1
|
Lischka K, Ladel S, Luksch H, Weigel S. Expression patterns of ion channels and structural proteins in a multimodal cell type of the avian optic tectum. J Comp Neurol 2017; 526:412-424. [DOI: 10.1002/cne.24340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 11/08/2022]
Affiliation(s)
| | - Simone Ladel
- Chair of Zoology; Technical University of Munich; Freising Germany
| | - Harald Luksch
- Chair of Zoology; Technical University of Munich; Freising Germany
| | - Stefan Weigel
- Chair of Zoology; Technical University of Munich; Freising Germany
| |
Collapse
|
2
|
Krabichler Q, Vega-Zuniga T, Carrasco D, Fernandez M, Gutiérrez-Ibáñez C, Marín G, Luksch H. The centrifugal visual system of a palaeognathous bird, the Chilean Tinamou (Nothoprocta perdicaria). J Comp Neurol 2017; 525:2514-2534. [PMID: 28256705 DOI: 10.1002/cne.24195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 11/10/2022]
Abstract
The avian centrifugal visual system, which projects from the brain to the retina, has been intensively studied in several Neognathous birds that have a distinct isthmo-optic nucleus (ION). However, birds of the order Palaeognathae seem to lack a proper ION in histologically stained brain sections. We had previously reported in the palaeognathous Chilean Tinamou (Nothoprocta perdicaria) that intraocular injections of Cholera Toxin B subunit retrogradely label a considerable number of neurons, which form a diffuse isthmo-optic complex (IOC). In order to better understand how this IOC-based centrifugal visual system is organized, we have studied its major components by means of in vivo and in vitro tracing experiments. Our results show that the IOC, though structurally less organized than an ION, possesses a dense core region consisting of multipolar neurons. It receives afferents from neurons in L10a of the optic tectum, which are distributed with a wider interneuronal spacing than in Neognathae. The tecto-IOC terminals are delicate and divergent, unlike the prominent convergent tecto-ION terminals in Neognathae. The centrifugal IOC terminals in the retina are exclusively divergent, resembling the terminals from "ectopic" centrifugal neurons in Neognathae. We conclude that the Tinamou's IOC participates in a comparable general IOC-retina-TeO-IOC circuitry as the neognathous ION. However, the connections between the components are structurally different and their divergent character suggests a lower spatial resolution. Our findings call for further comparative studies in a broad range of species for advancing our understanding of the evolution, plasticity and functional roles of the avian centrifugal visual system.
Collapse
Affiliation(s)
- Quirin Krabichler
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Tomas Vega-Zuniga
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Denisse Carrasco
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Maximo Fernandez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Gonzalo Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Harald Luksch
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
3
|
Gutiérrez-Ibáñez C, Iwaniuk AN, Lisney TJ, Faunes M, Marín GJ, Wylie DR. Functional implications of species differences in the size and morphology of the isthmo optic nucleus (ION) in birds. PLoS One 2012; 7:e37816. [PMID: 22666395 PMCID: PMC3362605 DOI: 10.1371/journal.pone.0037816] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/24/2012] [Indexed: 12/04/2022] Open
Abstract
In birds, there is a retinofugal projection from the brain to the retina originating from the isthmo optic nucleus (ION) in the midbrain. Despite a large number of anatomical, physiological and histochemical studies, the function of this retinofugal system remains unclear. Several functions have been proposed including: gaze stabilization, pecking behavior, dark adaptation, shifting attention, and detection of aerial predators. This nucleus varies in size and organization among some species, but the relative size and morphology of the ION has not been systematically studied. Here, we present a comparison of the relative size and morphology of the ION in 81 species of birds, representing 17 different orders. Our results show that several orders of birds, besides those previously reported, have a large, well-organized ION, including: hummingbirds, woodpeckers, coots and allies, and kingfishers. At the other end of the spectrum, parrots, herons, waterfowl, owls and diurnal raptors have relatively small ION volumes. ION also appears to be absent or unrecognizable is several taxa, including one of the basal avian groups, the tinamous, which suggests that the ION may have evolved only in the more modern group of birds, Neognathae. Finally, we demonstrate that evolutionary changes in the relative size and the cytoarchitectonic organization of ION have occurred largely independent of phylogeny. The large relative size of the ION in orders with very different lifestyles and feeding behaviors suggest there is no clear association with pecking behavior or predator detection. Instead, our results suggest that the ION is more complex and enlarged in birds that have eyes that are emmetropic in some parts of the visual field and myopic in others. We therefore posit that the ION is involved in switching attention between two parts of the retina i.e. from an emmetropic to a myopic part of the retina.
Collapse
|
4
|
Abstract
Spatial attention enables the brain to analyse and evaluate information selectively from a specific location in space, a capacity essential for any animal to behave adaptively in a complex world. We usually think of spatial attention as being controlled by a frontoparietal network in the forebrain. However, emerging evidence shows that a midbrain network also plays a critical role in controlling spatial attention. Moreover, the highly differentiated, retinotopic organization of the midbrain network, especially in birds, makes it amenable to detailed analysis with modern techniques that can elucidate circuit, cellular and synaptic mechanisms of attention. The following review discusses the role of the midbrain network in controlling attention, the neural circuits that support this role and current knowledge about the computations performed by these circuits.
Collapse
Affiliation(s)
- Eric I Knudsen
- Department of Neurobiology, 299 Campus Dr., Stanford University School of Medicine, Stanford, CA 94305-5125, USA.
| |
Collapse
|
5
|
What the bird's brain tells the bird's eye: the function of descending input to the avian retina. Vis Neurosci 2011; 28:337-50. [PMID: 21524338 DOI: 10.1017/s0952523811000022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As Cajal discovered in the late 19th century, the bird retina receives a substantial input from the brain. Approximately 10,000 fibers originating in a small midbrain nucleus, the isthmo-optic nucleus (ION), terminate in each retina. The input to the ION is chiefly from the optic tectum which, in the bird, is the primary recipient of retinal input. These neural elements constitute a closed loop, the centrifugal visual system (CVS), beginning and ending in the retina, that delivers positive feedback to active ganglion cells. Several features of the system are puzzling. All fibers from the ION terminate in the ventral retina and an unusual axon-bearing amacrine cell, the target cell, is the postsynaptic partner of these fibers. While the rest of the CVS is orderly and retinotopic, target cell axons project seemingly at random, mostly to distant parts of the retina. We review here the most significant features of the anatomy and physiology of the CVS with a view to understanding its function. We suggest that many of the facts about this system, including some that are otherwise difficult to explain, can be accommodated within the hypothesis that the images of shadows cast on the ground or on objects in the environment, initiate a rapid and parallel search of the sky for a possible aerial predator. If a predator is located, shadow and predator would be temporarily linked together and tracked by the CVS.
Collapse
|
6
|
Frazão R, Pinato L, da Silva AV, Britto LRG, Oliveira JA, Nogueira MI. Evidence of reciprocal connections between the dorsal raphe nucleus and the retina in the monkey Cebus apella. Neurosci Lett 2007; 430:119-23. [PMID: 18079059 DOI: 10.1016/j.neulet.2007.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/06/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
Possible connections between the retina and the raphe nuclei were investigated in the monkey Cebus apella by intraocular injection of cholera toxin B subunit (CTb). CTb-positive fibers were seen in the lateral region of the dorsal raphe nucleus (DR) on the side contralateral to the injection, and a few labeled perikarya were observed in the lateral portion of the DR on the ipsilateral side. Our findings suggest that direct and reciprocal connections between the retina and DR may exist in Cebus apella. These connections might be part of an important pathway through which the light/dark cycle influences the activity and/or functional status of raphe neurons, with potential effects on a broad set of neural and behavioral circuits.
Collapse
Affiliation(s)
- Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Repérant J, Médina M, Ward R, Miceli D, Kenigfest N, Rio J, Vesselkin N. The evolution of the centrifugal visual system of vertebrates. A cladistic analysis and new hypotheses. ACTA ACUST UNITED AC 2007; 53:161-97. [DOI: 10.1016/j.brainresrev.2006.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 08/10/2006] [Accepted: 08/21/2006] [Indexed: 12/23/2022]
|
8
|
Miceli D, Repérant J, Medina M, Volle M, Rio JP. Distribution of ganglion cells in the pigeon retina labeled via retrograde transneuronal transport of the fluorescent dye rhodamine β-isothiocyanate from the telencephalic visual Wulst. Brain Res 2006; 1098:94-105. [PMID: 16765920 DOI: 10.1016/j.brainres.2006.04.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 04/18/2006] [Accepted: 04/23/2006] [Indexed: 10/24/2022]
Abstract
The distribution of retinal ganglion cells (RGCs) providing input to the thalamofugal visual system in the pigeon was studied with an anatomical transneuronal transport technique using the fluorescent dye rhodamine beta-isothiocyanate (RITC). Unilateral injections of RITC made into the telencephalic visual Wulst resulted in the retrograde (1) first-order labeling (FOL) of dorsal thalamic (n. dorsolateralis anterior and n. superficialis parvocellularis: SPC) and brainstem somata as well as (2) second-order labeling of other cell populations within the brain and of retinal ganglion cells in both eyes obtained after transneuronal transfer of the tracer from neurons labeled directly via FOL. The mapping and counting of labeled RGCs in retinal flat-mounts showed that they were mainly distributed within the nasal portion of the retinal yellow field (YF) and that their total numbers were consistently higher (averaging 57%) in the eye contralateral to the tracer injection. Labeled RGCs in the retinal red field (RF) represented 13.4% and 12.0% of total labeled cells in the ipsilateral and contralateral eye, respectively. Moreover, the average densities of labeled cells/mm(2) in the RF and YF were respectively 8.4 and 42.8 (ipsilateral) and 17.9 and 54.0 (contralateral). The preferential distribution of labeled RGCs within the nasal YF supports the notion that the thalamofugal visual system in the lateral-eyed pigeon is mainly concerned with viewing in the lateral visual field. Conversely, the relatively low numbers of labeled RGCs observed within the specialized RF indicate that, unlike the case in frontal-eyed bird species and mammals, this system does not appear to be involved in binocular visual processing.
Collapse
Affiliation(s)
- Dom Miceli
- Laboratoire de Neuropsychologie, Département de Psychologie, C.P. 500, Université du Québec, Trois Rivières, Québec, Canada G9A 5H7.
| | | | | | | | | |
Collapse
|
9
|
Repérant J, Ward R, Miceli D, Rio JP, Médina M, Kenigfest NB, Vesselkin NP. The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. ACTA ACUST UNITED AC 2006; 52:1-57. [PMID: 16469387 DOI: 10.1016/j.brainresrev.2005.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 11/24/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
The present review is a detailed survey of our present knowledge of the centrifugal visual system (CVS) of vertebrates. Over the last 20 years, the use of experimental hodological and immunocytochemical techniques has led to a considerable augmentation of this knowledge. Contrary to long-held belief, the CVS is not a unique property of birds but a constant component of the central nervous system which appears to exist in all vertebrate groups. However, it does not form a single homogeneous entity but shows a high degree of variation from one group to the next. Thus, depending on the group in question, the somata of retinopetal neurons can be located in the septo-preoptic terminal nerve complex, the ventral or dorsal thalamus, the pretectum, the optic tectum, the mesencephalic tegmentum, the dorsal isthmus, the raphé, or other rhombencephalic areas. The centrifugal visual fibers are unmyelinated or myelinated, and their number varies by a factor of 1000 (10 or fewer in man, 10,000 or more in the chicken). They generally form divergent terminals in the retina and rarely convergent ones. Their retinal targets also vary, being primarily amacrine cells with various morphological and neurochemical properties, occasionally interplexiform cells and displaced retinal ganglion cells, and more rarely orthotopic ganglion cells and bipolar cells. The neurochemical signature of the centrifugal visual neurons also varies both between and within groups: thus, several neuroactive substances used by these neurons have been identified; GABA, glutamate, aspartate, acetylcholine, serotonin, dopamine, histamine, nitric oxide, GnRH, FMRF-amide-like peptides, Substance P, NPY and met-enkephalin. In some cases, the retinopetal neurons form part of a feedback loop, relaying information from a primary visual center back to the retina, while in other, cases they do not. The evolutionary significance of this variation remains to be elucidated, and, while many attempts have been made to explain the functional role of the CVS, opinions vary as to the manner in which retinal activity is modified by this system.
Collapse
Affiliation(s)
- J Repérant
- CNRS UMR 5166, MNHN USM 0501, Département Régulation, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, C. P. 32, 7 rue Cuvier, 75231 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Uchiyama H, Stell WK. Association amacrine cells of Ramón y Cajal: Rediscovery and
reinterpretation. Vis Neurosci 2006; 22:881-91. [PMID: 16469195 DOI: 10.1017/s0952523805226160] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 08/17/2005] [Indexed: 11/08/2022]
Abstract
In 1895, by means of the Golgi method, Santiago Ramón y Cajal
discovered a cell having a unique morphology in the avian retina. This
cell had its cell body in the amacrine cell level of the inner nuclear
layer, only a few rudimentary dendrites at the outermost level of the
inner plexiform layer (IPL), and a long axon coursing horizontally and
terminating in the IPL. Despite having defined amacrine cells as cells
without axons, Cajal named this cell type “association amacrine
cell” (AAC). This discovery was not confirmed by other investigators
for nearly a century. Very recently, however, isthmo-optic target cells
(IOTCs), which receive the terminals of centrifugal fibers emanating from
the isthmo-optic nucleus, have been identified as one type of AAC. As
summarized and discussed in this review, the morphology of the AACs as
described by Cajal has been completely confirmed. However, since these
cells appear to be classical polarized, monoaxonal neurons and lack the
dendritic interactions that are typical of amacrine cells, they should be
regarded as a distinct type of retinal interneuron and not as amacrine
cells.
Collapse
Affiliation(s)
- H Uchiyama
- Department of Information and Computer Science, Faculty of Engineering, Kagoshima University, Korimoto 1-21-40, Kagoshima 890-0065, Japan.
| | | |
Collapse
|
11
|
Médina M, Repérant J, Ward R, Miceli D. Presumptive FMRF-amide-like immunoreactive retinopetal fibres in Crocodylus niloticus. Brain Res 2004; 1025:231-6. [PMID: 15464765 DOI: 10.1016/j.brainres.2004.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
A small contingent of 30-50 of centrifugal visual fibres, showing FMRF-amide-like immunoreactivity, has been identified in C. niloticus; these fibres extend from the chiasmatic region into the retina. They do not take the marginal optic tract, but pass medially to the chiasmatic fascicles, from the preoptic region. The cells of origin of these fibres have not been identified. However, none of the retinopetal neurons of the brainstem [M. Medina, J. Reperant, R. Ward, D. Miceli, Centrifugal visual system of Crocodylus niloticus : a hodological, histochemical and immunocytochemical study, J. Comp. Neurol. 468 (2004) 65-85], labelled by retrograde transport of rhodamine beta-isothiocyanate after intraocular injection of this tracer, show FMRF-amide-like immunoreactivity; neither are any of the FMRF-amide-like immunopositive neurons in the crocodile brain, particularly those of the complex involving the terminal nerve and the septo-preoptic region, labelled by rhodamine after its intraocular injection.
Collapse
Affiliation(s)
- Monique Médina
- Laboratoire d'Anatomie Comparée, Muséum National d'Histoire Naturelle, Département Ecologie et Gestion de la Biodiversité, CNRS FRE2696-MNHN USM0302 CP 55, 55 rue Buffon, F-75005 Paris, France.
| | | | | | | |
Collapse
|
12
|
Gardino PF, Schmal AR, Calaza KDC. Identification of neurons with acetilcholinesterase and NADPH-diaphorase activities in the centrifugal visual system of the chick. J Chem Neuroanat 2004; 27:267-73. [PMID: 15261333 DOI: 10.1016/j.jchemneu.2004.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 01/05/2004] [Accepted: 04/13/2004] [Indexed: 11/16/2022]
Abstract
The isthmo-optic nuclei (ION) and ectopic neurons, which constitute the centrifugal visual system (CVS), are thought to be cholinoceptive and nitrergic. However, it is not clear which neurons express these markers, namely the ones that project to the retina rather than in neurons that only participate in a local circuit. Therefore, to characterize the neurochemical patterns of the centrifugal visual system in the post-hatched chick, retinopetal cells of the isthmo-optic nuclei and the ectopic region were identified via immunolabeling for cholera toxin, a neuronal tracer, which has been injected in the ocular globe. Then, double labeled with acetylcholinesterase histochemistry to reveal cholinergic synapses, or NADPH-diaphorase histochemistry as a nitrergic marker. Briefly, acetylcholinesterase activity was present mainly in cholera toxin labeled cell bodies of the isthmo-optic nucleus and the ectopic region indicating that retinal projecting neurons of centrifugal visual system comprise a cholinoceptive pathway. On the other hand, NADPH-diaphorase histochemistry was present in the neuropile and sparse cell bodies inside of the isthmo-optic nucleus and in ectopic neurons which were not cholera toxin positive suggesting their role in an intrinsic circuit of the centrifugal visual system. These data support the idea that these two neurochemical systems are present in distinct neuronal populations in the centrifugal visual system.
Collapse
Affiliation(s)
- Patrícia F Gardino
- Departamento de Neurobiologia do Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
13
|
Médina M, Repérant J, Ward R, Miceli D. Centrifugal visual system of Crocodylus niloticus: a hodological, histochemical, and immunocytochemical study. J Comp Neurol 2004; 468:65-85. [PMID: 14648691 DOI: 10.1002/cne.10959] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The retinopetal neurons of Crocodylus niloticus were visualized by retrograde transport of rhodamine beta-isothiocyanate or Fast Blue administered by intraocular injection. Approximately 6,000 in number, these neurons are distributed in seven regions extending from the mesencephalic tegmentum to the rostral rhombencephalon, approximately 70% being located contralaterally to the injected eye. None of the centrifugal neurons projects to both retinae. The retinopetal neurons are located in rostrocaudal sequence in seven regions: the formatio reticularis lateralis mesencephali, the substantia nigra, the griseum centralis tectalis, the nucleus subcoeruleus dorsalis, the nucleus isthmi parvocellularis, the locus coeruleus, and the commissura nervi trochlearis. The greatest number of cells (approximately 93%) is found in the nucleus subcoeruleus dorsalis. The majority are multipolar or bipolar in shape and resemble the ectopic centrifugal visual neurons of birds, although a small number of monopolar neurons resembling those of the avian isthmo-optic nucleus may also be observed. A few retinopetal neurons in the griseum centralis tectalis were tyrosine hydroxylase (TH) immunoreactive. Moreover, in the nuclei subcoeruleus dorsalis and isthmi parvocellularis, both ipsilaterally and contralaterally, approximately one retinopetal neuron in three (35%) was immunoreactive to nitric oxide synthase (NOS), and a slightly higher proportion (38%) of retinopetal neurons were immunoreactive for choline acetyltransferase (ChAT). Some of them contained colocalized ChAT and NOS/reduced nicotinamide adenine dinucleotide phosphate-diaphorase. Fibers immunoreactive to TH, serotonin (5-HT), neuropeptide Y (NPY), or Phe-Met-Arg-Phe-amide (FMRF-amide) were frequently observed to make intimate contact with rhodamine-labeled retinopetal neurons. These findings are discussed in relation to previous results obtained in other reptilian species and in birds.
Collapse
Affiliation(s)
- Monique Médina
- Centre National de la Recherche Scientifique UMR8570-MNHN USM0302, F-75005 Paris, France.
| | | | | | | |
Collapse
|
14
|
Miceli D, Repérant J, Rio JP, Hains P, Medina M. Serotonin immunoreactivity in the retinal projecting isthmo-optic nucleus and evidence of brainstem raphe connections in the pigeon. Brain Res 2002; 958:122-9. [PMID: 12468036 DOI: 10.1016/s0006-8993(02)03515-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Serotonin (5-HT) immunoreactive (-ir) profiles within the isthmo-optic nucleus (ION) of the centrifugal visual system (CVS) were studied in the pigeon using light microscopic immunohistofluorescent and electron microscopic immunocytochemical pre-embedding techniques. The brainstem origin of the 5-HT input upon the ION was determined by combining 5-HT immunohistofluorescence (FITC) and retrograde transneuronal tracing after intraocular injection of Rhodamine beta-isothiocyanate. The light microscopic results showed that 5-HT endings were mainly localised within the neuropillar zones of the ventral ION. The 5-HT-ir cell bodies, belonging to a lateral extension of the dorsal raphe system, were observed within the same region as the centrifugal ectopic neurons (EN) underlying the ION and some displayed dendritic processes which penetrated the nucleus. Double-labeled neurons, representing 5-HT-ir afferents to the ION, were identified only within the n. linearis caudalis region of the ventral raphe. The electron microscopic results confirmed the presence of 5-HT-ir dendritic processes within the ventral part of the nucleus and showed that they were contacted by axon terminals belonging to intrinsic interneurons. The functional organisation of the ION and the possible contribution of serotonergic raphe afferents and efferents are discussed in relation to present hypotheses linking the avian CVS to mechanisms of visual attention.
Collapse
Affiliation(s)
- Dom Miceli
- Groupe de Recherche en Neurosciences, Département de Psychologie, Université du Québec, CP 500, Trois-Rivières, Quebec, Canada G9A 5H7.
| | | | | | | | | |
Collapse
|
15
|
Rio JP, Repérant J, Miceli D, Medina M, Kenigfest-Rio N. Serotonergic innervation of the isthmo-optic nucleus of the pigeon centrifugal visual system. An immunocytochemical electron microscopic study. Brain Res 2002; 924:127-31. [PMID: 11744006 DOI: 10.1016/s0006-8993(01)03262-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ultrastructural features of serotonergic fibers, terminals and synaptic contacts were studied with the pre-embedding immunocytochemical method in the isthmo-optic nucleus of the pigeon centrifugal visual system. The 5-HT immunoreactive (-ir) profiles were diffusely distributed and their density was low. The labeled axons were thin and unmyelinated (mean diameter=0.21+/-0.03 microm) though a few larger myelinated axons were observed (mean diameter=0.51+/-0.07 microm). The 5-HT-ir terminals or varicosities were small (diameter=0.71+/-0.54 microm) and contained small agranular synaptic vesicles (diameter=28.5+/-6.9 nm) and large granular vesicles (diameter=102.2+/-19.5 nm). The latter only constituted approximately 1% of the total profiles containing synaptic vesicles in the isthmo-optic nucleus. In single thin sections, only 5% of the 5-HT-ir varicosities exhibited an active asymmetrical zone synapsing upon dendritic profiles of centrifugal visual neurons. Calculations indicated that 17% of these 5-HT-ir varicosities were actually engaged in junctional synaptic relationships, whereas the remaining (83%) were nonjunctional. The data suggest that, within the isthmo-optic nucleus, 5-HT acts both at synaptic junctions (wiring transmission) and at a distance via the extracellular space (volume transmission). These 5-HT afferents could thus modulate the activity of the retinopetal neurons and visual information processing.
Collapse
Affiliation(s)
- J P Rio
- INSERM U 106, Neuromorphologie: Développement, Evolution, Hôpital de la Salpêtrière, 47, Bd. de l'Hôpital, 75651 Paris Cedex, France
| | | | | | | | | |
Collapse
|
16
|
Hu J, Li S, Xiao Q, Wang SR. Tecto-isthmo-optic transmission in pigeons is mediated by glutamate and nitric oxide. Brain Res Bull 2001; 54:399-403. [PMID: 11306192 DOI: 10.1016/s0361-9230(00)00461-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The isthmo-optic nucleus of the centrifugal system in birds receives primarily input from the ipsilateral tectum and projects to the contralateral retina. The present study using brain slices and microiontophoresis shows that synaptic transmission from the tectum to the centrifugal nucleus in pigeons is excitatory. About 75% of tecto-isthmo-optic fibers are glutamatergic, mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid but not N-methyl-D-aspartate-receptors, and 25% of others may use nitric oxide as a transmitter or modulator. On the other hand, about 60% of isthmo-optic cells receive glutamatergic afferents, 20% receive nitric oxidergic afferents, and 20% of others receive both glutamatergic and nitric oxidergic afferents from the tectum. In the last group, it is more likely that both glutamate and nitric oxide may co-release from the same tecto-isthmo-optic terminals. All the isthmo-optic cells examined in the present study also receive gamma-aminobutyric acid (GABA)ergic afferents via GABA(A) and GABA(B) receptors probably from some extratectal structures.
Collapse
Affiliation(s)
- J Hu
- Laboratory for Visual Information Processing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | |
Collapse
|
17
|
Miceli D, Repérant J, Rio JP, Désilets J, Médina M. Quantitative immunogold evidence that glutamate is a neurotransmitter in afferent synaptic terminals within the isthmo-optic nucleus of the pigeon centrifugal visual system. Brain Res 2000; 868:128-34. [PMID: 10841897 DOI: 10.1016/s0006-8993(00)02316-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A quantitative electron microscopic analysis of glutamate (GLU) immunoreactivity using the post-embedding immunogold technique was carried out within the isthmo-optic nucleus (ION) of the pigeon centrifugal visual system (CVS). Measurements were performed in each of eight different categories of axon terminals, including those that were GABA-immunoreactive (-ir), considered representing control profiles and identified using a single or double-label immunocytochemical procedure. The results demonstrated that the glutamate immunogold particle densities for both mitochondrial and vesicular pools and for total surface area of bouton profiles were significantly higher in P1a, P1b and P2b terminals and not significantly different in P4 and P5 terminals compared to those recorded in control GABA-ir terminals (P2a, P2c, P3). Moreover, the values measured in GLU-ir positive profiles were all significantly higher than in either P4 or P5 terminals. The results suggest that tectal neurons, which provide the main input to the ION cells, are either inhibitory GABA-ir possibly associated with P2c and/or P3 terminals or excitatory GLU-ir via P1a, P1b and P2b terminals. Such differential effects of tectal afferents may be the basis for the modulation of centrifugal activity and consequently of end target retinal ganglion cell responses. The data are relevant to hypotheses implicating the avian CVS in mechanisms of selective enhancement of visual attention to either novel or meaningful stimuli within the visual field.
Collapse
Affiliation(s)
- D Miceli
- Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada
| | | | | | | | | |
Collapse
|
18
|
Li WC, Hu J, Wang SR. Tectal afferents monosynaptically activate neurons in the pigeon isthmo-optic nucleus. Brain Res Bull 1999; 49:203-8. [PMID: 10435784 DOI: 10.1016/s0361-9230(99)00051-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Postsynaptic responses of 105 neurons in brain slices were intracellularly recorded from the isthmo-optic nucleus (ION) in pigeons, and 18 of these neurons were labeled with Lucifer yellow. Excitatory postsynaptic potentials (EPSPs) or spikes were produced in 93 cells, inhibitory postsynaptic potentials (IPSPs) in 10 cells, and EPSPs followed by IPSPs in two cells following electrical stimulation of the tecto-isthmooptic tract. The EPSPs occurred in an all-or-none fashion, with short latencies (1.3 +/- 0.6 ms). Repetitive stimulation increased their amplitude and duration, demonstrating that temporal summation was involved. Neurons producing excitatory responses were distributed throughout cellular layers of the nucleus. Pure IPSPs had a latency of 3.9 +/- 2.3 ms, and cells that responded in this manner were only distributed in the rostral portion of the nucleus. In the remaining two cells with EPSP-IPSP responses, the latency of excitatory responses was 1.5 ms in one cell and 1.4 ms in the other, and that of inhibitory responses was, respectively, 5.1 and 4.1 ms. Thus, it appeared that excitation was monosynaptic, whereas inhibition may be polysynaptic. Four single injections resulted in dye-coupled labeling, and two pairs of closely apposed cells fired spikes, probably resulting from spatial summation of their excitatory responses. The present study suggests that tectal cells directly activate ION neurons and that tectal fibers contact isthmo-optic neurons in a one-to-one fashion. Taken together with previous studies, it appears that the entire tecto-ION-retinal pathway is excitatory.
Collapse
Affiliation(s)
- W C Li
- Laboratory for Visual Information Processing, Institute of Biophysics, Chinese Academy of Sciences, Beijing
| | | | | |
Collapse
|
19
|
Miceli D, Repérant J, Bertrand C, Rio JP. Functional anatomy of the avian centrifugal visual system. Behav Brain Res 1999; 98:203-10. [PMID: 10683108 DOI: 10.1016/s0166-4328(98)00085-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although first described over a century ago, the centrifugal visual system (CVS) projecting to the retina still remains somewhat of an enigma with regard to its functional role in visually-guided behavior. The highly developed avian CVS has been the most extensively investigated and the anatomical organization of its two component centrifugal structures, the n. isthmo-opticus (NIO) and ectopic neurons (EN), including its afferent brainstem projections is reviewed. The results of double-labeling studies combining axonal tracing techniques and immunohistofluorescence have demonstrated GABA immunoreactivity (-ir) of interneurons within the neuropilar zone of the NIO, choline acetyltransferase (ChAT)-ir and nitric oxide synthase (NOS)-ir in the centrifugal cells of the NIO and EN as well as in the afferent projection neurons of layers 9/10 of the optic tectum. The data are discussed in terms of neurochemical and excitatory/inhibitory mechanisms within the different components of the avian CVS in relation to hypotheses which have implicated this system in visual attention and ground-feeding behavior.
Collapse
Affiliation(s)
- D Miceli
- Département de psychologie, Université du Québec, Trois-Rivières, Canada
| | | | | | | |
Collapse
|
20
|
Abstract
Determining the connections of neural systems is critical for determining how they function. In this review, we focus on the use of HSV-1 and HSV-2 as transneuronal tracers. Using HSV to examine neural circuits is technically simple. HSV is injected into the area of interest, and after several days, the animals are perfused and processed for immunohistochemistry with antibodies to HSV proteins. Variables which influence HSV infection include species of host, age of host, titre of virus, strain of virus and phenotype of infected cell. The choice of strain of HSV is critically important. Several strains of HSV-1 and HSV-2 have been utilized for purposes of transneuronal tract-tracing. HSV has been used successfully to study neuronal circuitry in a variety of different neuroanatomical systems including the somatosensory, olfactory, visual, motor, autonomic and limbic systems.
Collapse
Affiliation(s)
- R B Norgren
- Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha 68198, USA
| | | |
Collapse
|
21
|
Médina M, Repérant J, Miceli D, Bertrand C, Bennis M. An immunohistochemical study of putative neuromodulators and transmitters in the centrifugal visual system of the quail (Coturnix japonica). J Chem Neuroanat 1998; 15:75-95. [PMID: 9719361 DOI: 10.1016/s0891-0618(98)00034-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to analyze the neurochemical properties of the centrifugal visual system (CVS) of the quail using an immunohistochemical approach by testing 16 neuropeptides (angiotensin: ANG, bradykinin: BK, cholecystokinin, dynorphin, L and M-enkephalin, beta-endorphin: beta-END, galanin, alpha-neoendorphin, neurokinin A, neuropeptide Y (NPY), ocytocin, somatostatin, substance P, vasopressin, vasoactive intestinal polypeptide) and three neurotransmitters or their synthetic enzymes (choline acetyltransferase: ChAT, tyrosine hydroxylase: TH, serotonin: 5-HT and nitric oxide synthase: NOS, including the histochemical nicotinamide adenine dinucleotide phosphate diaphorase technique). For each substance, the somatic and afferent fiber and terminal labeling was analyzed within the nucleus isthmo-opticus (NIO) and the ectopic area (EA) and compared with that of retinopetal cell bodies labeled retrogradely with RITC following its intraocular injection (double-labeling procedure). The results showed that none of the centrifugal neurons were reactive to any of the substances tested. In contrast, all with the exception of ANG, BK and beta-END, labeled fibers and terminals within the EA and only four (ChAT, 5-HT, NPY and NOS) within the NIO. Possible sources of these immunoreactive fibers terminating in the NIO and EA were investigated by mapping the somatic immunolabeling of the different substances within brainstem regions previously shown by Miceli and other authors to project upon the centrifugal neurons. The data suggests that, besides the rapid retino-tecto-NIO-retinal loop, which facilitates the transfer of meaningful or more relevant information within particular portions of the visual field, the multiple afferent input which stems from various brainstem regions utilizes a wide range of neuroactive substances. Some of these afferent projections upon the centrifugal neurons appear to belong to nonspecific systems which might play a role in modulating the excitability of centrifugal neurons as a function of arousal.
Collapse
Affiliation(s)
- M Médina
- CNRS-URA 1137, Laboratoire d'Anatomie Comparée, Muséum National d'Histoire Naturelle, Paris, France.
| | | | | | | | | |
Collapse
|
22
|
Banfield BW, Yap GS, Knapp AC, Enquist LW. A chicken embryo eye model for the analysis of alphaherpesvirus neuronal spread and virulence. J Virol 1998; 72:4580-8. [PMID: 9573221 PMCID: PMC109971 DOI: 10.1128/jvi.72.6.4580-4588.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/1997] [Accepted: 02/24/1998] [Indexed: 02/07/2023] Open
Abstract
We describe use of developing chicken embryos as a model to study neuronal spread and virulence of pseudorabies virus (PRV). At embryonic day 12, beta-galactosidase-expressing PRV strains were injected into the vitreous humor of one eye, and virus replication and spread from the eye to the brain were measured by beta-galactosidase activity and the recovery of infectious virus from tissues. The wild-type PRV strain, Becker, replicated in the eye and then spread to the brain, causing extensive pathology characterized by edema, hemorrhage, and necrosis that localized to virally infected tissue. The attenuated vaccine strain, Bartha, replicated in the eye and spread throughout specific regions of the brain, producing little to no overt pathology. Becker mutants lacking membrane proteins gE or gI replicated in the eye and were able to spread to the brain efficiently. The pathology associated with replication of these mutants in the brain was intermediate to that induced by Becker or Bartha. Mixed infection of a gE deletion mutant and a gI deletion mutant restored the pathogenic phenotype to wild-type levels. These data indicate that the replication of virus in embryonic brain tissue is not sufficient to induce the characteristic pathological response and that the gE and gI gene products actively affect pathological responses in the developing chicken brain.
Collapse
Affiliation(s)
- B W Banfield
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|