidation (LPO) and the protective effects of PIN and NAS in the retina. Porcine retinal homogenates were treated with different concentrations of glutamate. The malondialdehyde (MDA) level per unit weight of protein was quantified spectro-photometrically as an index of LPO. The glutamate concentration that induced a significant increase in retinal MDA was determined. The glutamate-treated retinal homogenate was then co-incubated with 5 different concentrations (0, 35.7, 71.5, 143 and 286 microM) of PIN, NAS or their combinations (concentration corresponding to 25, 50 and 75% of protection). Glutamate induced a significant dose-dependent increase in retinal MDA (p<0.0001). Co-incubation with PIN or NAS significantly suppressed the glutamate-induced MDA (p<0.01) in a dose-dependent manner (p<0.0001). The concentrations to inhibit 50% of LPO were 132.8 and 98.6 microM for PIN and NAS, respectively. In summary, elevated glutamate induced retinal LPO. Both PIN and NAS suppressed the glutamate-induced LPO and a synergic protection was evident after incubation in PIN/NAS mixtures.
Collapse
Affiliation(s)
- Gordon Y Tang
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
11
|
Isorna E, Besseau L, Boeuf G, Desdevises Y, Vuilleumier R, Alonso-Gómez AL, Delgado MJ, Falcón J. Retinal, pineal and diencephalic expression of frog arylalkylamine N-acetyltransferase-1. Mol Cell Endocrinol 2006; 252:11-8. [PMID: 16687207 DOI: 10.1016/j.mce.2006.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The arylalkylamine N-acetyltransferase (AANAT) is a key enzyme in the rhythmic production of melatonin. Two Aanats are expressed in Teleost fish (Aanat1 in the retina and Aanat2 in the pineal organ) but only Aanat1 is found in tetrapods. This study reports the cloning of Aanat1 from R. perezi. Transcripts were mainly expressed in the retina, diencephalon, intestine and testis. In the retina and pineal organ, Aanat1 expression was in the photoreceptor cells. Expression was also seen in ependymal cells of the 3rd ventricle and discrete cells of the suprachiasmatic area. The expression of Aanat1 in both the retina and pineal organ, and the absence of Aanat2 suggests that green frog resembles more to birds and mammals than to Teleost fish, as far as Aanat is concerned. The significance of Aanat1 in extra-pineal and extra-retinal tissues remains to be elucidated; in the diencephalon, it might be associated to the so-called deep brain photoreceptor cells.
Collapse
Affiliation(s)
- Esther Isorna
- Laboratoire Aragó, Université Pierre et Marie Curie and CNRS, UMR 7628, B.P. 44, Avenue du Fontaulé, F-66651 Banyuls/Mer-Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Besharse JC, Zhuang M, Freeman K, Fogerty J. Regulation of photoreceptor Per1 and Per2 by light, dopamine and a circadian clock. Eur J Neurosci 2004; 20:167-74. [PMID: 15245489 DOI: 10.1111/j.1460-9568.2004.03479.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the Xenopus laevis retina, a principal model for retinal circadian organization, photoreceptors have all the properties of circadian oscillators. However, rhythmic oscillations of Per1 gene expression in the inner retina (but not photoreceptors) have been reported in mice with the suggestion that mice and frogs have a different retinal circadian organization. Although it is known that two period genes (xPer1 and xPer2) exhibit different temporal patterns of expression in the Xenopus retina, and that one (xPer2) is directly responsive to light and dopamine, it is not known whether this reflects the properties of period genes within photoreceptor oscillators or among distinct retinal cell populations. We addressed this by determining the cellular site of light and dopamine regulated xPer2 expression, and the diurnal expression of both xPer1 and xPer2 using in situ hybridization. Our data show that both xPer1 and xPer2 are expressed in most cell types in the retina, including inner nuclear neurons and ganglion cells. However, light and quinpirole, a dopamine agonist, increase xPer2 levels specifically in photoreceptors, and the effect of quinpirole, but not light, is blocked by pCPT-cAMP. Furthermore, antiphasic diurnal expression of xPer1 and xPer2 also occurs in photoreceptors. Our analysis does not provide insight into the near constitutive expression of period genes in the inner retina, but supports a model in which light- and dopamine regulated-xPer2 and rhythmic xPer1 play critical roles in entrainment and circadian oscillations within photoreceptors.
Collapse
Affiliation(s)
- Joseph C Besharse
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|
13
|
Wiechmann AF. Differential distribution of Mel(1a) and Mel(1c) melatonin receptors in Xenopus laevis retina. Exp Eye Res 2003; 76:99-106. [PMID: 12589779 DOI: 10.1016/s0014-4835(02)00230-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hormone melatonin is an output signal of an endogenous circadian clock in retinal photoreceptors. Melatonin may act as a paracrine and/or intracrine neurohormone by binding to specific receptors in the eye. The distribution of Mel(1a) and Mel(1c) melatonin receptors in the Xenopus laevis retina was examined by immunocytochemistry, using antibodies prepared against specific sequences of the Xenopus receptor proteins. Antibodies that label dopaminergic and GABA-ergic amacrine cells were used in double-label experiments with the melatonin receptor antibodies. The distribution of Mel(1a) and Mel(1c) receptor immunoreactivity was similar insofar as the two receptors were localized in the inner plexiform layer. However, the Mel(1c) receptor displayed some immunoreactivity in the photoreceptor cells, whereas the Mel(1a) receptor displayed little if any photoreceptor labelling. The Mel(1c) antibody, but not the Mel(1a), labelled a population of ganglion cells. While both receptors were localized to the outer plexiform layer, they did not appear to localize to the identical cell types. These results demonstrate that the Mel(1a) and Mel(1c) receptor proteins are present in cells of the X. laevis retina, and their distribution in the photoreceptors and inner retina is very similar to that reported in the human retina. The differential pattern of expression of the melatonin receptors suggests that melatonin may convey differential effects on various target cells in the retina.
Collapse
Affiliation(s)
- Allan F Wiechmann
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| |
Collapse
|
14
|
Zhuang M, Wang Y, Steenhard BM, Besharse JC. Differential regulation of two period genes in the Xenopus eye. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 82:52-64. [PMID: 11042357 DOI: 10.1016/s0169-328x(00)00177-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recent identification and analysis of mammalian homologues of the well characterized Drosophila circadian clock gene, Period (Per), has led to the idea that key features of vertebrate circadian rhythmicity are conserved at the molecular level. The Xenopus laevis retina contains a circadian clock mechanism that can be studied in vitro. To study the rhythmic expression of Per in the Xenopus retina, we used a degenerate RT-PCR strategy to obtain cDNA clones covering the entire 1427 amino acid coding region of a Xenopus homologue of Per2 and a partial cDNA sequence for a Xenopus homologue of Per1. Northern blot analysis shows that xPer1 and xPer2 transcripts are expressed most abundantly in the eye and the brain. However, rhythmic expression of xPer2 transcripts in the retina and retinal pigment epithelium (RPE) is light dependent and occurs only under 12 h light/12 h dark (LD) conditions, not in constant dark (DD). In contrast, xPer1 mRNA accumulation is rhythmic under both LD and DD conditions. Light dependent regulation of xPer2 mRNA and circadian regulation of xPer1 mRNA in the Xenopus retina differs from that in Drosophila and mammals. Light dependence of xPer2 mRNA levels and the offset phase relationship of the xPer2 rhythm to that for xPer1 suggests a role for xPer2 in circadian entrainment.
Collapse
Affiliation(s)
- M Zhuang
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The photoreceptor layer in the retina of Xenopus laevis harbors a circadian clock. Many molecular components known to drive the molecular clock in other organisms have been identified in Xenopus, such as XClock, Xper2, and Xcrys, demonstrating phylogenetic conservation. This model system displays a wide array of rhythms, including melatonin release, ERG rhythms, and retinomotor movements, suggesting that the ocular clock is important for proper retinal function. A flow-through culture system allows measurements of retinal rhythms such as melatonin release in vitro over time from a single eyecup. This system is suited for pharmacological perturbations of the clock, and has led to important observations regarding the circadian control of melatonin release, the roles of light and dopamine as entraining agents, and the circadian mechanisms regulating retinomotor movements. The development of a transgenic technique in Xenopus allows precise and reliable molecular perturbations. Since it is possible to follow rhythms in eyecups obtained from adults or tadpoles, the combination of the flow-through culture system and the transgenic technique leads to the fast generation of transgenic tadpoles to monitor the effects of molecular perturbations on the clock.
Collapse
Affiliation(s)
- F E Anderson
- Department of Biology, NSF Center for Biological Timing, University of Virginia, Charlottesville, Virginia 22903, USA
| | | |
Collapse
|
16
|
Valenciano AI, Alonso-Gómez AL, Iuvone PM. Regulation of tryptophan hydroxylase activity in Xenopus laevis photoreceptor cells by cyclic AMP. J Neurochem 2000; 74:1961-7. [PMID: 10800939 DOI: 10.1046/j.1471-4159.2000.0741961.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to investigate the role of cyclic AMP in the regulation of tryptophan hydroxylase activity localized in retinal photoreceptor cells of Xenopus laevis, where the enzyme plays a key role in circadian melatonin biosynthesis. In photoreceptor-enriched retinas that lack serotonergic neurons, tryptophan hydroxylase activity is markedly stimulated by treatments that increase intracellular levels of cyclic AMP or activate cyclic AMP-dependent protein kinase, including forskolin, phosphodiesterase inhibitors, and cyclic AMP analogues. In contrast, cyclic AMP has no effect on tryptophan hydroxylase mRNA abundance. Experiments using cycloheximide and actinomycin D demonstrate that cyclic AMP exerts its regulatory effect via posttranslational mechanisms mediated by cyclic AMP-dependent protein kinase. The effect of cyclic AMP is independent of the phase of the photoperiod, suggesting that the nucleotide is not a mediator of the circadian rhythm of tryptophan hydroxylase. Cyclic AMP accumulation is higher in darkness than in light, as is tryptophan hydroxylase activity. Furthermore, the stimulatory effect of forskolin and that of darkness are inhibited by H89, an inhibitor of cyclic AMP-dependent protein kinase. In conclusion, cyclic AMP may mediate the acute effects of light and darkness on tryptophan hydroxylase activity of retinal photoreceptor cells.
Collapse
Affiliation(s)
- A I Valenciano
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322-3090, USA
| | | | | |
Collapse
|
17
|
Valenciano AI, Alonso-Gómez AL, Iuvone PM. Diurnal rhythms of tryptophan hydroxylase activity in Xenopus laevis retina: opposing phases in photoreceptors and inner retinal neurons. Neuroreport 1999; 10:2131-5. [PMID: 10424687 DOI: 10.1097/00001756-199907130-00025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tryptophan hydroxylase (TPH) is the first enzyme in the biosynthetic pathways of melatonin in photoreceptor cells and of serotonin in amacrine cells. To assess the regulation of TPH activity in photoreceptor cells, we pretreated retinas with kainic acid. The neurotoxin selectively killed inner retinal neurons while sparing photoreceptors. TPH activity in both control and kainate-treated retinas undergoes a day-night rhythm. The rhythms in both preparations fit sinusoidal functions. However, the rhythm in intact retinas peaks at midday while that in kainate-lesioned retinas does so at midnight. The daily rhythm of tryptophan hydroxylase activity in photoreceptors parallels that of melatonin release. Comparing the mean level of activity in rhythms of intact and lesioned retinas, we calculate that the TPH activity in photoreceptors represents 24% of the total activity. Therefore, the TPH activity measured in intact retinas reflects mainly the enzymatic activity in serotonergic neurons, masking that from photoreceptors. In contrast, the levels and diurnal variation of TPH mRNA did not differ in intact and kainate-lesioned retinas indicating that measurements of TPH mRNA content reflect primarily that in photoreceptor cells. Thus, TPH mRNA levels and enzyme activity are differentially regulated in amacrine neurons and photoreceptor cells. This differential regulation markedly impacts the patterns of daily rhythms observed in the intact retina.
Collapse
Affiliation(s)
- A I Valenciano
- Department of Pharmacology, Emory University, Atlanta, GA 30322-3090, USA
| | | | | |
Collapse
|
18
|
Abstract
A circadian clock modulates the functional organization of the Japanese quail retina. Under conditions of constant darkness, rods dominate electroretinogram (ERG) b-wave responses at night, and cones dominate them during the day, yielding a circadian rhythm in retinal sensitivity and rod-cone dominance. The activity of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, also exhibits a circadian rhythm in the retina with approximately threefold higher levels during the day than at night. The rhythm of tyrosine hydroxylase activity is opposite in phase to the circadian activity of tryptophan hydroxylase, the first enzyme in the melatonin biosynthetic pathway. We tested whether dopamine may be related to the physiological rhythms of the retina by examining the actions of pharmacological agents that effect dopamine receptors. We found that blocking dopamine D2 receptors in the retina during the day mimics the nighttime state by increasing the amplitude of the b-wave and shifting the retina to rod dominance. Conversely, activating D2 receptors at night mimics the daytime state by decreasing the amplitude of the b-wave and shifting the retina to cone dominance. A selective antagonist for D1 dopamine receptors has no effect on retinal sensitivity or rod-cone dominance. Reducing retinal dopamine partially abolishes rhythms in sensitivity and yields a rod-dominated retina regardless of the time of day. These results suggest that dopamine, under the control of a circadian oscillator, has a key role in modulating sensitivity and rod-cone dominance in the Japanese quail retina.
Collapse
|
19
|
Wiechmann AF, Campbell LD, Defoe DM. Melatonin receptor RNA expression in Xenopus retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 63:297-303. [PMID: 9878796 DOI: 10.1016/s0169-328x(98)00292-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Melatonin is an indolamine hormone presumably synthesized by retinal photoreceptors, and may act as a paracrine signal of darkness within the retina. Previous studies have suggested that melatonin, acting through specific receptors, may be involved in cyclic retinal functions such as photoreceptor outer segment disc shedding and phagocytosis, and modulation of neurotransmitter release in the inner retina. The goal of this study was to determine if melatonin receptor mRNA is expressed in the neural retina and retinal pigment epithelium (RPE) of Xenopus laevis. Sheets of RPE, devoid of contaminating cells, were obtained from Xenopus eyes, and epithelial cultures were subsequently established on microporous membrane filters in a defined medium. Total RNA was isolated from whole brain, neural retina, fresh RPE sheets, and cultured RPE cells. RNA expression of the three known Xenopus melatonin receptor subtypes (MEL1A, 1B, and 1C) was determined by reverse-transcription/polymerase chain reaction (RT/PCR) amplification, followed by Southern hybridization with RNA probes. PCR-amplified cDNA encoding melatonin receptor subtypes 1B and 1C, but not 1A, were detected in reverse-transcribed RNA obtained from brain, neural retina and RPE. RPE cells grown in culture for two weeks also demonstrated 1B and 1C receptor RNA expression. This study suggests that RNA encoding the 1B and 1C melatonin receptor subtypes is expressed in the neural retina and RPE of Xenopus retina, and the expression persists in RPE cells when grown in culture. The expression of melatonin receptor RNA in the RPE may reflect a regulatory role for melatonin in some diurnal events that occur in this tissue, such as phagocytosis of photoreceptor outer segment membranes, and intracellular migration of pigment granules.
Collapse
Affiliation(s)
- A F Wiechmann
- Departments of Cell Biology and Ophthalmology, University of Oklahoma Health Sciences Center, Post Office Box 26901, Oklahoma City, OK 73190,
| | | | | |
Collapse
|
20
|
Dkhissi O, Chanut E, Versaux-Botteri C, Trouvin JH, Repérant J, Nguyen-Legros J. Day and night dysfunction in intraretinal melatonin and related indoleamines metabolism, correlated with the development of glaucoma-like disorder in an avian model. J Neuroendocrinol 1998; 10:863-9. [PMID: 9831262 DOI: 10.1046/j.1365-2826.1998.00273.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As previous studies have suggested that melatonin and serotonin may be involved in the regulation of intraocular pressure, retinal concentrations of melatonin, 5-HT, and related indoleamines measured at day and at night were studied during the development of a glaucoma-like disorder with increased intraocular pressure in the al mutant quail. Indoleamine levels were determined by HPLC with electrochemical detection in 1-month-, 3-month-, and 7-month-old al mutant and control quails. Morphology and numbers of melatonin-synthesizing and 5-HT-containing cells, labelled immunohistochemically with an anti-hydroxyindol-0-methyltransferase (HIOMT) antibody and an anti-5-HT antibody, respectively, were studied. Major findings were that: (1) no significant changes in morphology of melatonin-synthesizing cells or in the morphology and density of 5-HT-containing amacrine cells were observed during the development of glaucoma: (2) 5-HT metabolism was modified during the night at 1 month of age and during the day after 3 months; and (3) melatonin metabolism was modified during the night at 7 months and during the day after 3 months. These results demonstrate a relationship between the temporal evolution of this avian glaucoma and a dysfunction in indoleamine retinal metabolism.
Collapse
Affiliation(s)
- O Dkhissi
- Laboratoire de NeuroCytologie Oculaire, INSERM U 86, Paris, France
| | | | | | | | | | | |
Collapse
|
21
|
Chong NW, Cassone VM, Bernard M, Klein DC, Iuvone PM. Circadian expression of tryptophan hydroxylase mRNA in the chicken retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 61:243-50. [PMID: 9795235 DOI: 10.1016/s0169-328x(98)00219-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Many aspects of retinal physiology are controlled by a circadian clock located within the eye. This clock controls the rhythmic synthesis of melatonin, which results in elevated levels during the night and low levels during the day. The rate-limiting enzyme in melatonin biosynthesis in retina appears to be tryptophan hydroxylase (TPH)[G.M. Cahill and J.C. Besharse, Circadian regulation of melatonin in the retina of Xenopus laevis: Limitation by serotonin availability, J. Neurochem. 54 (1990) 716-719]. In this report, we found that TPH mRNA is strongly expressed in the photoreceptor layer and the vitread portion of the inner nuclear layer; the message is also expressed, but to a lesser extent, in the ganglion cell layer. The abundance of retinal TPH mRNA exhibits a circadian rhythm which persists in constant light or constant darkness. The phase of the rhythm can be reversed by reversing the light:dark cycle. In parallel experiments we found a similar pattern of expression in the chicken pineal gland. However, whereas a pulse of light at midnight suppressed retinal TPH mRNA by 25%, it did not alter pineal TPH mRNA, suggesting that there are tissue-specific differences in photic regulation of TPH mRNA. In retinas treated with kainic acid to destroy serotonin-containing amacrine and bipolar cells, a high amplitude rhythm of TPH mRNA was observed indicating that melatonin-synthesizing photoreceptors are the primary source of the rhythmic message. These observations provide the first evidence that chick retinal TPH mRNA is under control of a circadian clock.
Collapse
Affiliation(s)
- N W Chong
- National Institutes of Health Section on Neuroendocrinology, Laboratory of Developmental Neurobiology, 49/5A38, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
22
|
Duncan WC, Johnson KA, Wehr TA. Decreased sensitivity to light of the photic entrainment pathway during chronic clorgyline and lithium treatments. J Biol Rhythms 1998; 13:330-46. [PMID: 9711508 DOI: 10.1177/074873098129000165] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Certain antidepressant drugs (ADs) cause disturbances in sleep that could result from their capacity to alter the timing of circadian rhythms. Effects on the timing of rhythms could be due to the drugs' known capacity to alter the frequency of the intrinsic rhythm of the circadian pacemaker, or to a capacity to modify the pacemaker's response to external stimuli that serve as time cues (Zeitgebers) that regulate the timing (phase) of its rhythm. To examine the possibility that ADs alter the sensitivity of the system that mediates the phase-shifting effects of light, hamsters were treated chronically with the MAOI, clorgyline, and lithium. Each hamster was then exposed to a single 5-min light pulse (intensity range = 0.00137 to 137 microW/cm2) at circadian phases known to elicit phase advances (CT18) and phase delays (CT13.5) in the daily onset of wheel running. The half-saturation constant (sigma), photic sensitivity (1/sigma), and maximum phase-shifting response to light were estimated from the best-fit stimulus response curves. In addition, threshold sensitivity, the light intensity required to produce a threshold phase-shifting response, was determined. Clorgyline decreased the magnitude of light-induced phase advances at each of the light intensities tested. Clorgyline also decreased the magnitude of light-induced phase delays at low light intensities, but increased the magnitude of phase delays at higher light intensities. Clorgyline decreased the sensitivity of the photic phase-shifting system, as indicated both by the threshold sensitivities at CT13.5 and CT18, and by 1/sigma at CT13.5. Lithium decreased the threshold sensitivity at CT18, and 1/sigma at CT13.5. Lithium decreased the magnitude of phase delays, but not phase advances. Clorgyline's effects on the photic entrainment pathway may be mediated by its effects on serotonin, which has been shown to modulate the pacemaker's response to morning and evening light, and by tolerance to this effect of serotonin. The fact that both clorgyline and lithium decrease the photic sensitivity of the entrainment pathway suggests that other psychoactive drugs might also share this property. It is possible that the decreased sensitivity to light of the entrainment pathway affects the clinical response to these and other psychoactive medications.
Collapse
Affiliation(s)
- W C Duncan
- Section on Biological Rhythms, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
23
|
Longoni B, Salgo MG, Pryor WA, Marchiafava PL. Effects of melatonin on lipid peroxidation induced by oxygen radicals. Life Sci 1998; 62:853-9. [PMID: 9496707 DOI: 10.1016/s0024-3205(98)00002-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We here report the activity of the neurohormone melatonin (MLT) as a scavenger of free radicals in two different experimental models: (a) linoleic acid peroxidation initiated by different free radical-generating systems and (b) a multilamellar vesicle system composed of dilinoleoylphosphatidylcholine. In system (a) linoleic acid peroxidation, induced by either the water-soluble initiator 2,2'-azobis (2-amidinopropane) dihydrochloride (ABAP) or Fe2+-EDTA addition to 2.6 mM linoleic acid dispersed in SDS-phosphate buffer, was evaluated as the formation of conjugated dienes, measured spectrophotometrically at 236 nm. MLT did not reduce the rate of peroxidation induced by ABAP, but did reduce, in a concentration-dependent fashion, the rate of the reaction activated by Fe2+-EDTA. In system (b) multilamellar vesicles were used as the substrate for lipid peroxidation, initiated by Fe2+-EDTA and determined by means of malonaldehyde (MDA) and 4-hydroxyalkenal (4-HDA) content. MLT was found to be slightly more effective in system (b) than in the dispersed linoleic acid system (see a). These results show that MLT inhibits lipid damage induced by oxygen free radicals. However, MLT is only about one one-hundredth as effective an antioxidant as vitamin E in the micelles system.
Collapse
Affiliation(s)
- B Longoni
- Dipartimento di Fisiologia e Biochimica, Universita' di Pisa, Italy.
| | | | | | | |
Collapse
|
24
|
Bégay V, Falcón J, Cahill GM, Klein DC, Coon SL. Transcripts encoding two melatonin synthesis enzymes in the teleost pineal organ: circadian regulation in pike and zebrafish, but not in trout. Endocrinology 1998; 139:905-12. [PMID: 9492019 DOI: 10.1210/endo.139.3.5790] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this report the photosensitive teleost pineal organ was studied in three teleosts, in which melatonin production is known to exhibit a daily rhythm with higher levels at night; in pike and zebrafish this increase is driven by a pineal clock, whereas in trout it occurs exclusively in response to darkness. Here we investigated the regulation of messenger RNA (mRNA) encoding serotonin N-acetyltransferase (AA-NAT), the penultimate enzyme in melatonin synthesis, which is thought to be primarily responsible for changes in melatonin production. AA-NAT mRNA was found in the pineal organ of all three species and in the zebrafish retina. A rhythm in AA-NAT mRNA occurs in vivo in the pike pineal organ in a light/dark (L/D) lighting environment, in constant lighting (L/L), or in constant darkness (D/D) and in vitro in the zebrafish pineal organ in L/D and L/L, indicating that these transcripts are regulated by a circadian clock. In contrast, trout pineal AA-NAT mRNA levels are stable in vivo and in vitro in L/D, L/L, and D/D. Analysis of mRNA encoding the first enzyme in melatonin synthesis, tryptophan hydroxylase, reveals that the in vivo abundance of this transcript changes on a circadian basis in pike, but not in trout. A parsimonious hypothesis to explain the absence of circadian rhythms in both AA-NAT and tryptophan hydroxylase mRNAs in the trout pineal is that one circadian system regulates the expression of both genes and that this system has been disrupted by a single mutation in this species.
Collapse
Affiliation(s)
- V Bégay
- Département des Neurosciences, CNRS-UMR 6558, Faculté des Sciences, Poitiers, France
| | | | | | | | | |
Collapse
|
25
|
Abstract
Tryptophan is a large neutral amino acid which is utilized in the biosynthesis of neuroactive substances such as serotonin and melatonin. However, it has been unclear where pools of tryptophan might be localized. Using a specific antiserum against tryptophan, we demonstrate that in the chicken retina tryptophan is present in radial glial cells and photoreceptors, but not in other neuronal elements. These data suggest that serotonergic neurones are probably dependent upon the transfer of tryptophan from the glial cells in order to manufacture serotonin and other tryptophan derivatives in the brain. If glia do supply tryptophan to neurones then this process will have significant practical implications for our basic understanding of and pharmacological manipulation of serotonergic systems.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
26
|
Longoni B, Pryor WA, Marchiafava P. Inhibition of lipid peroxidation by N-acetylserotonin and its role in retinal physiology. Biochem Biophys Res Commun 1997; 233:778-80. [PMID: 9168932 DOI: 10.1006/bbrc.1997.6563] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
N-Acetylserotonin (NAS) inhibits the peroxidation of linoleic acid induced by a water-soluble initiator, 2,2'-azobis(2-amidinopropane) (ABAP). Lipid peroxidation was detected by the formation of conjugated dienes, monitored spectrophotometrically at 236 nm. N-Acetylserotonin, at concentrations ranging from 200 nM to 20 microM, reduced the rate of ABAP-initiated lipid peroxidation in a concentration-dependent manner. The results of NAS-inhibited lipid peroxidation are compared to the antioxidant activities of melatonin, vitamin E, and a water-soluble vitamin E analog, Trolox. It is suggested that NAS acts as a physiological antioxidant in retinal photoreceptor cells.
Collapse
Affiliation(s)
- B Longoni
- Dipartimento di Fisiologia e Biochimica, Universitá di Pisa, Italy
| | | | | |
Collapse
|
27
|
Affiliation(s)
- T. Joseph Kappock
- Department of Chemistry, Yale University, P.O. Box 208107 New Haven, Connecticut 06520-8107
| | | |
Collapse
|
28
|
Green CB, Besharse JC, Zatz M. Tryptophan hydroxylase mRNA levels are regulated by the circadian clock, temperature, and cAMP in chick pineal cells. Brain Res 1996; 738:1-7. [PMID: 8949920 DOI: 10.1016/0006-8993(96)00743-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chick pineal cells contain a circadian oscillator that derives rhythmic synthesis and secretion of melatonin even in dispersed cell culture. Here, we demonstrate that the mRNA encoding tryptophan hydroxylase (TPH), the first enzyme in the melatonin synthetic pathway, is expressed rhythmically under the control of the circadian clock. TPH message levels doubled between early day and early night, under both cyclic lightning and constant lightning conditions. The amplitude of the TPH mRNA rhythm was increased to 4-fold by culturing the cells at 43.3 degrees C for 48 h instead of 36.7 degrees C. Addition of forskolin to the cultures in early day produced a modest increase (50%) in TPH message levels but had no effect at other times. Because TPH mRNA are regulated by the endogenous pineal circadian clock, this provides a valuable system in which the molecular mechanism of clock control of gene expression.
Collapse
Affiliation(s)
- C B Green
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City 66160-7400, USA.
| | | | | |
Collapse
|
29
|
Abstract
Hydroxyindole O-methyltransferase (HIOMT, EC 2.1.1.4) catalyzes the final step in the synthesis of melatonin in the pineal gland and retina. HIOMT mRNA was localized by in situ hybridization in the chicken retina to some, but clearly not all, photoreceptors, while in the pineal gland, most pinealocytes displayed a positive hybridization signal. The in situ hybridization localization was confirmed by immunocytochemistry, using an antibody directed against a synthetic chicken HIOMT peptide. Western blot analysis demonstrated an immunoreactive protein of about 40 kilodaltons in the pineal, but the HIOMT protein was below detectable levels in the retina. However, the HIOMT-peptide antibody did identify a modestly immunoreactive subpopulation of retinal photoreceptors. These observations suggest that, in the chicken, melatonin biosynthetic activity is located mainly in a subpopulation of retinal photoreceptors and in most pinealocytes.
Collapse
Affiliation(s)
- A F Wiechmann
- Department of Anatomy and Neurobiology, Boston University School of Medicine, MA 02118, USA
| |
Collapse
|
30
|
Green CB, Besharse JC. Use of a high stringency differential display screen for identification of retinal mRNAs that are regulated by a circadian clock. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 37:157-65. [PMID: 8738147 DOI: 10.1016/0169-328x(95)00307-e] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report here the initiation of a systematic screen to identify clock-controlled mRNAs from the retina of Xenopus laevis using mRNA differential display. Xenopus retina contains an endogenous circadian clock located within the photoreceptor layer. The retinal block controls many aspects of physiology, including gene transcription. This screen uses differential display, a PCR based procedure, to compare retinal mRNA populations at different times of day in constant darkness, for identification of messages that exhibit rhythmic expression. Out of approx. 2000 mRNAs that we have screened to date, we have identified four candidates for clock-controlled mRNAs. Initial characterization of one of these PCR products shows that it recognizes a pair of mRNA bands on Northern blots that exhibit high amplitude rhythms. This pair of messages is called RM1 and shows peak levels of expression in the subjective night. In situ hybridization shows that this clock-controlled message is specifically localized to the clock containing photoreceptor cell layer within the retina. Identification of new messages that are under the control of the circadian clock has broad relevance in retinal physiology and provides an opportunity to gain insight into the molecular mechanism of vertebrate circadian control.
Collapse
Affiliation(s)
- C B Green
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City 66160-7400, USA.
| | | |
Collapse
|